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ABSTRACT
Mobile crowd sensing enables a broad range of novel
applications by leveraging mobile devices and smart-
phone users worldwide. While this paradigm is immense-
ly useful, it involves the collection of detailed informa-
tion from sensors and their carriers (i.e. participants)
during task management processes including participant
recruitment and task distribution. Such information might
compromise participant privacy in various regards by
identification or disclosure of sensitive attributes – there-
by increasing vulnerability and subsequently reducing
participation. In this survey, we identify different task
management approaches in mobile crowd sensing, and
assess the threats to participant privacy when personal
information is disclosed. We also outline how privacy
mechanisms are utilized in existing sensing applications
to protect the participants against these threats. Finally,
we discuss continuing challenges facing participant pri-
vacy-preserving approaches during task management.

1. INTRODUCTION
The recent increase in the use of smart phones

and other mobile devices has created the opportu-
nity to collectively sense and share information for
common good. Mobile crowd sensing (MCS) refers
to the wide variety of sensing models in which in-
dividuals with sensing and computing devices are
able to collect and contribute valuable data for dif-
ferent applications [30]. MCS is also closely related
to location-aware crowdsourcing [38, 2, 48] in which
jobs are distributed to workers with regard to their
locations. Examples of such applications are crowd-
contributed instant news coverage, finding parking
spots, monitoring tra�c, and crime mapping. In
MCS, a participant or carrier is an individual who
collects and contributes data using a sensing device
(e.g. a smart phone) that she carries. Collected
data is consumed by end users directly or after pro-
cessing by some applications.1 Mobile crowd sens-
1In this paper, we use the terms end user and applica-
tion interchangeably

ing can be categorized based on the involvement of
participants in sensing actions as participatory or
opportunistic. In a participatory sensing, partici-
pants agree to fulfill the requested sensing activi-
ties, and are thus explicitly involved in the sensing
action (e.g. taking a picture or entering data). In
an opportunistic sensing, data is collected by the
device with minimum or no involvement of the par-
ticipants (e.g. reporting speed while driving). Op-
portunistic sensing could run as a background pro-
cess, so collecting data requires no interaction with
the individuals carrying the sensing devices. From a
di↵erent point of view, MCS can also be categorized
based on the data collection target into social sens-
ing and environmental sensing. In social sensing
applications, a participant collects data about her-
self (e.g. her vital signs, sport activities) or social
interactions (e.g. tra�c patterns, parking spots)
while in environmental sensing, she monitors cer-
tain aspects of the environment (e.g. air pollution,
potholes).

To facilitate or coordinate the interaction between
applications and participants,2 a task management
paradigm is needed to define tasks based on the
application requirements, recruit qualified partici-
pants, distribute tasks, and possibly coordinate with
participants until task completion. One of the ma-
jor challenges in task management is to ensure a
certain degree of privacy for participants. Such an
assurance of privacy would increase the disposition
of the participants to engage in MCS activity, re-
ceive tasks and contribute data, and would ulti-
mately lead to more e↵ective applications.

In this paper, we discuss participant privacy con-
cerns and solutions in the context of task manage-
ment in mobile crowd sensing. Previous surveys on
privacy in participatory sensing applications [17, 16]
mainly consider privacy issues related to data col-

2In this paper we refer to these individuals as partici-
pants regardless of the sensing model (participatory or
opportunistic)
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lection and briefly mention anonymous task distri-
bution, while our main focus is participant privacy
during task management. To our knowledge, this
is the first survey dedicated to participant privacy
issues of task management in MCS. Our main con-
tributions can be summarized as follows:

1. We present a detailed classification of task man-
agement in mobile crowd sensing covering all
aspects of tasks and distribution methods.

2. We identify the categories of privacy threats
to participants of MCS and provide a detailed
classification of privacy mechanisms for each
type of threat.

3. We discuss ongoing research directions and fur-
ther challenges in the area of participant pri-
vacy in MCS task management.

The rest of this paper is organized as follows. In
Section 2 we review and categorize task manage-
ment models in MCS. We then investigate privacy
threats in di↵erent tasking schemes in Section 3 fol-
lowed by existing and applicable privacy solutions
studied in Section 4. We discuss limitations of par-
ticipant privacy in task management and other chal-
lenges in Section 5. Finally, Section 6 provides some
concluding remarks.

2. TASK MANAGEMENT IN MOBILE
CROWD SENSING

We identify the following three entities in task
management in mobile crowd sensing:

1. Participants are entities that use a sensing de-
vice to obtain or measure the required data
about a subject of interest.

2. Applications or end users are the entities that
request data through tasks and then utilize the
information acquired by participants.

3. Tasking entities are responsible for distribu-
tion of tasks to participants who meet the re-
quirements of applications. In certain archi-
tectures, end users and participants can also
act as tasking entities.

Figure 1 shows the general structure of the task flow
in MCS. Task management in crowd sensing can be
studied from two perspectives: the type of sensing
tasks and the distribution model.

2.1 Sensing Task Schemes
Tasks can be classified into several categories based

on features inherent to the tasks or the involved
tasking entities. In this study, we classify tasks

Figure 1: General structure of the task flow in mobile crowd
sensing. Note that end users and participants can also act
as tasking entities.

along two major dimensions: event based vs con-
tinuous, and spatial vs non-spatial. We should note
that these dimensions are independent of each other
and any combination is possible.

2.1.1 Event-based vs Continuous
One way to categorize di↵erent tasks is by the

frequency with which the data is requested. The
frequency could either be event-based or continu-
ous.

Event-based tasks are triggered when a particu-
lar situation occurs. This includes special circum-
stances such as the presence of a participant at a
specific location or an ad hoc incident. For exam-
ple, the tasking entity could ask participants to act
as citizen journalists and submit images or other
information from a scene of interest when an event
occurs [20].

Continuous tasks receive information from the
participants periodically or frequently. For exam-
ple, data could be requested every few minutes to
monitor the speed of cars on a specific highway [42],
or vital signs of a patient can be frequently re-
quested to track the development of an illness [7].
Continuous tasks have been gaining popularity to
keep a record of the di↵erent activities performed
by the participants. Ganti et.al. have developed a
software architecture that keeps track of the partic-
ipant’s activity and location using a personal wear-
able monitoring system [29], which can have safety,
personal, and entertainment applications.

2.1.2 Spatial vs Non-Spatial tasks
In location-based tasks, the location of the par-

ticipant plays an important role in determining task
initiation, distribution, or assignment while non-
spatial tasks can be triggered by time or other cir-
cumstances.

Spatial tasks require the participant to be at a
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specific place in order to fulfill a task. With the in-
creasing use of smart phones with integrated GPS,
the number of applications in which, tasks are as-
signed based on the location of participants has
also grown. Examples of spatial tasks include those
in which sensors such as GPS and accelerometers
are positioned in vehicles to detect road conditions.
Some of these tasks are opportunistic; they run in
the background with little or no involvement from
the participant, and they could be used to detect
tra�c speed, bumps, inclination, and elevation of
the road [25, 62, 42]. In contrast, participatory
tasks could ask the users to report potholes or the
quality of the road as they drive around in their
normal commute [26, 72]. Spatial tasks are not re-
strained to reporting road conditions. For example,
a participatory spatial task could require that the
participants search for the best prices located at dif-
ferent stores and report them to provide other users
with the best prices in the region [21, 9].

Non-spatial tasks are assigned independently of
the location of the participant. For example, non-
spatial tasks could opportunistically monitor the
participant’s activities as well as certain aspects of
her lifestyle [29]. Tracking a participant’s move-
ment and physiological conditions has several bene-
ficial applications in patients with neuromotor dis-
orders [59]. A novel example of opportunistic non-
spatial tasks is a “sociometer”, which requires the
participants to wear sensors that register their face-
to-face interactions with other participants [14]. These
sensors are able to register parameters such as who
the participant is talking to, and how long her con-
versations last. Afterwards, this information is an-
alyzed to understand the social structure of the
participants, and determine how information is dif-
fused, how group problems are solved, and how the
community reaches a consensus or forms coalitions.

2.2 Task Distribution Models
Task management models can be categorized ac-

cording to the way tasks are distributed among par-
ticipants. The three major categories for these mod-
els are: centralized vs decentralized vs hybrid [17],
push vs pull, and autonomous vs coordinated.

2.2.1 Centralized vs Decentralized vs Hybrid
In a centralized model, a central server or task-

ing entity provides the participants with di↵erent
tasks to perform [42]. For example, in a party ther-
mometer application, a central server could choose
a set of participants attending an event or party,
and request that they rate it. These ratings could
serve other users who are considering attending this

event [20]. One major issue of a central model in
the context of privacy preservation is that the server
constitutes a single point of failure for interactions
between participants and applications should a se-
curity breach occurs. This problem can be allevi-
ated by considering a network infrastructure as a
central entity as opposed to having a single server [45].

In a decentralized model, each participant can be-
come a tasking entity and decide either to perform
a task or pass it forward to other participants who
might be better-suited to fulfill the task. This deci-
sion would be based on certain attributes of other
participants such as location, abilities, or the avail-
able hardware in their device. A decentralized re-
cruitment model is proposed in [76] which notifies
qualified participants of a forthcoming sensing ac-
tivity. Some participants selected as recruiting nodes
distribute the tasks in certain locations, then in a
decentralized manner each participant passes the
tasks to whoever matches the task criteria. The
advantage in a decentralized model is that there is
no single point of failure, so a security breach in a
communication does not endanger the privacy of all
the users.

A hybrid model includes parts of the centralized
and the decentralized models. In this scheme, a cen-
tral server and a set of participants who act as task-
ing entities build the task management core [25]. A
bubble scheme [60] requires a central server to main-
tain control of the sensing tasks, which are allocated
mostly in a decentralized way. In this model, a task
is defined and broadcasted in a particular location
of interest by a participant. The task is registered
in the server, and other participants who move into
the location of interest are signaled by the central
server and become bubble carriers. These carriers
can broadcast the task and can also fulfill them and
report the sensed data to the server.

2.2.2 Push vs Pull model
A di↵erent classification for task management mod-

els is based on the entity that initiates the task. The
initiation model can be push or pull.

Push model based tasks are initiated by a task-
ing entity via pushing the tasks on the participants’
devices. The platform proposed in [20] uses a push
and centralized model where executable binaries of
opportunistic tasks are pushed to an optimized set
of participants based on predefined criteria. The
criteria could depend on several factors such as the
location of the participants or the time of the day.
An application of this model opportunistically reg-
isters GPS and accelerometer data obtained with
the participants’ mobile phones to determine the
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conditions of the road and detect road bumps.
Pull model tasks are queried and downloaded by

participants at an arbitrary time or location. A
pull based task model can be found in [70], where
a set of tasks are stored in a central tasking entity
and the participants pull this information and de-
cide which tasks to perform. The decision could be
based on di↵erent criteria such as preferences, loca-
tion, or the sensors’ capabilities. Nericell [62] rep-
resents another pull model example, in which the
task of opportunistically detecting road conditions
such as potholes, tra�c, and noise, depend on the
participant’s driving route and their smart phone’s
sensors.

2.2.3 Autonomous vs Coordinated
Tasks can also be categorized based on the allo-

cation scheme that is used to distribute the tasks
among the participants. Two approaches that we
consider are autonomous task selection and coordi-
nated task assignment [65, 66].

Autonomous task selection is an allocation method
in which the participants have access to a set of
tasks and they autonomously choose one or more
tasks to perform. The participants do not neces-
sarily need to inform the task distributing entity
of their decision. While this scheme results in par-
ticipants sharing fewer attributes with the tasking
entities and consequently disclosing less private in-
formation, the lack of coordination and global opti-
mization for distributing the tasks can decrease the
e�ciency with respect to sensing cost or global util-
ity. Another major drawback of autonomous task
selection is that it can generate bias in the obtained
information. For example, people in urban areas
might be more inclined to participate in a sensing
task due to the greater presence of sensors or smart
phones. This bias would directly a↵ect the variables
that are being studied, and will have an e↵ect in the
quality of the analysis [1].

Coordinated task assignment aims at improving
the quality of the sensed data by optimizing the
set of participants recruited to perform tasks. This
optimization is based on varied criteria including
coverage, quality, sensing costs, and credibility of
the sensed data [65, 66]. Reddy et al. [67] proposed
a recruitment process based on three stages. The
first stage finds those participants that meet the
minimum requirements, the second stage aims at
maximizing the coverage over an area or time pe-
riod, and the third stage checks the participants’
reputation over coverage and data collection. Once
the appropriate set of tasks and participants have
been chosen, and the participants have performed

the tasks, the task manager might review the par-
ticipants’ progress and evaluate them for future re-
cruitment.

3. PRIVACY THREATS IN TASK MAN-
AGEMENT

In mobile crowd sensing, privacy concerns might
discourage participants from data contribution. Such
concerns include a) disclosure of participant iden-
tity, b) disclosure of sensitive attributes such as
race, age, or locations (e.g. current location, home
or work address), and c) disclosure of more com-
plex information such as personal activities or con-
ditions (e.g. lifestyle or sicknesses). From a dif-
ferent perspective, participant privacy concerns can
be aggravated either i) directly via sharing real IDs,
IP addresses, exact locations, or other sensitive at-
tributes, or ii) indirectly by sharing insensitive in-
formation (e.g. home address inference from trajec-
tories of participants [54]). Designing a task man-
agement model that preserves the privacy of par-
ticipants can be challenging due to the nature of
crowd sensing tasks and task distribution models.
In this section, we investigate the information that
a participant shares with other tasking entities dur-
ing the task management process and discuss how
this information can directly or indirectly breach
her privacy. We also discuss the applicability of the
privacy threats with respect to the di↵erent tasking
schemes we discussed in the previous section. Ta-
ble 1 provides a summary of the privacy threats for
vulnerable tasking schemes.

Adversary Models
From the perspective of participant privacy, the ad-
versaries in MCS task management may include
some or all of end-users (applications), tasking enti-
ties, and other participants based on their involve-
ment in task management. Regardless of the role of
adversarial entities, they are generally modeled as
either semi-honest or malicious. Here, we study
these two models and privacy threats associated
with each. We also discuss how di↵erent entities
in di↵erent task management frameworks fall into
these categories.

3.1 Semi-honest Entities
The semi-honest entities (also known as passive)

are assumed to follow the task management proto-
cols and would not actively alter the data to breach
the privacy of the participants. However, these en-
tities may attempt to exploit any acquired informa-
tion from participants to learn their private data.
We categorize the privacy attacks conducted by semi-
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honest entities in task management into task tracing
attacks and location-based attacks, both of which are
described below.

3.1.1 Task Tracing Attacks
When a participant downloads specific tasks from

a tasking server (i.e. pull-based tasks), shares her
preferences during a coordinated task assignment,
or notifies a server of accepting a pushed task, she
may reveal some attributes such as location, time,
the task types in which she is interested, or some
attributes of the sensing device she is carrying. For
example, if a task is designed for undergraduate
students majoring in History and can only be han-
dled by Android devices, performing such a task re-
veals some information about the participant. This
information alone might not breach her privacy;
however, linking multiple tasking actions might al-
low an adversary to trace the selected tasks by the
participant and consequently reveal her identity or
other sensitive attributes [70]. Continuing the pre-
vious example, if the same history student later per-
forms another task for an application designed for
Hispanic students at her university, the adversary
might be able to infer her identity. Some of the
attributes that can be used to trace participants
are real names, pseudonyms, International Mobile
Equipment Identity (IMEI), IP addresses, or other
user/device identifiers. An example of task tracing
attack is illustrated in Figure 2.

Some tasking models distribute tasks among the
participants based on their behavior and their pro-
file as opposed to a device ID with specific char-
acteristics [39]. Assuming that mobile phones are
almost exclusively used only by its owner, the use
of the device reflects the user’s preferences. In par-
ticular, mobility can reflect the user’s interest and
can be used to determine if the user is more capable
of fulfilling a task. However, this tasking model is
still prone to location-based attacks.

3.1.2 Location-based Attacks
Spatial tasks requested (i.e. a pulled task) or ac-

cepted (i.e. a pushed task) by participants might
lead to disclosure of their current location and even-
tually their sensitive locations such as home/work
addresses or even their identification through location-
based attacks. Location-based attacks are widely
recognized in the context of location-based services
(LBS), however, certain attributes of mobile crowd
sensing make it more vulnerable to some of spatial
attacks. Here, we give a brief review of such attacks
in MCS.

In frequent spatial tasks, even if the participant

Figure 2: A task tracing attack in MCS task management
using user-ids. Accepting task 1 is not enough to determine
the identity of user 2, however, tracing the tasks she has
performed and using available information from other sources
could provide the necessary means to determine her identity.

is using the application anonymously (e.g. using
pseudonyms), her trajectory might reveal her sen-
sitive locations or commutes [55] or eventually dis-
close her identity using location-based de-anonymization
attacks [28]. Krumm proposed several algorithms to
identify a small group of anonymous participants
and the home address of a larger group through
location-based inference attacks [54]. They used
the distribution of location traces during time, the
last destinations of the day and the distribution of
stay times to infer the home addresses of the par-
ticipants. A location could be simply considered as
a home if it is visited frequently by the same user
at night [12]. Participant locations can also be ex-
ploited using trajectory data mining algorithms [61]
to identify their significant locations. The trajec-
tory data can be also used to infer the individuals’
life patterns (i.e. private schedules or lifestyles) [81].

Continuous or frequent spatial tasks make MCS
more prone to location-based inference attacks as
more location traces of participants are collected.
A simple example of this attack in mobile crowd
sensing task management is illustrated in Figure 3.

Kazemi et. al. [46, 47] defined a location-based
attack in campaign-based Participatory Sensing ap-
plications when participants used Spatial k-anony-
mity [74] to hide their location. The location at-
tack is defined as the identification of a participant
by an untrusted server by learning the location of
her issued task query. They observed that all par-
ticipants of a campaign query spatial tasks from
the server (a.k.a. all-inclusivity property) asking
for tasks closer to them than any other participants
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Figure 3: A simple location-based inference attack in MCS
task management. The time and location of the accepted
tasks can be enough to determine the participant’s home
and work addresses.

(a.k.a range dependency property). These proper-
ties result in the server having spatially-dependent
requests from all participants, so they argued that
participatory sensing is more vulnerable to such location-
based attack. Gonzalez et. al. showed that people
and their movements are highly correlated [36] mak-
ing such attacks possible.

Another location-based attack targets applications
that utilize the density distribution of participants
(i.e. aggregated number of participants) in a lo-
cation for task management [71]. This attack ex-
ploited by a group of terrorists can be used to iden-
tify dense areas for explosive launches.

3.2 Malicious entities
Malicious entities actively try to breach the pri-

vacy of participants. Privacy attacks associated
with malicious task management entities include
both aforementioned attacks along with several ac-
tive de-anonymization attacks such as malicious task-
ing and collusion attacks. To prevent or stop these
attacks, privacy countermeasures should be plugged
into sensing devices or other trusted-parties.

3.2.1 Malicious Tasking
In the process of task definition, a malicious en-

tity might create tasks that impose strict limita-
tions on participant attributes or the device she is
carrying (e.g. requiring a special lifestyle or a rare
sensor type to qualify for the task). This attack
which is called narrow tasking [70] might result in
disclosure of identity or other sensitive attributes of
the participant who accepts such a specialized task.
In another variation of malicious tasking (a.k.a. se-
lective tasking [70]), the tasking entity may share
tasks with a limited set of participants to be able
to learn their attributes or trace them (e.g. pushing
or assigning a task to only one participant).

3.2.2 Collusion Attack

Several applications (end users) or tasking enti-
ties might collude to link the information of the par-
ticipants for de-anonymization of the individuals or
acquire their other private information. These at-
tacks known as collusion attacks might be hard to
detect in mobile crowd sensing systems since indi-
viduals might contribute to di↵erent applications
using separate task management systems with no
control over how their information is shared with
others. For example, individuals might share some
information with application A1 and other infor-
mation with application A2 considering none of this
information being personally identifiable separately.
However, in reality, if applications A1 and A2 share
pieces of her information, they might be able to
de-anonymize her identity. Moreover, a malicious
entity might create several applications with di↵er-
ent contexts in an attempt to collect more private
data from individuals. To avoid such attacks, while
individuals might not be able to stop the collusion,
they can at least control the amount of information
they share with each application and also the overall
information they share with all of the applications.
We discuss this concept in detail in Section 4.3.

4. PRIVACY COUNTERMEASURES IN
TASK MANAGEMENT

We categorize privacy solutions in MCS task man-
agement based on the applicable state-of-the-art pri-
vacy mechanisms. These mechanisms can be adopted
in MCS based on privacy threats relative to task
schemes and distribution models and the privacy
preferences of the participants. In other words,
there is no privacy-preserving method suitable for
every user and application. For example, a partici-
pant who uses her real name to register to MCS ap-
plications cannot benefit from anonymization tech-
niques. Table 1 summarizes privacy countermea-
sures that can be used for di↵erent privacy threats.

4.1 Anonymization
Anonymization techniques remove or hide iden-

tification information from all the interactions be-
tween the participant and other entities during task
management. We review some of the anonymization
techniques here.

4.1.1 Pseudonyms
One of the basic methods to preserve the anony-

mity of the participants includes using pseudonyms
by replacing the identification information with an
alias [17]. While this technique prevents location-
based inference attacks, it does not protect the par-
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Table 1: Summary of privacy threats and countermeasures for di↵erent tasking scenarios.

Privacy Threats Tasking Scenarios Countermeasures

Task tracing Pulling specific tasks Anonymization
Coordinated task assignment Temporally constrained sharing

Push-based tasks with notification Policy-based privacy preferences
Location-based attacks Spatial tasks Spatial cloaking

Temporally constrained sharing
Private information retrieval

Di↵erential privacy
Policy-based privacy preferences

Narrow tasking All tasking schemes K-Anonymization
Policy-based privacy preferences

Selective tasking Coordinated task assignment K-Anonymization
Push-based tasks Policy-based privacy preferences

Collusion attacks All tasking schemes Policy-based privacy preferences

ticipants from task tracing or location-de-anonymization
attacks (see Section 3.1.2). For a detailed review of
these methods in MCS refer to a recent survey [16].

4.1.2 Connection Anonymization
These methods can be used to avoid tracing at-

tacks using network-based identifiers such as IP ad-
dresses or device identifier such as International Mo-
bile Equipment Identity (IMEI), and SIM card iden-
tifiers (IMSI, ICC-ID). One such technique which is
adopted in crowd sensing applications [70] is onion
routing [23] which hides the IP addresses of the par-
ticipants from the other entities.

4.1.3 K-Anonymization
K-anonymization [73] is an established anonymiza-

tion technique in database privacy [5]. A user is
considered to be k-anonymous if her identity is in-
distinguishable from k�1 other users. In MCS task
management, participants can adopt this method to
avoid malicious tasking attacks by accepting a task
only if there exists k � 1 other qualifying partici-
pants for it. For example, if a user learns that she
is the only qualified participant for a task, she would
avoid performing it. K-anonymization is also widely
adopted for location privacy which is discussed sep-
arately in Section 4.2.

4.2 Spatio-Temporal Privacy Methods
With the growing advance of location-based ser-

vices, several spatio-temporal privacy mechanisms
have been developed recently (see recent surveys
in [31, 56, 4]). Although the context in mobile
crowd sensing is di↵erent from location-based ser-
vices, these mechanisms can be used to address lo-
cation privacy problems in such scenarios as well.
However, since location and time are two crucial
pieces of information in an e↵ective task manage-
ment model, applying the existing spatio-temporal
privacy-preserving techniques can be challenging.

Here, we study some of the applicable methods in
MCS task management.

4.2.1 Spatial Cloaking
In some crowd sensing applications, a perturbed

or cloaked location can be used for spatial task man-
agement instead of exact locations. Spatial cloaking
or perturbation hides the participant location inside
a cloaked region using spatial transformations [50],
generalization (e.g. k-anonymity) [44, 78], or a set
of dummy locations [51] in order to achieve location
privacy. Some MCS applications do not require ex-
act locations (e.g. pollution or weather monitoring),
but for the majority of the applications with utility
depending on location accuracy, adopting cloaking
methods remains a challenge. In recent work [65],
participants of a coordinated spatial task assign-
ment would share their cloaked location to obtain
a set of closest tasks. They developed probabilis-
tic methods to deal with uncertainty for a globally
optimized task assignment.

Kazemi et. al. [46, 47] showed that spatial k-
anoymity methods used in location-based services
are not directly applicable to Participatory Sensing.
Therefore, they proposed that a group of the repre-
sentative participants ask for spatial tasks from an
untrusted server, and share their results with the
rest of participants. They would also adjust the
spatial regions in queries to make queries indepen-
dent from the location of other participants. Vu
et. al. [77] proposed a spatial cloaking mechanism
for Participatory Sensing based on k-anonymity and
locality-sensitive hashing (LSH) to preserve both lo-
cality and k-anonymity.

While most traditional location cloaking meth-
ods rely on syntactic privacy models and are sub-
jective to inference attacks, recent works applied
more rigorous privacy notion based on di↵erential
privacy. The work in [3] proposed a location pertur-
bation method based on a rigorous notion of indis-
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tinguishability, which is similar to the di↵erential
privacy concept. Another recent work [79] protects
the exact locations with di↵erential privacy in a pro-
posed delta-location set, which is derived in Markov
model to denote the possible locations where a user
might appear at any time.

4.2.2 Temporally Constrained Sharing
Some approaches share exact locations for task-

ing; however, they avoid or mitigate the location
based attacks to some extent by controlling the tim-
ing of disclosures. For example, to avoid frequent
revealing of location of participants in spatial tasks,
Krause et al. [52] use a spatial obfuscation approach.
In their solution, they divide the space into a set of
regions, then with a certain probability distribution,
a subset of participants is selected in each region to
report their exact location. Such methods can be
used in tra�c monitoring applications.

Another method [52] assigns spatial tasks to par-
ticipants in a way that the number of tasks for
each participant is minimized. In such an approach,
there will be longer intervals between each location
disclosure, mitigating location-based inference at-
tacks. This scheme can be further controlled by
participants by setting explicit policies regarding
the intervals in which they prefer to share their lo-
cation. We discuss these methods in Section 4.3.

4.2.3 Aggregated Location with Differential
Privacy

Di↵erential Privacy [24] is a promising privacy-
preserving approach with a strong protection guar-
antee. This method is adopted in privacy-preserving
publishing of statistical information about location-
based datasets [31] guaranteeing that individual lo-
cation information disclosure does not occur. It
can also prevent privacy attacks on the aggregated
number of participants in a location as discussed
in 3.1.2. In recent work, di↵erential privacy is adopted
for spatial crowdsourcing task assignment [75] in
which a trusted aggregator (e.g. a cell service provider)
computes di↵erentially private aggregated counts of
participants in various spatial regions and provides
them to tasking entities for task assignment.

4.2.4 Private Information Retrieval
In autonomous pull-based tasking schemes, par-

ticipants can retrieve the best suited tasks with-
out providing their attributes using private informa-
tion retrieval (PIR). PIR-based methods have been
adopted for location-based services recently [31] since
they guarantee cryptographic privacy by allowing
data retrieval from a database without revealing
any information to the database server about the

retrieved item. Such an anonymous tasking scheme
su↵ers from overlapping task selection and bias since
sharing entities do not learn which tasks are re-
trieved.

4.3 Policy-based Privacy Preferences
To avoid direct or inference-based privacy breaches,

participants should be able to set fine-grained pref-
erences to control information sharing in a way that
a curious party cannot learn or infer any private at-
tributes. Such policies may include settings to ig-
nore location-based tasks when the participant is
within a specified range of a sensitive location (e.g.
home or work), ignore narrow tasks, limit the num-
ber of tasks per time periods, or avoid sharing infor-
mation that could be linked to previously disclosed
data.

Shilton et. al. [69] introduced the concept of
participatory privacy regulation in MCS which pro-
motes participants’ involvement in developing their
own privacy policies and setting their personal bound-
ries. Some methods provide a trusted cloud-based
storage and processing entity for each participant to
store and fully control sharing of her personal infor-
mation with applications and end users [13, 63, 10].
A recent incentive-based task assignment approach
allows participants to set their preferred privacy lev-
els, which are then incorporated into a tasking cost
model to limit the frequency of location disclosures
(i.e. a task that requires location disclosure will
be more costly for a participant with strict privacy
preferences) [68].

5. DISCUSSION
In this section, we discuss further research direc-

tions and challenges of participant privacy in MCS
including the limitations of privacy preserving task-
ing solutions, and privacy issues related to other
components of MCS such as data collection.

5.1 Private Tasking Limitations

5.1.1 Trust and Credibility
Privacy and trust generally follow conflicting goals

since the participant’s trust is gained by higher ac-
curacy and exactness of provided data, but privacy
aims at hiding or perturbing identifying data (which
includes majority of exchanged data in MCS) to
protect the participant [1, 35]. Furthermore, trust
issues become more challenging for anonymous task-
ing since they may result in tasking to untrustwor-
thy or unqualified participants [17].

A trustworthy privacy-aware framework is pro-
posed in [49], which defines the relationship between

30 SIGMOD Record, December 2015 (Vol. 44, No. 4)



trust and privacy in participatory sensing as a re-
verse k-nearest problem. Participants’ privacy is
procured in [34] by installing trusted software on
the mobile device to encrypt the data before it is
sent to the remote server. While this approach en-
sures the integrity of data during transmission to
the server, the credibility of the participants is not
evaluated.

Assessing the reputation of the participants while
maintaining their anonymity and preserving their
privacy is particularly di�cult when a task requires
the users to be at a certain location to collect the
data more e�ciently. Anonymous participants are
prone to provide falsified or faulty data and it would
be challenging to evaluate their participation, espe-
cially if di↵erent task actions cannot be linked due
to privacy mechanisms [41, 18]. One approach to
avoid trust issues in coordinated task management
might be to assign a task to several participants to
avoid the e↵ect of malicious or faulty participation,
however such method would result in a waste of re-
sources.

Huang et. al. [41] proposed an anonymous rep-
utation system for participatory sensing, which pre-
serves the privacy of participants by separating their
reputation from their identity. Another recent work [18]
also addresses the issue of maintaining the reputa-
tion of the anonymous participants by using pseudonyms
and anonymous transfer of the reputation informa-
tion. They also use simulations to analyze the trade-
o↵ between privacy and reputation.

5.1.2 Reward-based Tasking
The challenge for rewarding participants in the

presence of privacy mechanisms is very similar to
the trust challenges since both require participant
evaluations. However, trust models need to trace
and review participants progress while incentives
can be handled per task completion without linking
it to other tasks. Several recent privacy-preserving
incentive models are proposed in the literature [82,
58].

An anonymous credential system (or pseudonym
system) can preserve the privacy of users while al-
lowing internet transactions with service providers [11],
so that an incentive-based system that supports pri-
vacy can be implemented. Zhang et. al [82] pro-
posed a model based on pseudonym, encryption,
and hashing to protect participant privacy.

A delayed rewarding model is proposed in [70]
which aims at preventing task-reward linkage. As-
suming that only the application can calculate the
rewards for each task, their reward scheme includes
a payment service that receives an anonymous claim

message from the user after one or several tasks have
been completed. The anonymity of the message is
ensured by the application in the user’s device, that
encrypts a new identity for the user each time a
message is sent. The payment service uses a one-
way function to verify the message and forwards the
reward to the user. The user’s privacy will be pre-
served if the message is new for each report and the
one-way function is secure.

5.1.3 Utility and Efficiency
Privacy mechanisms that obfuscate location, time,

or other attributes challenge task management with
uncertain or incomplete information. Therefore, the
tasking entities may need to task a larger set of par-
ticipants or conduct more computation to reach a
certainty similar to non-private models. A recent
work [65, 66] proposed a two-stage tasking model
in which participants would share their cloaked lo-
cations rather than exact locations. Their model
consists of a central tasking server which deals with
location uncertainty and recommends globally op-
timized tasks to participants, and then each par-
ticipant locally refines and further self-assigns tasks
strictly following the global recommendation. Al-
though this model achieves a comparable utility as
the non-private method, the sensing and computa-
tional costs are higher due to uncertainty.

5.2 Data-related Privacy Concerns
In addition to how tasks are managed, task con-

text (i.e. captured sensor data) might also lead to
privacy issues for participants. For instance, noise
monitoring tasks might record participants’ voices,
or if participants continuously report their driving
habits during a trip, the destination of the trip may
still be inferred even without sharing specific loca-
tions [22]. Another example of data-related privacy
problems is contributing images that contain iden-
tifying information about the participants such as
faces or locations [6] which can be de-identified be-
fore uploading to protect their privacy [64]. Fine-
grained privacy preferences can also help partici-
pants to ignore tasks requiring sensitive contexts.
Other privacy-preserving data collection solutions
such as di↵erential privacy can be used to perturb
aggregated data before submitting to a server [80,
27]. If a trusted aggregator is not available, partic-
ipants can use secure multi-party computation pro-
tocols [37] to aggregate their data before submitting
to the data collector.

Furthermore, in most applications, captured sen-
sor data contains meta-data such as time/location
of individual sensing actions which might result in
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location-based inference attacks. By linking reports
to participants, other tracing attacks would arise.
To assure participant privacy in mobile crowd sen-
ing, privacy-preserving methods should be devel-
oped during both task management and data collec-
tion. Privacy issues during reporting has been ex-
tensively studied in literature, and several privacy-
preserving data collection and aggregation methods
have been proposed [17, 16].

Hu et. al. proposed a decentralized model to pro-
tect the privacy of participants in a social network
while reporting data to an untrusted server. In their
approach, participants pass data to their friends in a
chain-like fashion before it is uploaded to the server.
An spatial cloaking method based on generalization
is used in [70] to hide the location of participants
during data reporting. Huang et. al. [40] argued
that location generalization methods decrease the
utility of collected data significantly, particularly in
tra�c data monitoring applications. They proposed
an alternative approach based on microaggregation
and also a hybrid approach including both general-
ization and microaggregation.

5.3 Privacy Mechanism Enforcement
In Section 4 we discussed how suitable privacy

mechanisms could be determined by the types of
threats, but enforcing these mechanisms still re-
mains as a challenge. In MCS, privacy mechanisms
can be enforced on sensing devices (participants),
semi-honest or trusted tasking entities, or other trusted
third-parties. On the other hand, privacy-preserving
architecture could be centralized or decentralized [30].
However, di↵erent models might introduce further
complications and security issues which need to be
considered in choosing an enforcement model.

A trusted third-party is one of the commonly
used privacy-preserving approaches in MCS. Many
works use a centralized server to anonymize the par-
ticipants information, cloak their locations or per-
turb the aggregated number of participants in a re-
gion [75] while satisfying the users privacy require-
ments. In these architectures, the tasking entity
(entities) receives anonymized information from the
trusted party including perturbed or cloaked loca-
tions. Other methods use a decentralized architec-
ture in which either participants trust each other
and use peer-to-peer methods for spatial cloaking [46,
15] or they benefit from secure multi-party compu-
tation [30]. Moreover, a decentralized model may
include a group of trusted agents [53] who share
a complex data structure [32] to store and enforce
privacy policies.

Krontiris et. al. [53] proposed trusted decentral-

ized cloud-based agents to cloak the location of par-
ticipants and enforce their preferred privacy poli-
cies. The agents are organized in a quadtree struc-
ture which is stored and managed in a decentral-
ized fashion. While decentralized approaches avoid
bottlenecks of centralized methods such as having
a single point of failure and scalability problems,
they introduce more complications for privacy en-
forcement and maintenance.

5.4 Privacy-Awareness
Another important topic regarding participants’

privacy in crowd sensing task management is the
users’ privacy awareness. Several studies [54, 43,
19] show that individuals are generally unaware of
threats of using location-based services and place
a low value on the privacy of their location data.
In general, with no or little incentives the partici-
pants might willingly share their sensitive location
information and moving patterns. Other studies [8,
56] explore participants’ attitude in sharing their
location for incentives (i.e. the value of location)
and their willingness and preferences for using loca-
tion obfuscation methods for sharing highly sensi-
tive data such as their home or workplace address.
Their attitude towards sharing their location data
depends on several factors such as the usefulness of
the application, the amount of data to be shared,
the incentives to share it, and if it will be used for
commercial or other purposes [56, 54, 33, 57].

6. CONCLUSION
Mobile crowd sensing is an emerging topic with a

wide variety of possible applications. However, the
functionality of MCS relies on the participation of
individuals who might be concerned about their pri-
vacy. In particular, task management as a central
part of crowd sensing structure poses several threats
to participant privacy, which should be identified
and addressed. In this survey, we have classified
di↵erent potential privacy risks and outlined their
solutions for task management in MCS in an e↵ort
to raise awareness and preserve the privacy of the
participants.
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