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ABSTRACT
A significant part of the information available on the
Web is stored in online databases which compose what
is known as Hidden Web or Deep Web. In order to ac-
cess information from the Hidden Web, one must fill an
HTML form that is submitted as a query to the underly-
ing database. In recent years, many works have focused
on how to automate the process of form filling by creat-
ing methods for choosing values to fill the fields in the
forms. This is a challenging task since forms may con-
tain fields for which there are no predefined values to
choose from. This article presents a survey of methods
for Web Form Filling, analyzing the existing solutions
with respect to the type of forms that they handle and
the filling strategy adopted. We provide a comparative
analysis of 15 key works in this area and discuss direc-
tions for future research.

1. INTRODUCTION
The Hidden Web [11] or Deep Web [4] is the part of

the Web that is not accessible through traditional crawl-
ing (i.e., direct link navigation) [19]. The contents of
the Hidden Web can only be accessed by filling out Web
forms, such as the ones in Figure 1, which are then
submitted as queries to the online database behind the
form. The Hidden Web covers several topic domains,
such as government, education, entertainment, business,
health, news, and sports. There are thousands of online
databases for each of those domains – most of them con-
taining structured information [7]. Exposing the con-
tents of an online database can be achieved by design-
ing wrappers, i.e., programs that extract data from a spe-
cific Web site. However, since wrappers are specific for
each site, this solution is not feasible when dealing with
thousands of hidden Web sites. Thus, a more scalable
approach is to use a Hidden Web Crawler to automati-
cally identify and retrieve data from online databases.

Hidden Web Crawling has many applications. The
discovered content can be indexed by generic search en-
gines, such as Google, Bing, and Yahoo!. Furthermore,
it can be used to create vertical search engines, which

focus on a specific segment such as real estate, online
auction, books, airline tickets, etc.

Hidden Web crawling can be divided into three key
phases: (i) discovery of the entry points to the Hid-
den Web, i.e., Web forms that allow searching on-line
databases [3, 21–23]; (ii) identification, filling, and sub-
mission of forms [1,2,9,14,15,20,22,25–27,29–31]; and
(iii) data extraction from the results of submissions [5,
6, 8, 17, 32, 33].

This survey is focused on the second phase. The iden-
tification of the fields is reasonably straightforward and
can be achieved by parsing the HTML code of the page
containing the form looking for specific tags such as
input and select. The challenge is Web Form Fill-
ing (WFF), i.e., how to automatically fill the fields us-
ing suitable values in order to retrieve meaningful data.
This is a critical step since filling a form with unsuitable
values will result in blank or error pages representing a
waste of resources. The goal is not to find all possible
values, but to select a subset of values so as to minimize
the number of submissions and maximize the coverage,
i.e., retrieve more distinct data behind the form. The fact
that forms are designed to be handled by human users
and this leads to a diversity of designs poses further dif-
ficulties to automatic processing.

Figure 2 shows a fragment of the HTML code for the
Web form shown in Figure 1(b). An HTML form is de-
fined within a <form> and a </form> tag (see Figure 2,
lines 1 and 23). Form fields can be text boxes, selec-
tion lists, checkboxes, radio buttons, or submit buttons.
Selection lists, radio buttons, and checkboxes show a
list of options to the user. On the other hand, a text
box field does not contain options, so the values need to
be discovered somehow. More concisely, fields can be
grouped into two types: fields with a finite domain such
as selection lists (see Figure 2, lines 8 to 21); and fields
with an infinite domain, such as text fields, in which
a user can type any value (see Figure 2, lines 2 to 7),
which brings further challenges to automatic filling.

Authors classify forms under different names with re-
spect to the kinds of fields that they have. Forms with a
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(a) Free-Text Form

(b) Complex Form

Figure 1: (a) Free-Text and (b) Complex Web Forms

single text field are called simple [24,25] or free-text [28].
Forms with several fields are called multi-field [25], ad-
vanced [24], or complex [28]. In this survey, we adopt
the terminology by Tjin-Kam-Jet [28] which refers to
the former as free-text and as complex to the latter.

Although the Hidden Web also has unstructured con-
tent (e.g., text, images, videos, etc.), structured contents
are the most prevalent (over 75%, according to Chang
et al. [7]). These are usually relational databases con-
taining attribute-value pairs (e.g., a movie Web site that
returns movie information such as director, actors, title,
etc.). The vast majority of the existing work on WFF
is focused on uncovering structured data, so this repre-
sents the primary focus of this survey.

Contributions. This article contains a survey of the key
works on WFF. We analyzed the existing literature on
Hidden Web Crawling and report on 15 works we be-
lieve to be the most influential in WFF. These works
are discussed with respect to some key features such as
text field seed generation, value generation, prior knowl-
edge, human intervention, and submission method. While
distinct works employ different filling strategies, two as-
pects are common to all: (i) filling method and (ii) form
type. In this article, we consider two categories for fill-
ing method: heuristics and machine learning; and two
categories for form type: free text Web forms and com-
plex Web forms. We present a comparative study under
two perspectives: a holistic view, in which each method
is treated in its fullness; and a Cartesian view, in which
each method is studied as a collection of parts. To the
best of our knowledge, this is the first survey to address
WFF in the Hidden Web.

2. DEFINITIONS AND PROBLEM
OVERVIEW

Web Form Filling (WFF) is the process of selecting
values for filling the fields in a Web form. Generating
values for fields with finite domains is fairly easy as the

Figure 2: Fragment of HTML Code from Figure 1(b)

possible values are found in the form itself. For fields
with infinite domains, the values have to be predicted.
This process may be divided into two sub-problems: (i)
selecting an appropriate set of initial values (seeds); and
(ii) selecting an appropriate set of input values.

Existing solutions for WFF can be classified with re-
spect to their reliance on prior knowledge. Approaches
which rely on prior knowledge need to build the knowl-
edge base beforehand and generate values according to
the domain (i.e., topic) of the form. On the other hand,
methods that do not rely on prior knowledge typically
generate new candidate values by analyzing the results
from previous submissions.

The problem in which this survey is focused may be
formulated as “given an HTML form, identify the fields
and find suitable values to fill these fields so that the
form retrieves meaningful data”. A form F is repre-
sented by two sets. The first set describes the fields and
their values. The second set represents the results of
form submissions as a single table. More formally, the
fields and values of a form F are represented as a set of
(field, domain) pairs:
F = {( f1,dom( f1)),( f2,dom( f2)), ...,( fn,dom( fn))}
where the fi’s are the form fields and the dom( fi) are the
domains.

A form field represents input objects, such as selec-
tion lists, checkboxes, text boxes. The domain of a field
is the set of values it can take. For example, if f j is a
selection list (hselecti tag in HTML), then dom( f j) are
the values in the list hoptioni tag in the HTML.

A form field is usually associated with a label which
has a descriptive text that helps understanding the field.
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Thus, label( fi) refers to the label associated with the
ith form field. For example, the label Title is associated
with the first field in the form shown in Figure 1(b).

The second set in form F is represented as a single ta-
ble R with m records r1,r2, ...,rm over a set of k attributes
A = a1,a2, ...,ak, in which each attribute has dom( fk).
Then, we have:
F = {( f1,dom( f1)),( f2,dom( f2)), ..,( fn,dom( fn))}
R = {r1,r2, ...,rm} and A = {a1,a2, ...,ak}

An HTML form can be submitted by two methods,
get or post. In the get method, field values are included
as part of the URL in the HTTP request. For example,
suppose a user entered the value ’Hidden Web’ in the
field ‘Title’ in the form illustrated in Figure 1(b). The
value entered for the title field is appended to URL gen-
erating ‘../results.html?title=Hidden+Web’. In the post
method, field values are sent inside the HTTP request
and the URL contains only the action that is about to be
performed.

3. APPROACHES FOR WEB FORM
FILLING

We surveyed 15 works that address the problem of
filling fields in Web forms. This survey organizes the
solutions found in the literature according to two as-
pects: filling method and type of interface. There are two
possible filling methods: heuristic-based and machine
learning-based. Heuristic-based approaches are usually
guided by statistical information (such as term frequen-
cies, number of rows retrieved, etc.) and apply thresh-
olds as stopping criteria. Machine learning approaches
use this statistical information to create a model which
decides which values to use to fill the forms. Simi-
larly, there are two types of interface: free-text Web
form where users type a list of keywords in a single
search text box and complex Web forms which contain
several fields. We analyze each existing approach ac-
cording to its filling method and the type of interface
that it supports. It is important to notice that this anal-
ysis does not separate the surveyed approaches into dis-
joint groups, as it is possible for an approach to use both
filling methods and/or types of interfaces.

Existing works are grouped into four categories: (i)
heuristics applied to free text forms; (ii) heuristics ap-
plied to complex Web forms; (iii) machine learning ap-
plied to complex Web forms; and (iv) overlapping com-
binations. We classify under overlapping combinations
approaches which tackle more than one type of interface
and/or filling methods. We found no works which apply
machine learning applied to free text forms. Thus, there
is no subsection here dealing with this category. Also,
we found only one approach that works with complex
Web forms and machine learning. In the next subsec-
tions, we analyze each of these categories.

3.1 Heuristics Applied to Free Text Forms
Since free text forms have only one keyword text field,

the formalism presented in Section 2 can be reduced.
As a result, a Web form can be simply represented as
F = {( f1,dom( f1)}, where f1 is a keyword field and
dom( f1) is the set of values for form field f1. In general,
heuristic-based methods rely on statistical information
about the submissions.

Barbosa and Freire [2] select a set of keywords with
high frequency to build queries with high coverage for
form field f1. The discovery of values for the domain
dom( f1) is based on the data coming from the database
itself instead of a random word generation. The ap-
proach is composed of two steps. The first step is the
selection of initial keywords from the page that con-
tains the form. The selected keywords are used to fill
the form.

The algorithm proceeds to find additional keywords
by iteratively submitting keywords obtained in the re-
sults of previous submissions. The goal is to select high-
frequency keywords and use them to construct a query
that has high coverage The stopping condition is deter-
mined by two parameters: maxterms or maxSubmissions
probe queries submitted. The best choice for these pa-
rameters depends on the database. The rationale is that
values found in the database are more likely to result in
higher coverage than randomly selected values.

The main advantage of this method is that Web forms
with keyword fields do not need detailed knowledge of
the data structure or schema. Experiments on different
domains and form sizes show that using stopwords in-
creases coverage. This happens because stopwords have
high frequencies (i.e., appear in many documents).

Soulemane et al. [27] present a method which selects
values for form field f1 based on term frequency. The
rationale is that frequency determines the importance of
a value in a set of documents (or database rows).

The focus of Soulemane’s work is on providing an
automatic indexing mechanism for dynamic Web con-
tents. The method comprises form detection, selection
of search keywords, dynamic content extraction, and de-
tection of duplicate URLs. Form detection consists in
identifying Web forms with a single general input text
field. Selection of search keywords tries to generate an
optimized search result. Dynamic content extraction is
the extraction of the data from the result pages. Detec-
tion of duplicate URLs deals with cases in which two
distinct values may generate the same URL twice.

As in [2], the initial keyword values are selected from
the page containing the form. After obtaining the first
results, values for the domain dom( f1) are chosen from
the successfully retrieved pages. A threshold max sub-
missions per form prevents the crawler from falling into
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an infinite loop. But if the method fails to obtain a
convenient keyword from a given page, a value is cho-
sen from the repository containing results from previous
submissions. As a last resort, an external dictionary can
be queried to provide values.

Term frequency measures how often a value is found
in a collection. Suppose a value Vi occurs np times
within a Web page P which contains Np values. Term
frequency is given by Ft f = np

Np
.

Ntoulas et al. [25] describe an adaptive algorithm based
on results from previous submissions which adapts its
query selection policy automatically based on such re-
sults. They assume that the crawler downloads pages
from a Web site that has a set of pages S. Each potential
query qi which may be issued can be treated as a subset
of S. Each subset is associated with a weight that repre-
sents the cost of issuing the query. Thus, the goal is to
find which subsets cover the maximum number of Web
pages with the minimum total weight (cost).

The heuristics employed by this method include the
cost and the amount of new data returned for a query that
has not been retrieved by previous queries. The max-
imum total weight takes a number of factors: the cost
of submitting the query to the form, the cost of retriev-
ing the result index page, and the cost of downloading
the actual pages. The authors assume that submitting a
query incurs a fixed cost of cq. The cost cd to download
a matching item is also fixed, while the cost of down-
loading the result index page is proportional to the num-
ber of retrieved results. Then the overall cost of query
qi is as described in Eq. 1:

cost(qi) = cq + crP(qi)+ cdPnew(qi) (1)

where Pnew(qi) is the fraction of the new documents from
qi that have not been retrieved from previous queries.

Based on the cost and the amount of data retrieved,
the authors use the efficiency metric to quantify the de-
sirability of the query qi (Eq. 2):

E f f iciency(qi) = Pnew(qi)/cost(qi) (2)

where Pnew(qi) is the number of new documents returned
for qi and cost(qi) is the cost of issuing the query qi.

Efficiency measures how many new documents are re-
trieved per unit cost and it can be used as an indicator of
how well the resources are spent when submitting qi.
Thus, the crawler can estimate the efficiency of every
candidate qi and choose the one with the highest value.
For estimating efficiency, the method has a query statis-
tics table. This table stores the counts of how many
times a value qi appears within the documents down-
loaded from q1, ...,qi�1. The set of qi’s determines the
domain dom( f1).

One issue here is the choice of the keyword to be used
as the first query. The selection is not done by the adap-

tive algorithm as it has to be manually set because the
query statistics table has not been populated yet. Thus,
the selection is generally arbitrary. So, for the purpose
of fully automating the whole process, the authors de-
scribe that some additional investigation is necessary.

Some Web Hidden Web sites limit the number of re-
sults returned for a query. Thus, if a query has a large
number of matching results, only a fraction will be re-
turned (e.g., the first 1000). This is problematic since
the probability that a query qi appears in the pages from
q1,q2, ...,qi�1 considers the entire database. To solve
this issue, the approach assumes that the results returned
are a random sample of the complete set of results which
match the query and adjust the estimates to calculate
P(qi+1| q1_ ..._qi).

Wu et al. [31] present a form filling method based on
feedback of the previously submitted values. The form
is treated as a single table, referred to as DB, with a set of
queriable attributes AS = {attrs1,attrs2, ...,attrsm} and
a set of result attributes AR = {attrr1,attrr2, ...,attrrn}.
Table AS is equivalent to set F and table AR is equivalent
to sets R and A.

The set of distinct attribute values (DAV) consists of
all distinct attribute values in DB. An attribute-value graph
(AVG), G(V,E) for DB is a non-directional graph that
is built as follows: for each distinct value avi in DAV
there is only one vertex vi 2 V . A non-directional edge
(vi,v j) 2 E, if, and only if, avi and av j coexist in a rela-
tional instance tk 2 DB. Each edge in AVG represents a
relational link between avi and av j. These values com-
pose the domain dom( f1). The determination of values
that are used for form filling is reached by the use of
a seed value and, from the results, values related to the
one used in the query are extracted. The authors rely
on a heuristic cost to evaluate the query. The cost of a
query qi in the DB database is defined as in Eq. 3:

cost(qi,DB) =
num(qi,DB)

k
(3)

where num(qi,DB) represents the total number of records
in DB matching qi, and k corresponds to the maximum
number of records in each result page.

For selecting the next query, the authors define a new
metric called query harvest rate to capture the produc-
tivity of each candidate query. Given a target Web database
DB, and a local database DBlocal containing the data
records already crawled from DB, the harvest rate of qi
is defined as in Eq. 4:

HR(qi) =
[num(qi,DB)�num(qi,DBlocal)]

cost(qi,DB)
(4)

where num(qi,DB) and num(qi,DBlocal) is the number
data records matched by qi in DB and DBlocal , respec-
tively; cost(qi) stands for the cost of obtaining all the
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result pages. The goal is to select the attribute value
with the highest harvest rate as the next query.

Furthermore, the authors also integrate domain knowl-
edge to query selection. The method uses a domain
statistics table DT of a domain DM. Table DT consists of
a collection of entries in the form of < qi,P(qi,DM) >,
where qi stands for a candidate query and P(qi,DM) is
the domain probability that qi occurs in DM. With table
DT, two groups of queries appear: QDB and QDT . QDB
consists of queries whose corresponding attribute values
have been discovered in the target database DB from the
previous results, and QDT corresponds to the queries in
the domain table DT, but not yet seen by DB.

Wang et al. [30] gather a set of documents as a sam-
ple that represents the original database. From the sam-
ple, they choose a set of values representing the domain
dom( f1) that cover most of the items in the sample with
a low cost (i.e., retrieve the most results with the fewest
submissions). These values are used to extract data from
the original database.

The solution considers two heuristics: the hit rate,
which denotes the set of data retrieved from the database,
and the overlapping rate, which refers to the amount of
duplicated data retrieved. More formally, the hit rate of
a set of queries Q in a database, denoted by HR(Q,DB),
is defined as the ratio between the number of unique data
items collected by sending the queries in Q to DB and
the size of the database DB. The overlapping rate of
Q in DB, denoted by OR(Q,DB), is defined as the ra-
tio between the total number of collected links and the
number of unique links retrieved by sending queries in
Q to DB.

The algorithm runs with the database DB as input, the
sample size s, and the query pool size p. The sample
should have an appropriate size to produce a satisfactory
query list in the query pool. In order to select the queries
to issue, the method creates a query pool using the terms
found in a random sample from the database.

The values selected from the query pool are those that
have document frequency (df ) ranging between 2% and
20% of the sample size. Values that occur in fewer than
2% of the sample are most probably rare values, while
values that appear in more than 20% of the documents
are too common to consider. Then, the relative query
pool size of a set of queries Q on database DB, denoted
by poolSize(Q,DB), is defined as in Eq. 5:

poolSize(Q,DB) = Â
q2Q

d f (q,DB)/|DB| (5)

where d f (q,DB) is the document frequency of q in DB,
i.e., the number of items in DB matching query q.

Once the query pool is populated, values from this
pool are selected and sent to TotalDB. The selection
criteria are to have Hit Rate equal to 1 and the minimum

Overlapping Rate available in the sample. These values
are the domain dom( f1) of form field f1.

In practice, the total number of documents in a real
deep Web database is unknown; hence the calculation
of HR becomes impossible.

3.2 Heuristics applied to Complex
Web Forms

Lage et al. [18] present a method to fill fields using a
set of heuristics and a sample data repository for auto-
matically finding forms, filling them out, and collecting
pages containing useful data. The method starts crawl-
ing from the main page of the site looking for forms in a
blind search (i.e., the search is not guided by any heuris-
tics). A set of heuristics is used to discard non-query
forms. Next, it extracts the labels from the remaining
forms and, using a sample data repository, it tries to
learn how to fill them out. Finally, it submits all filled
forms in order to identify data-rich pages. The process
ends when these pages are not found.

A key component is the sample data repository. It
is used to identify evidences in the traversed pages that
such pages belong to a specific application domain. The
repository is a set of attribute-value pairs of the form
< label( fi),dom( fi) > that describe objects from the
application domain. The repositories are generated by
extracting data from Web sources of specific domains.

The task of form filling consists in finding a mapping
between form fields and repository attributes. Heuristics
extract the labels which are above input fields. If the
labels do not match the attributes in the repository, the
form is disregarded.

Mapping is straightforward for search forms which
contain only fields with finite domains, since one can
easily obtain the matching attributes, which are explic-
itly available in the select HTML tags. If matches are
found, the agent knows how to fill the form and all nec-
essary information to submit it is already available, so
the process continues.

Raghavan et al. [26] propose a task-specific Hidden
Web crawler called Hidden Web Exposer (HiWE). The
approach was developed to automatically process, an-
alyze and submit forms through an internal model of
forms and form submissions.

The model treats a form F as a set of (element,domain)
pairs: F = (E1,D1),(E2,D2), ...,(En,Dn) where the Ei
is the element and the Di is the domain. The elements
En are the form fields fi and domains Dn are the field
domains dom( fi).

The values used to fill out forms are maintained in a
special table called Label Value Set (LVS). LVS tables
are associated to form fields. Each row in LVS table is a
pair (L,V ), where L is a label and V = {v1,v2, ...,vn} is
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a value set assigned to label L. The V set has a Mv func-
tion that associates weights, between 0 and 1, to each set
member. Each vi is a possible value that is assigned to
form field E if label(E) matches with L. The estimated
value MV (vi) represents the correctness of value vi in
relation to element E.

The main issue in this method is filling LVS table with
the desired values for queries and, after this, the associ-
ation of values to form fields. The LVS table also allows
label aliasing, i.e., two or more labels may share the
same value set V .

The HiWE crawler supports four strategies for popu-
lating the LVS table: (i) explicit initialization, in which
it can be supplied with labels and associated value sets
at startup time, (ii) built-in categories, which it has built-
in entries in the LVS table for some common categories,
such as times, months, dates, days of week, etc., (iii)
wrapped data source, in which entries for the LVS ta-
ble are used for querying data sources through a well-
defined interface, and (iv) crawling experience, which
provides useful information which can be used when
crawling new sites.

Liddle et al. [20] perform automatic form filling by as-
signing a default value to form fields. The authors have
created a prototype tool that automatically retrieves the
data behind a specific HTML form.

The strategy involves three steps: (i) issue the default
query, (ii) retrieve a sample to determine whether the
default query produces acceptable results, and (iii) an-
alyze the retrieved information and submit new queries
exhaustively until a limiting threshold is reached.

The authors heuristically select a reasonable minimum
number of submissions to maximize the coverage. In or-
der to do that, the size of the database behind the form
is estimated, and then queries are issued until a certain
percentage of completeness is reached.

Heuristics include the percentage of data retrieved,
the number of queries issued, the number of bytes re-
trieved, the amount of time spent, and the number of
consecutive empty queries. Each of these thresholds
constitutes a sequential stopping criterion that can termi-
nate the crawl before trying all possible queries (i.e., all
combinations of values for fields with finite domains).

The sampling batch needs to be large enough to cover
the margins of the sample space. Let f1, f2, ... fn be the
n be the fields with finite domains, and let | fi| represent
the number of values for the ith factor. | fi| stands for
the field domain dom( fi). Then, the total number of
possible combinations N for this form is ’ | fi|, and the
cardinality c of the largest field is max(| f1|, | f2|, ..., | fn|).
Next, C is defined as the size of a sampling batch. C is
calculated as max(c, log2N).

This accounts for the cases in which there are many

fields of small cardinality. If the C sample queries yield
new data, the method proceeds by sampling additional
batches of C queries at a time, until it reaches one of the
user-specified thresholds or it exhausts all the possible
combinations.

This method does not handle text fields, ignoring them
whenever possible. If they are mandatory, and thus can-
not be ignored, user’s intervention is requested.

Alvarez et al. [1] propose an architecture called Deep-
Bot for crawling the Hidden Web. The crawler works
in three steps: (i) for every domain, the system tries to
match its attributes with the fields of the form, using vi-
sual distance and text similarity metrics, (ii) by using
the output of the previous step, the system determines
whether the form is relevant with respect to the domain
and, (iii) if the form is relevant, the crawler uses it to
run the queries defined in the domain.

For each query, the system obtains a new URL to
add to the list of URLs. The authors describe the do-
main definitions used to guide the data collection task.
A domain definition is composed of a set of attributes
A = a1,a2, ...,an, a set of queries Q = q1,q2, ...,qm, and
a relevance threshold µ .

The method uses an attribute set that represents form
fields and a query set associated with the domain. A set
of attributes has a name, a nickname list, and a speci-
ficity index si. The nickname list represents alternative
labels that may identify the attribute in a query form.
For instance, the attribute author, from a domain used
for collecting data about books, could have nicknames
such as writer or writtenby. The specificity index si is a
number between 0 and 1 indicating how likely a query
form containing such an attribute is actually relevant to
the domain. For instance, in the book domain, the at-
tribute ISBN would have a very high si, since the pres-
ence of this attribute in a form is a strong evidence that it
deals with book search. On the other hand, price would
have a low si value, since it could be related to any type
of product.

The set of queries is a list of pairs (attribute, value)
where attribute is an attribute ai from the set of attributes
A and value is a string. The query set is run on the dis-
covered relevant forms. The labels of the fields are ex-
tracted and compared to attributes of the domain through
textual similarity. The domain attribute values that match
the fields are selected for filling the form. For that,
heuristics based on visual distance measures between
the form fields and the texts surrounding them are used.

Finally, the domain also includes a relevance thresh-
old µ . The specificity indexes and threshold will be used
to determine whether a given form is relevant to a do-
main. The authors do not present details of how a query
list for each attribute is built.
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3.3 Machine Learning applied to
Complex Web Forms

The methods that employ machine learning techniques
generally rely on manually labeled data to serve as train-
ing instances. As a consequence, user intervention is
needed to validate the data and to make corrections on
the labeling.

Toda et al. [29] describe a method, called iForm, for
WFF based on value extraction from free text documents.
The method is divided into two sub-problems: extract-
ing values from the input text; and filling the form field
using the extracted values. It automatically chooses seg-
ments from the input text and assigns them to the ap-
propriate form fields. Free text documents are treated
as sequences of tokens t1, t2, ..., tN , representing individ-
ual words or punctuation. The extraction task consists
in identifying segments from the documents, i.e., a se-
quence of contiguous tokens, which are suitable for the
fields in the form.

The method exploits features related to the content
and the style of the values. These are combined in a
Bayesian framework. The conditional probabilities (prob-
ability using content related features and probability us-
ing style related features) of a field associated with an
extracted value of the text document are computed. The
final conditional probability can be computed using a
disjunctive operator or over the probabilities derived from
each feature.

The probabilities are assigned to form fields fi and the
extracted values are the domains dom( fi). The approach
relies on the knowledge obtained from the values of pre-
vious submissions for each field and on manual textual
input (to correct errors). The authors do not report on
experiments run on search forms.

3.4 Overlapping Combinations
Jian et al. [13, 14] present a method for Hidden Web
crawling. The method combines heuristics and machine
learning techniques for filling free-text Web forms. There-
fore, we can reduce the model presented in Section 2 to
a single form field f1. The domain dom( f1) is the set of
values with the highest harvest rates.

In this approach, the harvest rate for each query is
encoded as a tuple representing its linguistic, statistic,
and HTML features. The linguistic features are part of
speech which represents the category of the word (noun,
verb, adjective, etc.);the length, which represents the
length of values in number of characters; and the lan-
guage that the values fall into (useful for multilingual
crawls). Statistical features include term frequency (TF),
document frequency (DF), Term Frequency times In-
verse Document Frequency (TF⇥ IDF), and the Resid-
ual IDF (RIDF). Finally, the HTML features are the TAG,

which consists of the HTML tags and attribute informa-
tion, the Location, which represents the location infor-
mation of node in the DOM tree derived from the HTML
document, and the Markedness which determines how
much the word stands out from the normal text in the
HTML document (e.g. bold, underlined, italic, etc). The
keywords with high harvest rates are used to train a ma-
chine learning model which will be applied to estimate
the harvest rates for issued keywords which have not
been submitted yet.

Jian et al. [13] present a framework based on Re-
inforcement Learning for Deep Web crawling. In the
framework, a crawler is regarded as an agent and the
Hidden Web database is the environment. The agent
perceives its current state and selects an action (query)
to submit to the environment (database) according to a
long-term reward. The environment responds by giving
the agent some reward, i.e., new records, and changing
it into the next state. The rewards of unexecuted actions
are evaluated by their executed neighbors. Because of
the learning policy, a crawler can avoid using unpromis-
ing queries, as long as some of them have been issued.
Zheng [34] extends the work by [13, 14] by develop-
ing a Q-value approximation algorithm that allows the
crawler to select a query by learning from the experi-
ence of previous queries. The Q-value is the metric that
estimates the long-term rewards.

Dong and Li [9], similarly to Jian et al. [14], work with
free-text forms applying machine learning and heuris-
tics. Consequently, the model can be represented as a
single form field f1 and the domain dom( f1) is repre-
sented by the values according to the query harvest rate.

A sample if taken from the target database behind the
form to get a sampling database. The same measures
used in Wu et al. [31] are applied. Then, it automatically
chooses several types of features (number of records
retrieved, the length of the values) from the sampling
database. Next, it learns a query harvest model from a
multi-linear regression approach and employs the model
to select queries to submit to the form.

The heuristics include a cost model, a coverage rate,
and a query harvest rate. The cost of crawling a Web
database as the total number of communication rounds
between the crawler and the Web server. It is important
to distinguish between the total number of communica-
tion rounds and the total number of queries issued. This
is because each result page can typically hold a fixed
number k of matched records and thus every initiated
connection retrieves at most k data records.

The crawling cost cost(qi,DB) of querying the database
DB with query qi is defined as in Eq. 6:

cost(qi,DB) =
|R(qi,DB)|

k
(6)
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where |R(qi,DB)| stands for the number of all records
in DB matched qi and k corresponds to the maximum
number of records displayed in each result page from
the target Web site.

The coverage rate of a query qi is defined as in Eq. 7:

CR(qi,DB) =
|R(qi,DB)|

|DB| (7)

where |R(qi,DB)| stands for the number of all the records
in DB matched qi and |DB| corresponds to the number
of total records in the Web database DB.

Finally, given a target Web database DB and a lo-
cal database DBlocal containing the data records already
crawled from DB, the query harvest rate of qi HR(qi,DB)
is defined as in Eq. 8:

HR(qi,DB) = k⇥ (1� |R(qi,DBlocal)|/|R(qi,DB)|)
(8)

where |R(qi,DBlocal)| and |R(qi,DB)| correspond to the
number of data records matched by qi in DBlocal and
DB, respectively.

The training set is constructed by simulating the Hid-
den Web crawling using the sampling database. It uses
features of the query result in each round to generate
the features for candidate queries. Since the sample
database is known, the method calculates the harvest
rate of each candidate query. Finally, it selects the query
with the highest harvest rate as the next query and con-
tinues the construction of the training set until all records
in the sample database are crawled.

Madhavan et al. [22] employs just heuristics to fill free-
text and complex Web forms. The goal of the method is
to index the resulting HTML pages.

The authors present an algorithm to select input val-
ues for text search interfaces that accept keywords and
an algorithm for identifying inputs that take only val-
ues of a specific type. HTML forms have n inputs and
the method introduces the query template concept for
Web forms. A query template fills a subset of the in-
puts, called binding inputs. The remaining are regarded
as free inputs and discarded. The number of inputs that
make up a template will be referred to as the dimen-
sion of the template. Multiple form submissions can be
generated by assigning different values to the binding
inputs. There are no details on how the values are as-
signed to a template. Each query template and its values
are submitted and the results are evaluated to check how
much information is retrieved.

A signature function is calculated for the results of
submissions, which are compared against each other. A
query template is considered informative if the gener-
ated result pages are sufficiently distinct. Otherwise, it
is uninformative and thus discarded.

For infinite domain fields, the authors adopt an iter-

ative probing approach to identify the candidate key-
words for a field. At a high level, they assign an initial
seed set of words as values for the text field and build
a query template with the text field as a single bind-
ing input. The method exploits the values from a page
by identifying the most relevant values to its contents.
Thus, the technique uses TF⇥IDF to choose the values.
For the initial values, the top Ninitial words on the form
page are selected.

For the candidate keywords in iteration i+1, assume
that Wi is the set of all Web pages generated and ana-
lyzed until iteration i. Let Ci be the set of words that
occur in the top Nprobe words on any page in Wi. From
Ci, the words discarded are those that have so far oc-
curred in too many pages in Wi (since they are likely
to correspond to boilerplate HTML that is is found on
all pages on the form site), or those that occur only in
one page in Wi (since they may be too specific and thus
not representative of the contents of the site). The field
domains dom( fk)’s of form fields fk are the remaining
values in Ci.

Kantorski et al. [15] present an automatic method that
combines heuristics for filling both free-text and com-
plex Web forms. The method explores two strategies.
The first is how to select good values, or queries, to sub-
mit to a particular form in order to retrieve more data
with fewer submissions. The second strategy is how to
fill the fields efficiently, especially text fields.

The authors employ the concepts of template (similar
to Madhavan et al.’s [22] notion of query template) and
template instance. Templates are represented by form
fields and their combinations. A template instance as-
signs a value to each field considered for the form sub-
mission. A template is informative if its template in-
stances retrieve enough distinct data and uninformative
templates are discarded. The idea is to use informa-
tion from previous submissions to avoid wasteful sub-
missions (i.e., which do not add new information to the
existing set). The informativeness evaluation is repeated
for all generated templates and avoids unnecessary sub-
missions in templates of higher order. An instance tem-
plate considered non-informative will cause instance tem-
plates of higher order being discarded.

The choice of values for fields with infinite domains
is based on a feedback loop, in which each element has
an effect on the next one, until the last element pro-
duces feedback on the first element. The idea is use in-
formation from the form itself plus the data retrieved
from previous submissions as input to future submis-
sions. Heuristics include ranking functions, such as the
collection frequency (CF), IDF, and the number of dis-
tinct records retrieved (nr) combined into two scores
r1 = c ft ⇥ id ft and r2 = nr⇥ id ft .
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Figure 3: Holistic View

4. COMPARATIVE ANALYSIS
This section presents a comparative analysis of the

surveyed methods according to two perspectives. In the
holistic analysis, each method is studied in its entirety
considering the aspects presented in Section 2, i.e., the
filling method and the type of interface. In the Carte-
sian analysis, the methods are studied as a collection of
dissociated parts.

Holistic Analysis. The surveyed approaches apply heuris-
tics or machine learning techniques or a combination of
both. Figure 3 shows how the surveyed approaches are
classified under the holistic view. Heuristics are used
to simplify the process of WFF and yield good results
for both types of interface. Machine learning techniques
were added to improve the results reached using heuris-
tics. The surveyed approaches report achieving sim-
ilar scores using the evaluation metrics, regardless of
whether they apply heuristics or machine learning.

Looking at Figure 3, we notice that the research is
condensed around certain parts of the space as most of
the existing WFF methods [1,2,15,18,20,22,25–27,30,
31] employ heuristics for selecting values for fields in
free-text and complex Web forms. The reason for that
is heuristics simplify the process of WFF and yet they
yield good results.

Methods that rely solely on machine learning tech-
niques (such as [29]) have the limitation of requiring
manual labeling. To avoid human intervention, some
methods [9, 14] combine heuristics and machine learn-
ing. Yet, there are methods that combine heuristics and
machine learning to handle free-text Web forms only
[9,13,14]. Finally, there are no approaches that combine
heuristics and machine learning for handling both type
of interfaces (free-text and complex Web forms). This
probably happens because the existing methods reach

good results for free-text forms. This is not true for com-
plex Web forms, as approaches have yet to be proposed
to choose good values for them.

While there are many methods that handle one type
of interface, a gap is still open in the selection of proper
values for both kinds of forms. Only two methods [15,
22] select values for both Web forms and both use only
heuristics [15, 22].

Figure 3 also shows the evolution of WFF in the past
decade. In the early 2000s, progress was made in terms
of free-text and complex forms, separately, using heuris-
tics. In the late 2000s, solutions that work with both free
text and complex types of interface, were developed.
Since 2010, a considerable progress has been made in
terms of machine learning techniques. The adoption of
machine learning shows an increase in the level of so-
phistication of WFF.

Cartesian Analysis. Table 1 presents a summarized
view of the methods showing a number of aspects: (i)
how they generate seed (initial) values; (ii) how they
generate the remaining values; (iii) how much they rely
on prior knowledge; (iv) the type of submission method
(get/post) of the forms handled by the approach; and (v)
dependency on human intervention. Table 1 also con-
tains information about the experiments reported on the
surveyed works, such as number of forms and evaluation
results. These values cannot be directly used to compare
the approaches since experiments have been performed
on different forms and evaluated under different metrics.
Our goal is just to provide an indication of quality.

Regarding the generation of the initial values for text
fields, several methods [1, 18, 25, 26, 30, 31] depend on
a predefined list of values. This list is, generally, de-
fined manually or previously built for each form do-
main. This is shown in the column entitled ”prior knowl-
edge”. Other methods [2,15,22,27] extract the informa-
tion from the HTML page where the form is located.

The advantage of getting the initial values from a pre-
viously assembled list is that these values tend to re-
trieve valid results. The disadvantage is that such lists
need to be assembled for each form, which becomes
prohibitive when dealing with a large number of forms.
On the other hand, methods that do not rely on prede-
fined lists have the advantage of being automatic. Their
problem is to discover what are the good initial values
for filling fields. Also, there is a higher submission cost
associated with the task of discovering these values.

Distinct criteria are used by the approaches to select
the remaining values. Liddle et al. [20] do not select
values automatically for text fields as user intervention
is needed. Madhavan et al. [22] use traditional infor-
mation retrieval metrics such as TFxIDF while [2, 27]
adopt only the term frequency. Kantorski et al. [15]
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Table 1: Summary of the surveyed works
Method Text Field Seed 

Generation Value Generation Prior 
Knowledge

Submission 
Method

Human 
Intervention

# Forms Evaluation Metric

Barbosa and 
Freire[2]

page containing the 
form 

iteratively submitting queries using values obtained 
in previous iterations based on term frequency

No unknown No 8
Coverage                

(79% - 8 forms)

Soulemane et 
al.[27]

page containing the 
form 

iteratively submitting queries using values obtained 
in previous iterations based on term frequency

No get No 1 Number of values

Ntoulas et 
al.[25] manually defined

iteratively submitting queries using values obtained 
in previous iterations based on term probability

No get/post Yes 4 Coverage (84%)

Wang et al.[30] random sample of 
domain corpora

iteratively submitting queries using values obtained 
in previous iterations based on set of data retrieved 
and duplicate data retrieved

No get/post No 4
Sample Size       

(2,000)

Lage et al.[18] sample data repository sample data repository Yes unknown No 27
Precision and recall 

(93%)
Raghavan et 
al.[26] label value set table label value set table Yes get/post Yes 50 Submission Efficiency

Liddle et al.[20] default values not applicable No get Yes 13
Coverage                

(80%)

Wu et al.[31]
randomly selected 
values from a pre-
exisitng database

Attribute Value Graph
Domain Statistics Table (DT)

Yes get/post No 5
Coverage          

(without DT 90%)   
(with DT 95%)

Alvarez et al.[1] pre-defined domain 
attributes

domain attributes table Yes unknown Yes 30
Precision and recall 

(>90%)                  
except in one case

Toda et al.[29] textual document given 
by user

probability of a field given a word n-gram Yes get/post Yes 5
Precision, recall        
and F-Measure              

(73%)    

Jian et al.[13,14] page containing the 
form 

query harvest rate using features of values No unknown No 3
Coverage           
(>80%)

Dong and Li[9] sample data repository query harvest rate using features of values No get/post No 3
Coverage              

(95%)

Kantorski et 
al.[15]

page containing the 
form 

iteratively submitting queries using values obtained 
in previous iterations based on CFxIDF and distinct 
rows retrieved

No get/post No 11
Coverage and 

Efficiency             
(>82%)

Madhavan et 
al.[22]

page containing the 
form 

iteratively submitting queries using values obtained 
in previous iterations based on TFxIDF

No get No 10
Coverage                      
(> 55%)

combine CF together with IDF in the CF⇥IDF mea-
sures and the total number of distinct rows retrieved for
choosing values. Wu et al. [31] adopt the HR. Wang et
al. [30] match HR and OR. The value of HR is a limita-
tion in Wang et al.’s work [30] because the total number
of rows behind the form is needed and, for most real
Hidden Web sources, this number is unknown. Finally,
there are some methods [9,13,14] that use features about
the submissions to select values.

Most approaches handle the get [20, 22, 27] submis-
sion method, while some can work for both get and
post [9,15,25,26,29–31]. This information, however, is
not evident in some of the surveyed works [1, 2, 14, 18].
We believe that approaches which do not clearly state
the submission method use only the get method. This
submission method has an advantage compared to the
post method as field values are included as part of the
URL in the HTTP request. As a result, the URLs iden-
tified can be directly indexed by the search engines.

The number of forms used in the experiments varies
considerably (from 1 to 50). Experimenting with real
Web forms is tricky as they frequently change, may have

high response times or even be unavailable for some pe-
riods. These difficulties impact the scale of the tests.
Approaches that use machine learning techniques re-
port good evaluation results (averaged across all forms).
However, they performed experiments with a small num-
ber of Web forms.

Considering the two methods used by the state-of-
the-art in WFF (i.e., heuristics and machine learning),
we notice that heuristic-based methods have been fa-
vored over machine learning. However, many of the
approaches rely on user intervention. Both heuristic [1,
18, 20, 25, 26] and machine learning [29] techniques re-
quire manual specification of initial values or annotation
of the training data. Only one method [9] is completely
automatic; however, it handles only free-text forms.

In terms of interface, methods for one type of form
are more common than for both. There was also a logi-
cal transition from free-text to complex and then to both
types. The only approach that handles complex Web
forms and uses machine learning is the one by Toda et
al. [29]. This approach, however, is designed for forms
that add rows to a database and not search forms.
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5. FUTURE DIRECTIONS
This section presents some insights into trends and

future directions in WFF.
Initial seed generation. Most methods report evalua-
tion results in terms of coverage [2, 9, 14, 15, 20, 22, 25,
31]. Precision, recall, and F-measure are also used. [1,
18, 29]. Others propose new evaluation measures [26,
27, 30]. We analyzed the the number of forms used
in the experimental evaluation of approaches that apply
the coverage metric [2, 9, 14, 15, 20, 22, 25, 31] and how
each approach generates the initial values (automatically
or using a predefined list). The average coverage for
both approaches is similar (8̃2%); however, experiments
with automatic seed generation have been done on more
forms. This suggests automatic solutions for generat-
ing initial values are more scalable and thus should gain
more attention in future approaches.
Reducing human intervention. Human intervention is
required by 5 out of the 15 surveyed methods [1, 20, 25,
26, 29]. The amount of intervention varies from label-
ing data to having to input the values manually. While
human intervention may be feasible when dealing with
a reduced number of forms, it poses a bottleneck on the
approach. Removing human intervention while keeping
good results is likely to be the goal of future approaches
which aim at being scalable.
Handling complex forms. In complex Web forms, fu-
ture research could concentrate on modeling the rela-
tionship among the multiple attributes in the form. In
order to tackle that, understanding Hidden Web forms is
necessary. Form understanding is the process of extract-
ing semantic information from an interface [10, 12, 16].
The combination of filling methods and semantic ser-
vices could be an alternative for improving the auto-
matic filling of complex Web forms.
Using Machine Learning. Regarding machine learn-
ing approaches, future investigations could encompass
the evaluation of several learning models to determine
which is the best suited to address WFF. Furthermore,
meta-learning approaches could also include the identi-
fication of the appropriate subset of learning algorithms
is recommended for the task of choosing field values.
Machine Learning applied to complex forms. Fig-
ure 3 shows that there is no method that combines both
types of interface with heuristics and machine learning.
Thus, a possible future direction may be filling this gap
by creating a technique that works for both types of
Web forms and applies both types of filling method. Fu-
ture approaches could adopt heuristic rules for extract-
ing meta information (features) about the submissions
and employ machine learning techniques to obtain val-
ues for the fields, without human intervention.
Allowing incremental updates. A limitation of all sur-
veyed approaches is the crawling process is always re-

peated from the start. This is undesirable when dealing
with large databases as it has the overhead of discover-
ing already crawled data. Future approaches should aim
for incremental updates so as to optimize the process.
Dealing with specific domains. Finally, most WFF ap-
proaches have been designed for general crawling. We
found no methods that deal with WFF that is focused
on a specific topic. Domain-specific features could be
explored so as to yield improved results in WFF.

6. CONCLUSION
The Hidden Web represents an important portion of

the Web which can only be reached by filling a form.
Uncovering Hidden Web data is a challenging task. A
scalable approach to gather such data depends on auto-
matically filling forms. The goal is to choose suitable
values so that meaningful data can be retrieved.

In this article, we present a survey dedicated to works
that address the problem of Web form filling. Two types
of analysis were performed over 15 key works in this
area. The holistic analysis describing each method ac-
cording to the filling method and the type form that they
handle, and a Cartesian analysis which considers how
the methods perform each of the subtasks involved in
the process. This work concludes presenting future di-
rections in this area.
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