
SIGMOD Officers, Committees, and Awardees
	
	

Chair	 Vice-Chair	 Secretary/Treasurer	
Juliana	Freire	 Ihab	Francis	Ilyas	 Fatma	Ozcan	

Computer	Science	&	Engineering	 Cheriton	School	of	Computer	Science	 IBM	Research	
New	York	University	 University	of	Waterloo	 Almaden	Research	Center	
Brooklyn,	New	York	 Waterloo,	Ontario	 San	Jose,	California	

USA	 CANADA	 USA	
+1	646	997	4128	 +1	519	888	4567	ext.	33145	 +1	408	927	2737	

juliana.freire	<at>	nyu.edu	 ilyas	<at>	uwaterloo.ca	 fozcan	<at>	us.ibm.com	
	
	
SIGMOD	Executive	Committee:			

Juliana	Freire	(Chair),	Ihab	Francis	Ilyas	(Vice-Chair),	Fatma	Ozcan	(Treasurer),	K.	Selçuk	Candan,	
Yanlei	Diao,	Curtis	Dyreson,	Christian	S.	Jensen,	Donald	Kossmann,	and Dan	Suciu.
	

Advisory	Board:		
Yannis	Ioannidis	(Chair),	Phil	Bernstein,	Surajit	Chaudhuri,	Rakesh	Agrawal,	Joe	Hellerstein,	Mike	
Franklin,	Laura	Haas,	Renee	Miller,	John	Wilkes,	Chris	Olsten,	AnHai	Doan,	Tamer	Özsu,	Gerhard	
Weikum,	Stefano	Ceri,		Beng	Chin	Ooi,	Timos	Sellis,	Sunita	Sarawagi,	Stratos	Idreos,	Tim	Kraska	

	
SIGMOD	Information	Director:			
	 Curtis	Dyreson,	Utah	State	University		
	
Associate	Information	Directors:			
	 Huiping	Cao,	Georgia	Koutrika,	Wim	Martens,	Paris	Koutris,	Asterios	Katsifodimos
	
SIGMOD	Record	Editor-in-Chief	and	Associate	Editor-in-Chief:			
	 Yanlei	Diao	(EiC),	Rada	Chirkova	(Associate	EiC)	
	
SIGMOD	Record	Associate	Editors:			
	 Vanessa	Braganholo,	Marco	Brambilla,		Chee	Yong	Chan,	Rada	Chirkova,	Zachary	Ives,		Anastasios		
	 Kementsietsidis,	Frank	Neven,	Olga	Papaemmanouil,	Aditya	Parameswaran,	Alkis	Simitsis,		
													Pinar	Tözün,	Marianne	Winslett,	and	Jun	Yang	
	
SIGMOD	Conference	Coordinator:			

K.	Selçuk	Candan,	Arizona	State	University		
	

PODS	Executive	Committee:		
	 Dan	Suciu	(Chair),	Tova	Milo,	Diego	Calvanese,	Wang-Chiew	Tan,	Rick	Hull,	Floris	Geerts	
	
Sister	Society	Liaisons:			
	 Raghu	Ramakhrishnan	(SIGKDD),	Yannis	Ioannidis	(EDBT	Endowment),	Christian	Jensen	(IEEE	TKDE)	
	
SIGMOD	Awards	Committee:		

Martin	Kersten	(Chair),	Surajit	Chadhuri,	David	DeWitt,	Sunita	Sarawagi,	Michael	Carey	
	
Jim	Gray	Doctoral	Dissertation	Award	Committee:			

Ioana	Manolescu	(co-Chair),	Lucian	Popa	(co-Chair),	Peter	Bailis,	Michael	Cafarella,	Feifei	Li,	Qiong	Luo,	
Felix	Naumann,	Pinar	Tozun	

	
SIGMOD	Systems	Award	Committee:			

Michael	Cafarella	(Chair),	Michael	Carey,	David	DeWitt,	Yanlei	Diao,	Paul	Larson,	Gustavo	Alonso	
	

SIGMOD Record, June 2019 (Vol. 48, No. 2) 1

SIGMOD	Edgar	F.	Codd	Innovations	Award		
For	innovative	and	highly	significant	contributions	of	enduring	value	to	the	development,	understanding,	or	use	
of	database	systems	and	databases.	Recipients	of	the	award	are	the	following:		

Michael	Stonebraker	(1992)	 	 Jim	Gray	(1993)	 	 	 	 Philip	Bernstein	(1994)		
David	DeWitt	(1995)	 	 	 C.	Mohan	(1996)	 	 																		 David	Maier	(1997)		
Serge	Abiteboul	(1998)	 	 	 Hector	Garcia-Molina	(1999)	 						 Rakesh	Agrawal	(2000)		
Rudolf	Bayer	(2001)	 	 	 Patricia	Selinger	(2002)	 										 	 Don	Chamberlin	(2003)		
Ronald	Fagin	(2004)	 	 	 Michael	Carey	(2005)	 	 						 Jeffrey	D.	Ullman	(2006)		
Jennifer	Widom	(2007)	 	 	 Moshe	Y.	Vardi	(2008)	 	 						 Masaru	Kitsuregawa	(2009)		
Umeshwar	Dayal	(2010)	 	 	 Surajit	Chaudhuri	(2011)	 						 	 Bruce	Lindsay	(2012)	
Stefano	Ceri	(2013)		 	 	 Martin	Kersten	(2014)	 	 						 Laura	Haas	(2015)	
Gerhard	Weikum	(2016)	 	 	 Goetz	Graefe	(2017)	 	 	 Raghu	Ramakrishnan	(2018)	
Anastasia	Ailamaki	(2019)	
	
SIGMOD	Systems	Award		
For technical contributions that have had significant impact on the theory or practice of large-scale data
management systems.

Michael	Stonebraker	and	Lawrence	Rowe	(2015);	Martin	Kersten	(2016);	Richard	Hipp	(2017);		
Jeff	Hammerbacher,	Ashish	Thusoo,	Joydeep	Sen	Sarma;	Christopher	Olston,	Benjamin	Reed,	Utkarsh	
Srivastava	(2018);	Xiaofeng	Bao,	Charlie	Bell,	Murali	Brahmadesam,	James	Corey,	Neal	Fachan,	Raju	Gulabani,	
Anurag	Gupta,	Kamal	Gupta,	James	Hamilton,	Andy	Jassy,	Tengiz	Kharatishvili,	Sailesh	Krishnamurthy,	Yan	
Leshinsky,	Lon	Lundgren,	Pradeep	Madhavarapu,	Sandor	Maurice,	Grant	McAlister,	Sam	McKelvie,	Raman	
Mittal,	Debanjan	Saha,	Swami	Sivasubramanian,	Stefano	Stefani,	Alex	Verbitski	(2019)	
	
SIGMOD	Contributions	Award		
For	 significant	 contributions	 to	 the	 field	 of	 database	 systems	 through	 research	 funding,	 education,	 and	
professional	services.	Recipients	of	the	award	are	the	following:		

Maria	Zemankova	(1992)	 	 	 Gio	Wiederhold	(1995)	 	 	 Yahiko	Kambayashi	(1995)		
Jeffrey	Ullman	(1996)	 	 	 Avi	Silberschatz	(1997)	 	 	 Won	Kim	(1998)		
Raghu	Ramakrishnan	(1999)	 	 Michael	Carey	(2000)	 	 	 Laura	Haas	(2000)		
Daniel	Rosenkrantz	(2001)	 	 Richard	Snodgrass	(2002)		 	 Michael	Ley	(2003)		
Surajit	Chaudhuri	(2004)			 	 Hongjun	Lu	(2005)		 	 	 Tamer	Özsu	(2006)		
Hans-Jörg	Schek	(2007)	 	 	 Klaus	R.	Dittrich	(2008)	 												 	 Beng	Chin	Ooi	(2009)		
David	Lomet	(2010)																											 Gerhard	Weikum	(2011)	 	 	 Marianne	Winslett	(2012)	
H.V.	Jagadish	(2013)	 	 	 Kyu-Young	Whang	(2014)		 	 Curtis	Dyreson	(2015)	
Samuel	Madden	(2016)	 	 	 Yannis	E.	Ioannidis	(2017)	 	 Z.	Meral	Özsoyoğlu	(2018)	
Ahmed	Elmagarmid	(2019)	
		
SIGMOD	Jim	Gray	Doctoral	Dissertation	Award		
SIGMOD	has	established	the	annual	SIGMOD	Jim	Gray	Doctoral	Dissertation	Award	to	recognize	excellent	
research	by	doctoral	candidates	in	the	database	field.		Recipients	of	the	award	are	the	following:		

§ 2006	Winner:	Gerome	Miklau.	Honorable	Mentions:	Marcelo	Arenas	and	Yanlei	Diao.		
§ 2007	Winner:	Boon	Thau	Loo.	Honorable	Mentions:	Xifeng	Yan	and	Martin	Theobald.		
§ 2008	Winner:	Ariel	Fuxman.	Honorable	Mentions:	Cong	Yu	and		Nilesh	Dalvi.		
§ 2009	Winner:	Daniel	Abadi.		Honorable	Mentions:	Bee-Chung	Chen	and	Ashwin	Machanavajjhala.	
§ 2010	Winner:	Christopher	Ré.	Honorable	Mentions:	Soumyadeb	Mitra	and	Fabian	Suchanek.	
§ 2011	Winner:	Stratos	Idreos.	Honorable	Mentions:	Todd	Green	and	Karl	Schnaitterz.	
§ 2012	Winner:	Ryan	Johnson.	Honorable	Mention:	Bogdan	Alexe.	
§ 2013	Winner:	Sudipto	Das,	Honorable	Mention:	Herodotos	Herodotou	and	Wenchao	Zhou.	
§ 2014	Winners:	Aditya	Parameswaran	and	Andy	Pavlo.		
§ 2015	Winner:	Alexander	Thomson.	Honorable	Mentions:	Marina	Drosou	and	Karthik	Ramachandra	
§ 2016	Winner:	Paris Koutris.	Honorable	Mentions:	Pinar Tozun	and	Alvin Cheung	

2 SIGMOD Record, June 2019 (Vol. 48, No. 2)

§ 2017	Winner:	Peter	Bailis.	Honorable	Mention:	Immanuel	Trummer	
§ 2018	Winner:	Viktor	Leis.	Honorable	Mention:	Luis	Galárraga	and	Yongjoo	Park	
§ 2019	Winner:	Joy	Arulraj.	Honorable	Mention:	Bas	Ketsman		

A	complete	list	of	all	SIGMOD	Awards	is	available	at:	https://sigmod.org/sigmod-awards/		

[Last	updated:	June	30,	2019]	

SIGMOD Record, June 2019 (Vol. 48, No. 2) 3

Editor’s Notes
	

Welcome	to	the	June	2019	issue	of	the	ACM	SIGMOD	Record!		
	
This	issue	starts	with	the	Database	Principles	column	featuring	an	article	by	Rahul	and	Tao	on	de-
signing	top-k	indexes.	The	design	goal	 is	to	address	the	problem	of	retrieving	only	the	best	k	rec-
ords,	 in	 those	cases	where	users	do	not	need	 to	examine	all	 the	answers.	Clearly,	 focusing	on	re-
trieving	only	up	to	a	predefined	number	of	the	highest-ranked	query	answers	has	the	potential	to	
improve	the	efficiency	of	query	processing.	In	the	space	of	potential	mechanisms	for	preventing	the	
query	processor	 from	accessing	 the	 lower-ranked	 answers,	 the	 article	 guides	 the	 reader	 through	
the	state	of	the	art	on	designing	top-k	indexes	that	provide	strong	theoretical	guarantees	for	both	
time	and	space,	and	are	also	efficiently	updatable.		Powerful	results	detailed	in	the	article	show	that	
the	 problem	 of	 designing	 top-k	 indexes	 is	 no	 harder	 than	 certain	 natural	 related	 problems.	 For	
practitioners,	 this	 implies	that	solutions	 for	 those	related	problems	can	be	used	as	black	boxes	 in	
the	design	of	top-k	indexes	with	desired	expected	complexity.	The	article	also	discusses	open	prob-
lems,	and	provides	references	on	related	areas.		
	
The	Surveys	column	features	an	article	by	Pierri	and	Ceri	that	discusses	the	issue	of	false	news	on	
social	media.	The	article	provides	a	comprehensive	study	of	recent	algorithmic	advances	in	detect-
ing,	characterizing,	and	mitigating	false	news	on	popular	social-media	platforms,	and	also	discusses	
emerging	approaches.	The	discussion	centers	on	2017-18	results,	and	 includes	detailed	compara-
tive	descriptions	of	 the	most	promising	 ideas,	methods,	and	approaches.	The	authors	also	outline	
potential	interventions,	while	also	bringing	into	the	picture	ethical	concerns	about	censorship.	The	
article	provides	an	extensive	bibliography,	as	well	as	pointers	to,	and	detailed	comparative	descrip-
tions	of,	reference	data	sets.	
	
The	Systems	and	Prototypes	column	features	an	article	by	Scherzinger,	which	reports	on	a	course	
titled	 “Modern	 database	 concepts”	 taught	 in	 summer	 2018	 at	 OTH	Regensburg.	 The	 goals	 of	 the	
intensive	course	 included	teaching	 ideas	behind	engines	such	as	Hive,	as	well	as	design	decisions	
regarding	query-language	constructs.	The	article	focuses	on	the	hands-on	project	that	was	offered	
as	an	option	to	the	students	in	the	course.	The	project	objective	was	to	build	miniHive,	an	SQL-on-
Hadoop	 engine	 for	 compiling	 SQL	 queries	 into	 MapReduce	 workflows.	 The	 article	 describes	 the	
scope	of	 the	project	milestones,	 the	 required	 self-study	materials,	 and	 some	coding	 challenges.	 It	
concludes	with	observations	about	the	student	outcomes	as	a	result	of	their	having	taken	the	pro-
ject;	the	discussion	is	based	on	the	students’	self	reporting,	as	well	as	on	their	performance	in	the	
course.	For	those	interested	in	the	details,	complete	course	materials	can	be	made	available	by	the	
author	on	request.		
	
The	 Distinguished	 Profiles	 column	 features	 Richard	 Hipp,	 winner	 of	 the	 2017	 SIGMOD	 Systems	
Award	and	of	the	2005	Google	O’Reilly	Open	Source	Award	for	SQLite.	Richard	has	his	own	consult-
ing	firm,	Hwaci;	his	Ph.D.	is	from	Duke	University.	In	this	interview,	Richard	talks	about	SQLite,	the	
most	widely	deployed	database	engine	in	the	world.	He	discusses	the	reasons	for	the	popularity	of	
SQLite,	the	technical	challenges	in	creating	it,	the	aviation-grade	testing	involved	in	the	design	pro-
cess,	and	 the	ongoing	projects.	He	also	shares	why	working	on	SQLite	has	been	a	dream	 job,	and	
what	 things	he	could	work	on	 in	 the	 future.	Richard	discusses	potential	 advantages	of	 consulting	
careers	for	graduates,	and	gives	advice	on	topics	that	database	researchers	could	find	rewarding	to	
work	on.		
	

4 SIGMOD Record, June 2019 (Vol. 48, No. 2)

The	Reports	column	features	an	article	by	Ailamaki	and	colleagues	that	describes	the	submission-
evaluation	process	for	the	SIGMOD	2019	research	track.	The	article	discusses	actionable	goals	con-
cerning	reviews	and	submissions,	and	describes	in	detail	the	infrastructure	deployed	to	address	
those.	In	the	SIGMOD	2019	research	track,	many	remarkable	things	were	done	to	scale	the	submis-
sion-evaluation	work	while	ensuring	fairness,	including	ingenious	use	of	features	of	the	chosen	
tools,	as	well	as	optimization	approaches	based	on	integer	programming	for	assigning	reviewers	to	
submissions.	The	article	discusses	the	submission-evaluation	pipeline	and	provides	details	on	the	
specifics	of	the	needed	tuning,	on	the	experience	of	working	with	the	chosen	tools,	and	on	the	feed-
back	from	authors.	The	article	goes	on	to	discuss	the	success	metrics,	summarizes	the	overall	re-
warding	outcomes,	and	also	suggests	some	points	for	improvement.		
	
On	 behalf	 of	 the	 SIGMOD	Record	Editorial	 board,	we	hope	 that	 you	 enjoy	 reading	 the	 June	2019	
issue	of	the	SIGMOD	Record!		
	
Your	submissions	to	the	SIGMOD	Record	are	welcome	via	the	submission	site:	

http://sigmod.hosting.acm.org/record		
	
Prior	to	submission,	please	read	the	Editorial	Policy	on	the	SIGMOD	Record’s	website:		

https://sigmodrecord.org/sigmod-record-editorial-policy/	
		

Yanlei	Diao	and	Rada	Chirkova	

June	2019	

	
	
Past	SIGMOD	Record	Editors:	

	
Ioana	Manolescu	(2009-2013)	 Alexandros	Labrinidis	(2007–2009)	 Mario	Nascimento	(2005–2007)		
Ling	Liu	(2000–2004)	 	 Michael	Franklin	(1996–2000)		 	 Jennifer	Widom	(1995–1996)		
Arie	Segev	(1989–1995)		 Margaret	H.	Dunham	(1986–1988)		 Jon	D.	Clark	(1984–1985)		
Thomas	J.	Cook	(1981–1983)		 Douglas	S.	Kerr	(1976-1978)		 	 Randall	Rustin	(1974-1975)		
Daniel	O’Connell	(1971–1973)		 Harrison	R.	Morse	(1969)	
	

SIGMOD Record, June 2019 (Vol. 48, No. 2) 5

A Guide to Designing Top-k Indexes

Saladi Rahul
University of Illinois Urbana-Champaign

USA
saladi.rahul@gmail.com

Yufei Tao
Chinese University of Hong Kong

Hong Kong
taoyf@cse.cuhk.edu.hk

ABSTRACT
Top-k search, which reports the k elements of the high-
est importance from all the elements in an underlying
dataset that satisfy a certain predicate, has attracted sig-
nificant attention from the database community. The
search efficiency crucially depends on the quality of an
index structure that can be utilized to filter the under-
lying data by both the user-specified predicate and the
ranking of importance. This article introduces the reader
to a list of techniques for designing such indexes with
strong performance guarantees. Several promising di-
rections for future work are also discussed.

1. INTRODUCTION
Interactive exploration of a database system is often

hampered by the fact that a query may return a set of
records that is excessively large for a user to examine.
On the other hand, a user would rarely be interested in
all the records satisfying her/his query predicate q. In
many situations, what matters most is the subset that con-
tains only the k records — for a small integer k — in the
result with the highest “importance”, where importance
is measured by an appropriate ranking function. For
example, while the query “find all the creditcard trans-
actions of today” can return millions of records, what
a bank manager would actually like to do could be just
to scrutinize the 100 transactions with the largest pay-
ments. Retrieving only the k best records is commonly
known as top-k search, and becomes increasingly useful
as database volumes continue to grow at a rapid pace.

Besides controlling the output size, top-k search also
brings opportunities to boost the efficiency of query pro-
cessing because returning only k records can potentially
be significantly faster than fetching the full result. This
requires a mechanism that can be deployed to avoid ac-
cessing the records that satisfy the search predicate q but
do not have sufficiently high importance to be reported.
Designing such mechanisms has been a major research
topic in the database area during the past two decades
(see, e.g., [1, 7–9, 19, 25–27, 30, 31] and the references
therein). At the core of almost every mechanism is an

index structure — henceforth referred to as a top-k index
— which stores certain information pre-computed from
the underlying data that can lead the query algorithm
to finding the k target records efficiently. Unlike con-
ventional access methods in a database system, a top-k
index must allow a query to filter the data not only by the
predicate q, but also by the ranking of importance.

In this article, we introduce the reader to a suite of
representative techniques that have been proposed in the
literature for designing top-k indexes. Our discussion
will focus on obtaining indexes with strong theoretical
guarantees, and therefore, will not be concerned with
methods that are designed purely for empirical evaluation.
We will also point out some directions that call for further
research efforts on this fascinating topic.

The content of this article has little overlap with Fa-
gin’s algorithm [14] and the threshold algorithm by Fa-
gin, Lotem, and Naor [15] which were developed for a
class of problems on distributed computation which are
sometimes referred to also under the name “top-k”. As
surveyed in [19], there have been multiple attempts to
apply the algorithms of [14, 15] to answer top-k queries
in centralized systems. However, none of those attempts
has succeeded in attaining performance guarantees that
are interesting through the lens of this article. The tech-
niques we will describe all follow ideas different from
those of [14, 15].

2. PROBLEM DEFINITIONS
In Section 2.1, we provide a problem formulation that

encapsulates a broad class of top-k problems. Section 2.2
gives two representative problems that will be utilized to
demonstrate the techniques to be discussed. Section 2.3
clarifies the computation model to be adopted, and the
performance guarantees to be achieved.

2.1 Generic Query Formulation
Let D be an arbitrary set which serves as the data

domain. Denote by Q a set of predicates that can be ap-
plied to the elements of D. Specifically, given a predicate
q ∈ Q, we can evaluate q on every element e ∈ D to

6 SIGMOD Record, June 2019 (Vol. 48, No. 2)

obtain a boolean value 1 or 0; in the former case e is said
to satisfy q, while in the latter e does not. We assume
that Q has a special predicate true, which evaluates to
1 for all e ∈ D.

The input dataset D is a subset of D. For each predi-
cate q ∈ Q, define q(D) to be the set of elements in D
satisfying q. Given a predicate q ∈ Q, a reporting query
returns q(D) in its entirety.

As mentioned earlier, a user is often interested only in
the most “important” elements of q(D). We formalize
importance by resorting to a weight function w : D → R,
where R represents the set of real numbers. For each
element e ∈ D, we refer to the value w(e) as the weight
of e under w. Denote by W a non-empty set of such
weight functions. Every reporting query has a top-k
counterpart:

Given a predicate q ∈ Q, a weight function w ∈ W,
and an integer k ≥ 1, a top-k query reports the k
elements in q(D) with the highest weights under
w. Specially, if |q(D)| < k, then the entire q(D) is
reported.

If two elements have the same weight, we assume that
the tie is broken by a consistent policy, e.g., regarding the
element with a larger id to have a greater weight. Note
that a top-1 query, which will be referred to as a max
query, returns the element in q(D) with the maximum
weight.

Our exploration into the theory of top-k queries will
encounter frequently another variant of reporting queries:

Given a predicate q ∈ Q, a weight function w ∈ W,
and a real value τ , a prioritized query reports all
the elements e ∈ q(D) with w(e) ≥ τ .

In general, the set W may contain an arbitrarily large
number of functions. In the other extreme, W may in-
clude only a single function. In that case, obviously, all
the top-k and prioritized queries must choose the same,
unique, function w in W, such that we can as well regard
the weight w(e) directly as an attribute associated with
each element e ∈ D. When this happens, we will refer
to D as a weight-augmented dataset.

2.2 Two Specialized Instances
Next, we specialize the above formulation into two

concrete instances that are representative for several rea-
sons. First, the top-k queries in both instances are impor-
tant top-k problems that have been extensively studied.
Second, their specialization is based on drastically dif-
ferent choices of D, Q, and W, thereby demonstrating
the generality of our query formulation. Third, they are
among the simplest instances suitable for illustrating the
techniques to be presented in later sections.
Problem 1: Linear Ranking. In this instance:

• D = Rd, where d is a positive constant integer;

• Q = {true}, namely, Q has only a single predi-
cate that always evaluates to 1;

• W is the set of linear functions which are defined
by d real values c1, ..., cd, and map a point p =

(x1, x2, ..., xd) ∈ D to
∑d

i=1 cixi.

Equivalently, a dataset D is a set of points in the d-
dimensional space. Given the coefficients c1, ..., cd, a
top-k query reports the k points p = (x1, ..., xd) ∈ D

that maximize
∑d

i=1 cixi. Such queries constitute the
top-k problem that has received by far the most attention
from the system community (see [19] for a survey). As a
classic application, consider that d = 2, and each point
e ∈ D captures the price and rating of a hotel as
the x- and y-coordinates, respectively. A top-10 query
finds the 10 best hotels maximizing c1· (− price) +c2·
rating, where c1 and c2 are coefficients chosen by a
user, reflecting her/his personal weighting on the two
attributes.
Problem 2: One-Dimensional Range Searching. This
is an instance on weight-augmented datasets:

• D = R;

• Q consists of all such predicates, each of which
specifies an interval q in R, and evaluates to 1 on
every point e ∈ D ∩ q, and to 0 on every point
e /∈ D ∩ q.

Equivalently, a dataset D is a set of points in R, each
of which is associated with a real-valued weight. Given
an interval q, a top-k query reports the k points in D ∩ q
with the highest weights. Such queries constitute the
most extensively studied top-k problem in the theory
community [1, 7, 8, 25, 30, 31]. For an example, consider
a TRANSACTION table with attributes id, date and
payment, on which a top-100 query is “find the 100
tuples with the highest payment values among those
with date in [01/2019, 03/2019]”.

2.3 Computation Model and Design Goals
Our discussion will assume the standard word-RAM

model. We further assume that every element in D can
be stored in O(1) words, and so can the encoding of each
predicate in Q (e.g., in 1D range searching, each predi-
cate is specified by an interval, which can be encoded in
two words).

Define n = |D|, i.e., the number of elements in the
input dataset. Our primary objective is to preprocess
D into a top-k index that consumes near-linear space,
and can be used to solve top-k queries efficiently. This
means that the index should use Õ(n) space, and answer
a top-k query in Qtop(n) + Õ(k) time where notation

SIGMOD Record, June 2019 (Vol. 48, No. 2) 7

Õ hides an O(polylog n) factor, and Qtop is a slow-
growing function of n. Ideally, we would also like the
index to be dynamic, namely, updatable in Õ(1) time per
insertion and deletion.

Finally, it is worth mentioning that the result of a top-
k query may return k elements in an arbitrary order. A
sorted order can be generated by trivially sorting those
elements in O(k log k) time. Remember that the value of
k is supplied by a query as a parameter, instead of being
fixed in advance.

3. TOP-K IMPLIES PRIORITIZED
Top-k and prioritized queries represent two similar

ways to trim the result of a reporting query. Recall that,
given a predicate q ∈ Q, a reporting query returns |q(D)|
elements. The corresponding top-k query limits the out-
put size to at most k explicitly. The corresponding priori-
tized query, on the other hand, filters out the elements of
q(D) with weights less than τ , after which the number t
of elements reported can be anywhere from 0 to |q(D)|.

There is a subtle but important difference between top-
k and prioritized queries. For a top-k query, whether an
element e ∈ q(D) should be reported does not depend
solely on e, because it is also affected by the weights of
the other elements in q(D). In contrast, for a prioritized
query, whether e should be reported can be decided by
looking at e itself. Intuitively, this suggests that top-k
queries ought to be at least as hard as prioritized queries.

This intuition turns out to be correct, namely, if we can
find a top-k index with a certain space-query tradeoff, we
must be able to achieve the same tradeoff asymptotically
for prioritized queries:

THEOREM 1. Fix D, Q, and W, and set n = |D|.
Suppose that there is a top-k index on D that con-
sumes Stop(n) space, and answers a top-k query in
Qtop(n) + O(k) time, where Qtop(n) > 0 for all n.
Then, there is a data structure on D that uses Stop(n)
space, and answers a prioritized query in O(Qtop(n)+t)
time, where t is the number of reported elements.

PROOF. Let T be the top-k index on D as described
in the theorem. Given a prioritized query with parameters
q ∈ Q, w ∈ W, and τ ∈ R, we use T to answer it by
executing multiple rounds as follows. In round j (starting
with j = 1), we issue a top-kj query on T with the same
q and w by setting kj = 2j−1 · Qtop(n). Two cases may
arise:

• If the top-kj query returns exactly kj elements, we
scan them to find the element e with the smallest
weight. If w(e) < τ , we do not go to the next
round; otherwise, round j + 1 is launched.

• If the top-kj query returns less than kj elements,
no more rounds are performed.

Let i be the number of rounds executed. Among the ele-
ments reported by the top-ki query, we remove those with
weights less than τ , and return the rest of the elements as
the output of the prioritized query.

The space consumption of T is clearly Stop(n). Now
we analyze the query time. If only one round is executed,
the time is bounded by Qtop(n)+O(k1) = O(Qtop(n)),
noticing that k1 = Qtop(n). If i ≥ 2 rounds are per-
formed, the time is bounded by

O
(i∑

j=1

Qtop(n)+ 2j−1 · Qtop(n)
)
= O(2i · Qtop(n)).

By the fact that the execution entered i-th round, we know
that t ≥ 2i−2 · Qtop(n), which gives 2i · Qtop(n) ≤ 4t.
It thus follows that the total query time is O(t).

The above result, which was independently observed
by the authors of [24, 25], has an interesting implica-
tion: attempts to design an effective top-k index should
be carried out after one has succeeded in obtaining a
structure capable of resolving a prioritized query with
the desired space-query tradeoff. Indeed, the prioritized
query serves as a good starting point to approach a top-k
problem, which is a pattern that will show up repeatedly
in the rest of this article.

4. A FRAMEWORK FOR DESIGNING
TOP-K INDEXES

In this section, we will establish a powerful framework
for obtaining top-k indexes that enjoy strong theoretical
guarantees in expectation. This framework is remarkably
easy to apply, and works for all top-k queries captured
by the formulation in Section 2.1.

4.1 Equivalence between Top-k and the
Combination of Prioritized and Max

We have seen in Section 3 that, to design a top-k in-
dex with a certain space-query tradeoff, one must be
able to obtain a structure with the same tradeoff for the
corresponding prioritized query. Another similar but
more obvious fact is that any top-k index guaranteeing
Qtop(n) +O(k) time must be able to answer the corre-
sponding max (a.k.a. top-1) query in O(Qtop(n)) time.
In other words, the top-k query is at least as hard as both
of its corresponding prioritized and max queries.

It turns out that, in terms of expected efficiency, the
opposite is also true: the top-k query is no harder than
solving both of the prioritized and max queries. To state
this formally, let us first define a geometrically converg-
ing function to be a function f : R+ → R+ (where
R+ is the set of positive real numbers) satisfying two
conditions:

• When x ≤ 2, f(x) = O(1);

8 SIGMOD Record, June 2019 (Vol. 48, No. 2)

• When x > 2,
h∑

i=0

f
(x
ci

)
= O(f(x))

holds for any c ≥ 2, where h is the largest integer
i satisfying x/ci ≥ 2.

Note that all polynomial functions are geometrically con-
verging. We are now ready to present the theorem, which
is due to Rahul and Tao [27], for reducing a top-k prob-
lem to its prioritized and max counterparts:

THEOREM 2. Fix D, Q, and W, and set n = |D|.
Suppose that

• there is a structure on D that uses Spri(n) =
O(n2) space, and answers a prioritized query in
Qpri(n) + O(t) time, where t is the number of
elements reported;

• there is a structure on D that uses Smax (n) space,
and answers a max query in Qmax (n) time, where
function Smax (n) is geometrically converging.

Then, there is a structure on D that uses Stop(n) space
in expectation, and answers a top-k query in Qtop(n) +
O(k) expected time, where

Stop(n) = O

(
Spri(n) + Smax

(
6n

Qpri(n)

))
(1)

Qtop(n) = O (Qpri(n) +Qmax (n)) . (2)

Furthermore, if the prioritized and max structures
support an update in Upri(n) and Umax (n) time respec-
tively, then the top-k structure supports an update in
O(Upri(n) + Umax (n)) expected time. If any of Upri(n)
and Umax (n) is amortized, the update cost of the top-k
structure is amortized expected.

Several remarks are in order:

• The above reduction is optimal in the sense that
there is no performance degradation (in expecta-
tion): the space, query, and update costs of the top-
k structure are all determined by the worse between
the prioritized and max structures. Theorems 1 and
2 together establish the equivalence (again, in terms
of expected performance) between answering top-k
queries and settling the combination of prioritized
queries and max queries.

• Somewhat surprisingly, Stop(n) may even be
smaller than O(Smax (n)). For instance, plug-
ging in Spri(n) = O(n), Smax (n) = O(n log n),
and any Qpri(n) ≥ log n, we obtain from The-
orem 2 that Stop(n) = O(n). Indeed, the theo-
rem achieves a “bootstrapping” effect such that one
does not need to try very hard to minimize the space
of the max structure.

• The condition Smax (n) = O(n2) essentially cap-
tures all the max structures useful in practice. The
power 2 is not compulsory, and can be replaced by
any constant.

We will prove Theorem 2 in Section 4.3.

4.2 Applications of Theorem 2
Theorem 2 provides a clear direction for designing

top-k indexes with strong performance guarantees. Next,
we demonstrate this on the two problems listed in Sec-
tion 2.2.
Linear Ranking. Let D be the input set of n points in
Rd. Given real-valued coefficients c1, ..., ck and a real
value τ , a prioritized query returns all the points p =

(p1, ..., pd) in D such that
∑d

i=1 ci · pi ≥ τ . Given c1,
..., ck, a max query returns the point p = (p1, ..., pd) ∈
D that maximizes

∑d
i=1 ci · pi.

Both types of queries have been well studied in com-
putational geometry. The prioritized query is known as
halfspace reporting, while the max query as the extreme-
point query. When d ≤ 3:

• Afshani and Chan [2] described a structure of O(n)
space that can answer a halfspace reporting query
in O(log n + t) time, where t is the number of
points reported;

• A technique of Dobkin and Kirkpatrick [12] yields
a structure of O(n) space that can answer an
extreme-point query in O(log n) time.

Immediately, Theorem 2 guarantees a top-k index that
uses O(n) space and answers a top-k query in O(log n+
k) time, both in expectation.

When d ≥ 4, no known structure is able to answer a
halfspace reporting query in O(polylog n+ t) expected
time under the space budget of Õ(n) expected. In fact,
a lower bound of [13] even rules out the possibility of
such structures for d ≥ 5. Together with Theorem 1,
these facts indicate that it is unrealistic to hope for a
top-k index of near-linear space that can answer a top-k
query in O(polylog n+ k) time. We will continue this
discussion in Section 6, where a more suitable technique
will be applied to design top-k indexes for d ≥ 4.
1D Range Searching. Let D be the input set of n points
in R. Each point e ∈ D is associated with a weight w(e).
Given an interval q = [x, y] in R and a real value τ , a
prioritized query returns all the points e ∈ D satisfying
x ≤ e ≤ y and w(e) ≥ τ . Given an interval q = [x, y],
a max query reports the point of the maximum weight
among the points e ∈ D satisfying x ≤ e ≤ y.

It is rudimentary (see, e.g., [11]) to design a structure
of O(n) space which answers a max query in O(log n)
time, and can be updated in O(log n) time. The prior-
itized query is what is called 3-sided range reporting

SIGMOD Record, June 2019 (Vol. 48, No. 2) 9

in computational geometry. Specifically, let us create a
set of 2D points P = {(e, w(e)) | e ∈ D}. A priori-
tized query with parameters q = [x, y] and τ essentially
returns all the points in P that fall in the 3-sided rect-
angle [x, y]× [τ,∞). By creating a priority search tree
(PST) [21] on P , we can answer the query in O(log n+t)
time, where t is the number of points reported. The
PST occupies O(n) space, and supports each update in
O(log n) time.

Immediately, Theorem 2 yields a dynamic top-k index
of O(n) space that answers a top-k query in O(log n+k)
time, and can be updated in O(log n) time, where all
complexities hold in expectation.

4.3 Proof of Theorem 2
This subsection serves as a proof of Theorem 2. We

consider that Qmax (n) = O(n) because a max query
can be trivially answered by scanning D once.
Rank Sampling. Given a set S of real values, and a real
value 0 < p ≤ 1, we define a p-sample set of S to be a
set R obtained by the following random process. At the
beginning, R = ∅; then, each element of S is added to R
with probability p independently. Furthermore, we say
that an element e ∈ S has rank i if e is the i-th greatest
in S. The following is a technical lemma that will be
useful later.

LEMMA 1. Let S be a set of n elements, and K a
real value satisfying 2 ≤ K ≤ n/4. For a (1/K)-
sample set R of S, the following hold simultaneously
with probability at least 0.09:

• |R| ≥ 1

• The largest element in R has rank in S greater than
K but at most 4K.

PROOF. The first bullet fails only if none of the ele-
ments in S was sampled, which occurs with probability

(1− 1/K)n ≤ (1− 1/K)4K ≤ 1/e4

where the last inequality used the fact that (1− x)1/x <
1/e for all x > 0.

Let x be the largest element in R, and denote by K̂
the rank of x in S. Next, we bound the probability of
the event K̂ > 4K, which occurs only if none of the 4K
largest elements in D were sampled. Hence:

Pr[K̂ > 4K] = (1− 1/K)4K ≤ 1/e4.

Finally, we bound the probability of the event K̂ ≤ K,
which occurs only if at least one of the K largest elements
in D was sampled. Hence:

Pr[K̂ ≤ K] = 1− (1− 1/K)K .

Applying the fact that (1− 1/x)x ≥ 1/e2 for all x ≥ 2,
we know:

Pr[K̂ ≤ K] ≤ 1− 1/e2.

The union bound now shows that the probability of
violating at least one bullet of Lemma 1 is at most

2/e4 + (1− 1/e2) < 0.91

which completes the proof.

Structure. We now describe how to design a top-k index
using the given prioritized and max structures as black
boxes. First, build a prioritized structure on the input
dataset D. Then, fix a constant σ = 1/20, and define for
each integer i ≥ 1:

Ki = Qmax (n) · (1 + σ)i−1.

Let h be the largest i such that Ki ≤ n/4; clearly, h =
O(log n). For each i ∈ [1, h], we take a (1/Ki)-sample
set Ri of D, and create a max structure on Ri. The top-k
index consists of the prioritized structure and the h max
structures constructed.
Query. Suppose that we need to answer a top-k query
that chooses a predicate q ∈ Q and a weight function
w ∈ W. If k < Qmax (n), we obtain the result S
of a top-Qmax (n) query with the same q and w, and
extract the k elements in S with the largest weights
using the k-selection algorithm of [6] in O(|S|) =
O(Qmax (n)) time. The total cost is therefore the
time of the top-Qmax (n) query, which we will prove
later is O(Qpri(n) + Qmax (n)) in expectation, plus
O(Qmax (n)).

Next, we consider k ≥ Qmax (n). If k ≤ Kh, set j∗

to the smallest integer i satisfying Ki ≥ k; note that
Kj = Θ(k). Starting with j = j∗, we perform a round
as follows:

1. Determine whether |q(D)| < 4Kj . This can be
done in Qpri(n)+O(Kj) time by performing a pri-
oritized query in a cost-monitoring manner. Specif-
ically, run a prioritized query with the parameters
q, w, and τ = −∞, but terminate the query manu-
ally as soon as 4Kj elements have been reported.
If manual terminate occurs, |q(D)| ≥ 4Kj , and we
proceed to the next step. Otherwise, the prioritized
query finishes normally and must have returned
the entire q(D), implying |q(D)| < 4Kj , in which
case we declare the round successful and terminate
the whole algorithm by returning q(D) as the result
of the original top-k query.

2. Identify the element e in q(Rj) with the maximum
weight by issuing a max query on Rj with the
parameters q and w which takes Qmax (n) time. In
the special case where q(Rj) is empty, treat e as a
dummy element with w(e) = −∞.

3. Perform a prioritized query on D with q, w, and
τ = w(e) in a cost-monitoring manner:

10 SIGMOD Record, June 2019 (Vol. 48, No. 2)

(a) Either the query terminates by itself, out-
putting a set S of elements,

(b) Or we terminate it as soon as 4Kj+1 elements
have been reported.

In both cases, the cost is Qpri(n) +O(Kj).

4. Declare this round failed if either of the following
is true:

• Case 3(a) occurred, but |S| ≤ Kj .

• Case 3(b) occurred.

Otherwise, declare this round successful.

5. If the round is successful, perform k-selection on S
to produce the k elements in q(D) with the largest
weights, and terminate the algorithm by returning
them as the result of the top-k query.

6. Otherwise (i.e., failed), increase j by 1.

(a) If j ≤ h, perform the next round from Step 1.

(b) Else (i.e., j = h+ 1), answer the top-k query
naively by reading the whole D in O(n) =
O(Kj) time. The algorithm then terminates.
This is the only scenario where termination
can happen in a failed round.

To analyze the cost of the algorithm, notice that a
round fails only if |q(|D|)| > 4Kj (otherwise, Line 1
terminates the algorithm), and one of the two bullets in
Step 4 is true. Thus, Lemma 1 tells us that failure happens
with probability at most 0.91, noticing that q(Rj) is a
(1/Kj)-sample set of q(D). This implies that round
j, for any j ≥ j∗, is executed only with probability
0.91j−j∗ , namely, only when all the preceding rounds
have failed. Also observe that round j, regardless of
whether it fails, takes Qpri(n)+Qmax (n)+O(Kj) time.
Thus, the expected cost of the algorithm is bounded by

h∑

j=j∗
O
((

Qpri(n) +Qmax (n) +Kj

)
· 0.91j−j∗

)

= O
(
Qpri(n) +Qmax (n) +

h∑

j=j∗
Kj · 0.91j−j∗

)
(3)

Note that Kj = Kj∗ · (1+σ)j−j∗ = O(k) · (1+σ)j−j∗ .
Plugging this into (3) shows that the expected cost is
bounded by

O


Qpri(n) +Qmax (n) + k

h∑

j=j∗
((1 + σ) · 0.91)j−j∗




which is O(Qpri(n) +Qmax (n) + k) because (1 + σ) ·
0.91 < 1.

Space. The prioritized structure on D obviously takes
up Spri(n) space. We claim that all the max structures
occupy o(n) +O(Smax (

6n
Qmax (n)

)) expected space in to-
tal, which implies the space result in Theorem 2 because
Spri(n) = Ω(n).

The claim is fairly intuitive because E[|Ri|] = n/Ki

geometrically decreases as i increases, which, together
with the fact that Smax (n) is geometrically converging,
seems to yield the claim immediately. The complication,
however, is that Smax (n) may be a convex function, such
that E[Smax (|Ri|)] is not necessarily O(Smax (E[|Ri|])).
Next, we show how to circumvent this obstacle.

We will prove that all the max structures occupy
o(n) + O(Smax (

6n
Qmax (n)

)) space in total with proba-
bility at least 1 − 1/n2. Combining this with the fact
that all those structures obviously demand no more than
O(Smax (n) · h) = O(n2 · log n) space gives the target
claim.

Let i∗ be the largest i such that Ki ≤ n/(3 lnn).
Consider an i ∈ [1, i∗]. Since |Ri| is the sum of n in-
dependent Bernoulli variables each of which equals 1
with probability 1/Ki, a standard application of Cher-
noff bounds1 gives:

Pr[|Ri| ≥ 6 ·E[|Ri|]] ≤ exp(−E[|Ri|])
= exp(−n/Ki) ≤ 1/n3.

Therefore, with probability at least 1 − h/n3, the max
structures on R1, R2, ..., Ri∗ use at most

i∗∑

i=1

O

(
Smax

(
6n

Qmax (n) · (1 + σ)i−1

))

= O

(
h+ Smax

(
6n

Qmax (n)

))

space overall.
Let us now concentrate on i ∈ [i∗ + 1, h]. Notice

that there are only O(log log n) such values of i. Also,
by definition of i∗, we know that E[|Ri|] = n/Ki is in
the range from 4 to O(log n). Another application of
Chernoff bounds gives:

Pr[|Ri| ≥ (lnn4) ·E[|Ri|]]
≤ exp(−(lnn4) ·E[|Ri|]/6)
≤ exp(− lnn4·2/3)

= 1/n8/3.

Hence, with probability at least 1−O(log log n)/n8/3,
it holds that for all i ∈ [i∗ + 1, h]:

|Ri| ≤ 4 lnn ·E[|Ri|] = O(log2 n).

1Let X1, ..., Xn be independent Bernoulli variables such that
Pr[Xi = 1] = pi. Let X =

∑n
i=1 Xi and µ = E[X] =∑n

i=1 pi. For any α ∈ (0, 1), Pr[X ≤ (1−α)µ] ≤ e−α2µ/3,
while for any α ≥ 2, Pr[X ≥ αµ] ≤ e−αµ/6.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 11

By the fact that Smax (n) = O(1 + n2), the max struc-
tures on Ri∗ , Ri∗+1, ..., Rh together consume no more
than O(h + log log n · log4 n) = o(n) space. We thus
conclude that, with probability at least 1 − h/n3 −
O(log log n)/n8/3 > 1 − 1/n2, all the max structures
use o(n) +O(Smax (

6n
Qmax (n)

)) space.

Update. It remains to discuss how to support insertions
and deletions on the input set D. A crucial observation
is that, in expectation, each element of D appears only
in a constant number of max structures, noticing that
the element belongs to Ri with probability 1/Ki, which
geometrically decreases as i increases. We can record
using in expectation O(1) words which max structures
include e. It thus becomes obvious that the insertion
or deletion of an element can be supported in O(Upri +
Umax) expected time. The above argument still works
even if one or both of Upri and Umax are amortized. This
completes the whole proof of Theorem 2.

5. TECHNIQUES FOR PROBLEMS ON
WEIGHT-AUGMENTED DATASETS

This section will focus on top-k problems where
|W| = 1, and hence, the weight w(e) of each element
e ∈ D can be taken directly as an extra attribute of e.
We will introduce several techniques that are effective
on such problems, and at the same time amenable to
practical implementation. Our description will be based
on top-k range searching in 1D (see Section 2.2) whose
simplicity will facilitate the understanding of the core
ideas underneath. Unlike the solutions in Section 4 that
are efficient in expectation, we will aim to obtain top-k
indexes whose guarantees hold deterministically.

5.1 High-Level Ideas behind Sections
5.2-5.4

In 1D top-k range searching, the input dataset D is a
set of n points in R. Given an interval q = [x, y], a top-k
query returns the k points e ∈ q(D) with the highest
w(e), where q(D) is the set of points in D covered by q.
Conceptually, we will answer the query in three steps:

1. Size checking: Decide whether |q(D)| < k. If so,
simply retrieve the entire q(D), and return it as the
final result. Proceed to Step 2 only if |q(D)| ≥ k.

2. Thresholding: Find a real-valued threshold τ such
that at least k but at most O(k) points e ∈ q(D)
satisfy w(e) ≥ τ .

3. Prioritized reporting: Find the set S of points in
q(D) whose weights are at least τ . The definition
of τ makes sure that k ≤ |S| = O(k). Collect the
k points in S with the highest weights, and return
them as the result of the top-k query.

It is rudimentary to implement Step 1 in O(log n+ k)
time by resorting to a binary search tree (BST) on D.
In Step 3, S can be found using a PST (priority search
tree) on D in O(log n + |S|) = O(log n + k) time, as
we explained in Section 4.2. Finding the k points of the
largest weights in S can be done with the k-selection
algorithm [6], which takes O(|S|) = O(k) time. Note
that all the data structures needed in Steps 1 and 3 can
be updated in O(log n) time per insertion and deletion.

The challenge is to design a data structure for Step 2,
a phenomenon that is very typical in attacking a top-k
problem through the above 3-step approach. In fact, Step
2 itself makes an interesting stand-alone problem, which
was named the approximate k-threshold problem in [30].
In Sections 5.2-5.4, we will present several techniques to
tackle the challenge

5.2 Technique 1: Binary Search
Let us start with a simple approach to find the target

threshold τ — as in Step 2 of the algorithm in Section 5.1
— in O(log2 n + k log n) time using linear space. In
fact, for a top-k query with search interval q = [x, y],
this approach returns a value of τ such that precisely k
elements e ∈ q(D) satisfy w(e) ≥ τ ; furthermore, the τ
returned is guaranteed to be the weight of some element
in q(D).2

Imagine that the weights of the points in D have been
sorted in descending order into a list L. We can find the
target τ by performing binary search on L. Specifically,
the search starts by setting z to the median of L. Define
c as the number of points e ∈ q(D) with w(e) ≥ z. We
then determine which of the following is true: c < k,
c = k, or c > k. If c = k, the algorithm finishes by
returning τ = z; otherwise, the search continues by
focusing on the first or second half of L recursively.

The comparison between c and k can be resolved
in O(log n + k) time by searching a PST in a cost-
monitoring manner. Specifically, issue a prioritized query
in the way explained in Section 4.2 to find all the points
in q(D) whose weights are at least z, with the difference
that we manually terminate the prioritized query as soon
as k+1 points have been reported. If manual termination
occurs, c must be greater than k. Otherwise, c must be at
most k, and all those c points must have been returned
by the prioritized query. Overall, the binary search at-
tempts O(log n) values of z, and therefore, finishes in
O(log2 n+ k log n) time.

The above strategy actually has a deeper implica-
tion regarding any top-k problem on weight-augmented
datasets. Suppose that there is a structure of Spri(n)
space that can answer the corresponding prioritized query
in Qpri(n) + O(t) time (where t is the number of el-

2The operation finding such a τ is known as the range quantile
query [17]

12 SIGMOD Record, June 2019 (Vol. 48, No. 2)

ements reported). Then, there must exist a top-k in-
dex of O(Spri(n)) space that answers a top-k query in
O(Qpri(n) · log n+ k log n) time. In Section 6, we will
see a stronger result that has a better query bound, and
eliminates the requirement of |W| = 1.

5.3 Technique 2: Resorting to Counting
The query efficiency of the strategy in Section 5.2

can usually be improved, provided that there is a spe-
cialized structure for finding the number c faster. This
is indeed the case for 1D range searching. Recall
that c equals the number of points e ∈ D satisfying
x ≤ e ≤ y and w(e) ≥ z. If we introduce a 2D
dataset P = {(e, w(e)) | e ∈ D}, c equals precisely
the number of points in P that are covered by the rect-
angle [x, y]× [z,∞). Computing this number is known
as orthogonal range counting, which has been very well
understood. We can preprocess P into a structure of
Chazelle [10] which uses O(n) space, and finds |P ∩ r|
for any axis-parallel rectangle r in O(log n) time. With
this, the query time of the solution in Section 5.2 is im-
proved to O(log2 n+ k).

For a general top-k problem, a counting structure for
finding c efficiently may not be readily available. The
merit of the technique in Section 5.2 is to assure a rea-
sonably good bound on the query cost using only a prior-
itized structure, which must be available for the reason
explained in Section 3.

5.4 Technique 3: Dyadic Intervals
Assume, for simplicity, that n is a power of 2, and

set ∆ = log2 n. Let us partition R into n/∆ disjoint
intervals — referred to as slabs henceforth — such that
each slab has exactly ∆ points. Given an arbitrary in-
terval [x, y], we call it aligned if x and y are both slab
boundaries, and define its span as the number of slabs
that are fully contained in [x, y]. A dyadic interval is an
aligned interval whose span is a power of 2. Note that
the total number of dyadic intervals is O((n/∆) log n).

LEMMA 2. For any aligned interval q, there exist two
possibly overlapping dyadic intervals I1 and I2 that sat-
isfy I1 ∪ I2 = q.

The proof is simple and omitted from this article.
Structure. For every dyadic interval I , store a sketch
which consists of the 2i-th largest weight of the points
in D ∩ I , for each i ∈ [0, log2 n]. If |D ∩ I| < 2i, then
the 2i-th largest weight is defined to be −∞. All the
O((n/∆) log n) sketches constitute our structure, whose
space is O((n/∆) log2 n).
Query. Given a top-k query with interval q = [x, y],
we now explain how to find a value τ that satisfies the
requirements in Step 2 of the algorithm in Section 5.1.
Assume, without loss of generality, that k is a power of

q

qleft qright

I1

I2

Figure 1: Partitioning a query interval

2 (otherwise, bump k up to the nearest power of 2). The
base case happens when q is completely within a certain
slab σ. In that case, we retrieve the set S′ of points in
q∩σ, which takes O(log n+∆) time by searching a BST
on D. Then, τ can be simply set to the k-th largest weight
of the points in S′, which can be found by performing
k-selection in O(∆) time.

Let us now suppose that q intersects at least two slabs.
Define qmid = [x′, y′] to be the longest aligned interval
inside q, which gives rise to qleft = [x, x′] and qright =
[y′, y]. Lemma 2 guarantees the existence of dyadic
intervals I1 and I2 such that I1∪I2 = qmid . See Figure 1
for an illustration, where the dashed lines represent slab
boundaries.

Next, we obtain four values:

• τleft : the k-th largest weight in D ∩ qleft , or −∞
if |D ∩ qleft | < k;

• τ1 (or τ2): the k-th largest weight of the points in
D ∩ I1 (or D ∩ I2, resp.);

• τright : the k-th largest weight in D∩qright , or −∞
if |D ∩ qright | < k.

The values τleft and τright can be obtained in O(∆) time
using the strategy illustrated earlier for the base case,
while τ1 and τ2 can be fetched directly from the sketches
of I1 and I2.

The τ returned is the maximum of the four values. It
is easy to prove that at least k but at most 4k points in
q(D) can have weights at least τ .
Remark. Setting ∆ = log22 n yields a linear space struc-
ture with O(log2 n) query time, while ∆ = log2 n gives
a structure of O(n log n) space but O(log n) query time.
It is possible to achieve linear space and O(log n) query
time by recursively applying the same idea in each slab,
but we will not delve into those details because compet-
ing for efficiency is not the purpose of this section.

5.5 Technique 4: Heap Selection
Let us define a max-heap H to be a tree where

• each internal node has a constant number of chil-
dren, and

• each node u stores a real-valued key that is greater
than all the keys stored in the proper subtree of u.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 13

Note that H does not need to be balanced in any way.
Given any max-heap H , Frederikson [16] described an
algorithm to extract the k largest keys from H in O(k)
time, for any k ranging from 1 to the number of elements
in H .

The above algorithm is useful for designing top-k in-
dexes. Given a top-k query with predicate q, let us imag-
ine that q(D) has been divided into a number of sets
S1, ..., Ss for some s ≥ 1, and that the elements in each
Si (1 ≤ i ≤ s) have been stored in a max-heap Hi,
using their weights as the keys. In such a scenario, we
can find the top-k result in O(s + k) time as follows.
First coalesce H1, ..., Hs into a single max heap H on
S1 ∪ ... ∪ Ss. This can be done in O(s) time, noticing
that we only need to take the root of each Hi, and build
a max-heap on those s roots. Once this is done, Fred-
erikson’s algorithm can be directly applied to find the k
elements with the largest weights from H in O(k) time.

Next, we apply the above idea to obtain an elegant
top-k index for 1D range searching that consumes O(n)
space, guarantees O(log n+ k) query time, and can be
updated in O(log n) time per insertion and deletion.
Structure. Let us consider once again the set of n 2D
points P = {(e, w(e) | e ∈ D} constructed from D. It
suffices to build a PST T on P , which can be defined
recursively as follows (this is the first time in this article
that we need to be concerned with the details of a PST):

• If P = ∅, T is an empty tree.

• If P contains only a single point p = (px, py), T
has only one node u which stores p, an x-key equal
to px, and a y-key equal to py .

• Otherwise, let xmed be the median of the x-
coordinates of the points in P , and p∗ = (p∗x, p

∗
y)

be the highest point in P , i.e., having the greatest
y-coordinate. Create the root u of T , which stores
p∗, an x-key equal to xmed , and a y-key equal to p∗y .

Define P1 to be the set of points p = (px, py) in P \
{p∗} satisfying px < xmed , and P2 symmetrically
to be the set of points p = (px, py) in P \ {p∗}
satisfying px ≥ xmed . Recursively construct BSTs
T1 and T2 on P1 and P2, respectively. Then, T is
the tree obtained by making the root of T1 the left
child of u, and that of T2 the right child of u.

Observe that T is a BST on the x-keys of the nodes, and
simultaneously also a max-heap on the y-keys. It is clear
that T has height O(log n), and occupies O(n) space.
Query. Suppose that we are given a top-k (1D range
searching) query with the search interval q = [x1, x2].
Without loss of generality, let us assume that both x1 and
x2 are x-keys in T . Denote by Π1 (or Π2) the path from
the root of T to the node with x-key x1 (or x2, resp.).

Π1 Π2

x1 x2

Figure 2: Searching a PST to perform top-k range
searching in 1D space

From Π1 and Π2, we can obtain s = O(log n) nodes
v1, ..., vs with three properties:

• Property 1: The parent of each vi (1 ≤ i ≤ s) is
on Π1 or Π2.

• Property 2: The subtrees of v1, ..., vs, which are
called the canonical subtrees, are mutually disjoint.

• Property 3: Every node, whose x-key is contained
in q, must be either on Π1 ∪ Π2 or in a canonical
subtree.

Figure 2 shows an example where s = 6, and v1, ..., v6
are the nodes colored in gray.

Define q(P) as the set of points p = (px, py) ∈ P
such that x1 ≤ px ≤ x2. Answering the top-k query
is equivalent to finding the k highest points in q(P).
Property 3 ensures that every point in q(P) must be
stored at a node on Π1 ∪ Π2, or a node in one of the
canonical subtrees. Let us divide q(P) into (i) P1 (or
P2), which is the set of points in q(P) stored on Π1 (or
P2, resp.), and (ii) P3, which the set of points stored in
the canonical subtrees.

Let Si (1 ≤ i ≤ s) be the set of y-keys in the canonical
subtree rooted at vi. Note that the canonical subtree is a
max-heap on Si. The k largest y-keys in S1∪ ...∪Ss can
therefore be extracted in O(k) time using Frederikson’s
algorithm. The points corresponding to those y-keys
constitute the set S of k highest points in P3. The final
result of the top-k query is the k highest points in S ∪
P1∪P2, which can be found using k-selection in O(|S∪
P1 ∪ P2|) = O(log n+ k) time.
Update. In [21], McCreight described a slightly different
PST by allowing xmed to be an “approximate median”.
The benefit is that the resulting PST also supports an
update in O(log n) time. The same query algorithm
applies to that PST as well.

6. PRIORITIZED AS HARD AS TOP-K?
We now turn our attention back to all the top-k prob-

lems capured by our formulation in Section 6, i.e., no

14 SIGMOD Record, June 2019 (Vol. 48, No. 2)

matter whether |W| = 1. We already know from The-
orem 1 that top-k queries are no easier than prioritized
queries, that is, a top-k index implies a prioritized struc-
ture with the same space-query tradeoff.

In this section, we will discuss the question opposite
to the one resolved by Theorem 1. Let us fix D, Q,
and W. Suppose that there is a structure on D that uses
Spri(n) space (recall that n = |D|), and answers any
prioritized query in Qpri(n) + O(t) time (where t is
the number of elements reported). We want to use the
structure as a black box to design a top-k structure. Let
Stop(n) be the space consumption of the top-k structure,
and Qtop(n) + O(k) its query cost. How good can the
functions Stop(n) and Qtop(n) be?

Ideally, we would like to show Stop(n) = O(Spri(n))
and Qtop(n) = O(Qpri(n)). This would imply that the
top-k query was no harder than the corresponding priori-
tized query which, in turn, would conclude that top-k and
prioritized queries in fact had the same computational
hardness! Unfortunately, whether this is true still remains
elusive today.

Nevertheless, decent progress has been made towards
settling this open question. We now know that, when
Qpri(n) = Ω(nǫ) for any constant ǫ > 0, it indeed
holds that Stop(n) = O(Spri(n)) and Qtop(n) =
O(Qpri(n)). In other words, for hard problems whose
prioritized queries demand a polynomial Qpri(n), we
can turn a prioritized structure into a top-k index with no
efficiency loss! For easier problems with Qpri(n) =
Ω(log n), on the other hand, it is possible to show
Stop(n) = O(Spri(n)) and Qtop(n) = O(Qpri(n) ·
log n). In other words, we can still obtain a top-k index
from a prioritized structure by entailing only an O(log n)
deterioration factor in query time.

Next, we introduce the theorem behind the above
claims. Let us start with the notion of polynomial bound-
edness. Fix an integer k ∈ [1, n]. Remember that a top-k
query selects a predicate q ∈ Q and a weight function
w ∈ W. In other words, the query result is a function of
q and w. Since |Q| or |W| may be very large, the number
of possible queries can be unbounded, but even so, it is
possible that the number of distinct top-k results may
be much smaller. In particular, if that number is always
bounded by nO(1) for any input dataset D ⊆ D of size
n (regardless of k), we say that the triplet (D,Q,W) is
polynomially bounded.

Rahul and Tao established3 the following in [27]:

THEOREM 3. Fix a polynomially bounded triplet of
(D,Q,W), and a set D ⊆ D of size n. Suppose that there
is a structure on D that uses Spri(n) space, and answers
3Strictly speaking, [27] proved the theorem only for problems
with |W| = 1. However, the proof can be adapted to cover
all polynomially bounded problems under the formulation in
Section 2.1.

a prioritized query in Qpri(n) + O(t) time, where t is
the number of reported elements, such that

• Spri(n) is geometrically converging, and

• Qpri(n) = Ω(log n).

Then, there is a top-k index of space Stop(n) and query
time Qtop(n) +O(k) with

Stop(n) = O(Spri(n))

Qtop(n) = O

(
Qpri(n) ·

log n

log
Qpri (n)
logn

)
.

The proof in [27], which is technically involved and
omitted from this article, shows how to construct a top-k
index in the theorem using nO(1) expected time, where
the constant power depends on the underlying problem.

Note that all complexities in Theorem 3 hold in the
worst case. For Qpri(n) = ω(log n), Qtop(n) is actu-
ally o(Qpri(n) · log n), namely, the deterioration fac-
tor with respect to Qpri(n) is o(log n). As an exam-
ple, if Qpri(n) = Ω(log1+ǫ n) for any positive constant
ǫ > 0, it holds that Qtop(n) = O(Qpri(n) · logn

log logn).
For Qpri(n) = Ω(nǫ), the deterioration factor is O(1),
as mentioned earlier.

Polynomial boundedness is a property of many top-k
problems. One example is the linear ranking problem
defined in Section 2.2 under any constant dimensional-
ity d. As explained in Section 4.2, the corresponding
prioritized query of this problem is known as halfspace
reporting. For d ≥ 4, Afshani and Chan [2] described
a structure of O(n) space that answers any halfspace
reporting query in Õ(n1−1/⌊d/2⌋)+O(t) time where t is
the number of points reported. Immediately, Theorem 3
guarantees a top-k index of O(n) space that answers a
top-k query in Õ(n1−1/⌊d/2⌋) +O(k) time.

7. BEYOND THIS ARTICLE
We have reviewed only a small portion of the existing

work on the class of top-k problems formulated in Sec-
tion 2.1. Efficient indexes have been developed for the
top-k versions of many traditional reporting problems,
e.g., orthogonal range reporting [1, 7, 8, 25, 26, 30, 31],
halfspace reporting [25, 27], rectangle stabbing [9, 27],
and so on. The design of those indexes harbors numerous
inspiring ideas which unfortunately cannot be included
in this article.

Another non-trivial direction that has received signif-
icant development is the theory of top-k indexes in the
external memory (EM) model [1,7,26,27,30,31]. Closely
relevant to database systems, this model is widely used
to study the behavior of I/O-oriented algorithms, whose
performance bottlenecks lie in the data exchanges be-
tween different levels of the memory hierarchy — e.g.,

SIGMOD Record, June 2019 (Vol. 48, No. 2) 15

between the main memory and the disk — rather than
in CPU computation. Specifically, in the EM model, a
machine is equipped with M words of memory, and a
disk that has been formatted into blocks of B words each.
An I/O either reads a disk block into memory, or writes
B words of memory into a disk block. CPU operations
can be performed only on the data in memory. The time
of an algorithm is measured in the number of I/Os per-
formed (CPU computation is for free), while the space
of a structure is measured in the number of disk blocks
occupied. A “good” top-k index on an input dataset of
size n should consume Õ((n/B)) space, and answer a
query in Qtop(n,B) +O(k/B) I/Os, where Qtop(n,B)
is a slow-growing function of n and B. Many of the
techniques discussed in this article can be adapted to
work in EM. In particular, see [26] for the counterpart of
Theorem 1, and [27] for the counterparts of Theorems 2
and 3.

Finally, it is worth pointing out that the theory com-
munity has studied other top-1 or top-k problems that do
not fit directly into the formulation in Section 2.1, e.g.,
problems on text retrieval [5,18,20,22,23,29], uncertain
data [3, 4, 32], colored reporting [28], etc.

8. FUTURE WORK DIRECTIONS
We conclude this article by mentioning four directions

for future research:

• Direction 1: Resolve the conjecture that the prior-
itized query is as hard as the corresponding top-k
query. Currently, there is an O(log n) gap in the
query cost between the two (see Theorem 3). If
this gap could be closed, we would have the sur-
prising fact that every top-k problem in the class
formulated in Section 2.1 is essentially the same
as its prioritized version in terms of space-query
tradeoff.

• Direction 2: Obtain a high-probability version of
Theorem 2. The guarantees in that theorem cur-
rently hold in expectation only. Can we make
them hold with a high probability (e.g., at least
1− 1/n2)?

• Direction 3: Fast construction of a top-k index in
Theorem 3. As mentioned in Section 6, currently
it takes nO(1) expected time to build a top-k index
with the guarantees stated in the theorem, which
limits the theorem’s applicability in practice. Can
we reduce the cost to Õ(n), provided that the given
prioritized structure can be built in Õ(n) time?

• Direction 4: Study individual top-k problems with
significant importance in practice. The top-k per-
spective in Section 2.1 offers motivation for study-
ing prioritized queries some of which otherwise

would not appear sufficiently important to justify
serious research efforts. On good example is top-
k halfspace reporting, whose prioritized query is
the following problem. We are given a set D of
points in Rd, each of which is associated with a
real-valued weight. Given a halfspace q in Rd and
a real value τ , a query returns all the points in D∩q
whose weights are at least τ . The challenge is to
preprocess D into a structure that can answer any
such query efficiently. As a particularly interesting
question, for d = 2, can we obtain a structure of
O(n) space that answers a query in O(log n + t)
time, where t is the number of points reported?

9. REFERENCES
[1] Peyman Afshani, Gerth Stolting Brodal, and

Norbert Zeh. Ordered and unordered top-k range
reporting in large data sets. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 390–400, 2011.

[2] Peyman Afshani and Timothy M. Chan. Optimal
halfspace range reporting in three dimensions. In
Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 180–186,
2009.

[3] Pankaj K. Agarwal, Boris Aronov, Sariel
Har-Peled, Jeff M. Phillips, Ke Yi, and Wuzhou
Zhang. Nearest-neighbor searching under
uncertainty II. ACM Transactions on Algorithms,
13(1):3:1–3:25, 2016.

[4] Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos,
and Subhash Suri. Range-max queries on uncertain
data. Journal of Computer and System Sciences
(JCSS), 94:118–134, 2018.

[5] Iwona Bialynicka-Birula and Roberto Grossi.
Rank-sensitive data structures. In String
Processing and Information Retrieval (SPIRE),
pages 79–90, 2005.

[6] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt,
Ronald L. Rivest, and Robert Endre Tarjan. Time
bounds for selection. Journal of Computer and
System Sciences (JCSS), 7(4):448–461, 1973.

[7] Gerth Stolting Brodal. External memory
three-sided range reporting and top-k queries with
sublogarithmic updates. In Proceedings of
Symposium on Theoretical Aspects of Computer
Science (STACS), pages 23:1–23:14, 2016.

[8] Gerth Stolting Brodal, Rolf Fagerberg, Mark
Greve, and Alejandro Lopez-Ortiz. Online sorted
range reporting. In International Symposium on
Algorithms and Computation (ISAAC), pages
173–182, 2009.

[9] Timothy Chan, Yakov Nekrich, Saladi Rahul, and
Konstantinos Tsakalidis. Orthogonal point location

16 SIGMOD Record, June 2019 (Vol. 48, No. 2)

and rectangle stabbing queries in 3-d. In
Proceedings of International Colloquium on
Automata, Languages and Programming (ICALP),
pages 31:1–31:14, 2018.

[10] Bernard Chazelle. A functional approach to data
structures and its use in multidimensional
searching. SIAM Journal of Computing,
17(3):427–462, 1988.

[11] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press,
2001.

[12] David P. Dobkin and David G. Kirkpatrick. A
linear algorithm for determining the separation of
convex polyhedra. J. Algorithms, 6(3):381–392,
1985.

[13] Jeff Erickson. Better lower bounds for halfspace
emptiness. In Proceedings of Annual IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 472–481, 1996.

[14] Ronald Fagin. Combining fuzzy information from
multiple systems. Journal of Computer and System
Sciences (JCSS), 58(1):83–99, 1999.

[15] Ronald Fagin, Amnon Lotem, and Moni Naor.
Optimal aggregation algorithms for middleware. J.
Comput. Syst. Sci., 66(4):614–656, 2003.

[16] Greg N. Frederickson. An optimal algorithm for
selection in a min-heap. Information and
Computation, 104(2):197–214, 1993.

[17] Travis Gagie, Simon J. Puglisi, and Andrew Turpin.
Range quantile queries: Another virtue of wavelet
trees. In String Processing and Information
Retrieval (SPIRE), pages 1–6, 2009.

[18] Wing-Kai Hon, Rahul Shah, Sharma V.
Thankachan, and Jeffrey Scott Vitter.
Space-efficient frameworks for top-k string
retrieval. Journal of the ACM (JACM),
61(2):9:1–9:36, 2014.

[19] Ihab F. Ilyas, George Beskales, and Mohamed A.
Soliman. A survey of top-k query processing
techniques in relational database systems. ACM
Computing Surveys, 40(4):11:1–11:58, 2008.

[20] Marek Karpinski and Yakov Nekrich. Top-k color
queries for document retrieval. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 401–411, 2011.

[21] Edward M. McCreight. Priority search trees. SIAM
Journal of Computing, 14(2):257–276, 1985.

[22] S. Muthukrishnan. Efficient algorithms for
document retrieval problems. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 657–666, 2002.

[23] Gonzalo Navarro and Yakov Nekrich.
Time-optimal top-k document retrieval. SIAM

Journal of Computing, 46(1):80–113, 2017.
[24] Manish Patil, Sharma V. Thankachan, Rahul Shah,

Yakov Nekrich, and Jeffrey Scott Vitter.
Categorical range maxima queries. In Proceedings
of ACM Symposium on Principles of Database
Systems (PODS), pages 266–277, 2014.

[25] Saladi Rahul and Ravi Janardan. A general
technique for top-k geometric intersection query
problems. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 26(12):2859–2871,
2014.

[26] Saladi Rahul and Yufei Tao. On top-k range
reporting in 2d space. In Proceedings of ACM
Symposium on Principles of Database Systems
(PODS), pages 265–275, 2015.

[27] Saladi Rahul and Yufei Tao. Efficient top-k
indexing via general reductions. In Proceedings of
ACM Symposium on Principles of Database
Systems (PODS), pages 277–288, 2016.

[28] Biswajit Sanyal, Prosenjit Gupta, and Subhashis
Majumder. Colored top-k range-aggregate queries.
Information Processing Letters (IPL),
113(19-21):777–784, 2013.

[29] Rahul Shah, Cheng Sheng, Sharma V. Thankachan,
and Jeffrey Scott Vitter. Top-k document retrieval
in external memory. In Proceedings of European
Symposium on Algorithms (ESA), pages 803–814,
2013.

[30] Cheng Sheng and Yufei Tao. Dynamic top-k range
reporting in external memory. In Proceedings of
ACM Symposium on Principles of Database
Systems (PODS), pages 121–130, 2012.

[31] Yufei Tao. A dynamic I/O-efficient structure for
one-dimensional top-k range reporting. In
Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 256–265, 2014.

[32] Ke Yi, Feifei Li, George Kollios, and Divesh
Srivastava. Efficient processing of top-k queries in
uncertain databases with x-relations. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 20(12):1669–1682, 2008.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 17

False News On Social Media: A Data-Driven Survey

Francesco Pierri
Politecnico di Milano

Dipartimento di Elettronica, Informazione e
Bioingegneria

francesco.pierri@polimi.it

Stefano Ceri
Politecnico di Milano

Dipartimento di Elettronica, Informazione e
Bioingegneria

stefano.ceri@polimi.it

ABSTRACT
In the past few years, the research community has ded-
icated growing interest to the issue of false news cir-
culating on social networks. The widespread attention
on detecting and characterizing deceptive information
has been motivated by considerable political and social
backlashes in the real world. As a matter of fact, social
media platforms exhibit peculiar characteristics, with re-
spect to traditional news outlets, which have been partic-
ularly favorable to the proliferation of false news. They
also present unique challenges for all kind of potential
interventions on the subject.

As this issue becomes of global concern, it is also
gaining more attention in academia. The aim of this
survey is to offer a comprehensive study on the recent
advances in terms of detection, characterization and mit-
igation of false news that propagate on social media, as
well as the challenges and the open questions that await
future research on the field. We use a data-driven ap-
proach, focusing on a classification of the features that
are used in each study to characterize false information
and on the datasets used for instructing classification
methods. At the end of the survey, we highlight emerg-
ing approaches that look most promising for addressing
false news.

1. INTRODUCTION
This section serves as an introduction to the topic

of false news on social media; we provide some ter-
minology, describe the social media platforms where
false news are most widespread, overview psycho-
logical and social factors that are involved, discuss
some of the effects on the real world and some open
challenges. Finally, we discuss the focus of our sur-
vey in comparison with other existing surveys.

1.1 Terminology
In recent years, the terms false news and fake

news have been broadly and interchangeably used
to indicate information which can take a variety
of flavors: disinformation, misinformation, hoaxes,

propaganda, satire, rumors, click-bait and junk news.
We provide next a list of the definitions encountered
in the literature, which is by no means exhaustive.
While there is common agreement that these terms
indicate deceptive information, we believe that an
agreed and precise definition is still missing.

Some researchers define false news as news arti-
cles that are potentially or intentionally misleading
for the readers, as they are verifiable and deliber-
ately false [3, 63]. They can represent fabricated
information which mimics traditional news content
in form, but not in the intent or the organizational
process [32]. It has been highlighted how the neol-
ogism fake news is usually employed with a politi-
cal connotation with respect to the more traditional
false news [32, 76].

Misinformation is defined as information that
is inaccurate or misleading [32]. It could spread un-
intentionally [14] due to honest reporting mistakes
or incorrect interpretations [22, 13]. In contrast,
disinformation is false information that is spread
deliberately to deceive people [32] or promote bi-
ased agenda [74].

Similarly to disinformation, hoaxes are inten-
tionally conceived to deceive readers; qualitatively,
they are described as humorous and mischievous (as
defined in The Oxford English Dictionary) [31].

Satirical news are written with the primary pur-
pose of entertaining or criticizing the readers, but
similarly to hoaxes they can be harmful when shared
out of context [8, 54]. They are characterized by hu-
mor, irony and absurdity and they can mimic gen-
uine news [55].

Propaganda is defined as information that tries
to influence the emotions, the opinions and the ac-
tions of target audiences by means of deceptive, se-
lectively omitted and one-sided messages. The pur-
pose can be political, ideological or religious [74,
73].

Click-bait is defined as low quality journalism
which is intended to attract traffic and monetize

18 SIGMOD Record, June 2019 (Vol. 48, No. 2)

via advertising revenue [74].
The term junk news is more generic and it ag-

gregates several types of information, from propa-
ganda to hyper-partisan or conspiratorial news and
information. It usually refers to the overall content
that pertains to a publisher rather than a single ar-
ticle [79].

Finally, we came across several different defini-
tions for rumor. Briefly, a rumor can be defined as
a claim which did not originate from news events
and that has not been verified while it spreads from
one person to another [66, 3, 63]. As there exists
a huge literature on the subject, we refer the inter-
ested reader to [82] for an extensive review.

1.2 Social media platforms as news outlets
The appearance of false news on news outlets is

by no means a new phenomenon: in 1835 a series
of articles published on the New York Sun, known
as the Great Moon Hoax, described the discovery of
life on the moon [3]. Nowadays the world is expe-
riencing much more elaborated hoaxes; social me-
dia platforms have favored the proliferation of false
news with much broader impact.

Most of nowadays news consumption has shifted
towards online social media, where it is more com-
fortable to ingest, share and further discuss news
with friends or other readers [19, 65, 63]. As pro-
ducing content online is easier and faster, barriers
for entering online media industry have dropped
[3]. This has conveyed the dissemination of low
quality news, which reject traditional journalistic
standards and lack of third-party filtering and fact-
checking [3]. These factors, together with a de-
cline of general trust and confidence in traditional
mass media, are the primary drivers for the explo-
sive growth of false news on social media [3, 32].

Two main motivations have been proposed as to
explain the rise of disinformation websites: 1) a pe-
cuniary one, where viral news articles draw signifi-
cant advertising revenue and 2) a more ideological
one, as providers of false news usually aim to influ-
ence public opinion on particular topics [3]. Besides,
the presence of malicious agents such as bots and
trolls has been highlighted as another major cause
to the spreading of misinformation [60, 30].

We refer the interested reader to [3] for an ex-
tensive analysis of various factors explaining the
spreading of false news in social media platforms.

1.3 Human factors
Aside from the technical aspects of social net-

work platforms, the research community has lever-
aged a set of psychological, cognitive and social as-

pects which are considered as key contributors to
the proliferation of false news on social media.

Humans have no natural expertise at distinguish-
ing real from false news [63, 31]. Two major psycho-
logical theories explain this difficulty, respectively
called naive realism and the confirmation bias.
The former refers to the tendency of users to believe
that their view is the only accurate one, whereas
those who disagree are biased or uninformed [50].
The latter, also called selective exposure, is the in-
clination to prefer (and receive) information which
confirms existing views [39]. As a consequence, pre-
senting factual information to correct false beliefs is
usually unhelpful and may increase misperception
[40].

Some studies also mention the importance of so-
cial identity theory [5] and normative social
influence [4]; accordingly, users tend to perform
actions which are socially safer, thus consuming and
spreading information items that agree with the
norms established within the community.

All these factors are related to a certain extent
to the well-known echo chamber (or filter bubble)
effect, which gives rise to the formation of homo-
geneous clusters where individuals are similar peo-
ple, that share and discuss similar ideas. These
groups are usually characterized by extremely po-
larized opinions as they are insulated from opposite
views and contrary perspectives [67, 66, 42]; it has
been shown that these close-knit communities are
the primary driver of misinformation diffusion [10].

Social technologies amplify these phenomena as
a result of algorithmic bias, as they promote per-
sonalized content based on the preferences of users
with the unique goal of maximizing engagement [32,
14].

1.4 Effects on the real world
We can explain the explosive growth of attention

on false news in light of a series of striking effects
that the world has recently experienced.

Politics indeed accounts for most of the atten-
tion on false news, as highlighted in [76]. The 2016
US presidential elections have officially popularized
the term fake news to the degree that it has been
suggested that Donald Trump may not have been
elected president were it not for the effects of false
news (and the alleged interference of Russian trolls)
[3]. Likewise, recent studies have shown that false
news have also impacted 2016 UK Brexit referen-
dum [26] and the 2017 France presidential elections
[15].

Over and above we may recall the finance stock
crisis caused by a false tweet concerning president

SIGMOD Record, June 2019 (Vol. 48, No. 2) 19

Obama [49], the shootout occurred in a restaurant
as a consequence of the Pizzagate fake news [63]
and the diffused mistrust towards vaccines during
Ebola and Zika epidemics [16, 36].

1.5 Challenges
We mention here a few challenges which charac-

terize the fight against false news on social media,
as highlighted by recent research on the subject.

Firstly, false news are deliberately created to de-
ceive the readers and to mimic traditional news out-
lets, resulting in an adversarial scenario where it
is very hard to distinguish true news articles from
false ones [63, 60].

Secondly, the rate and the volumes at which
false news are produced overturn the possibility to
fact-check and verify all items in a rigorous way, i.e.
by sending articles to human experts for verification
[60]. This also raises concern on developing tools
for the early detection of false news as to prevent
them from spreading in the network [33].

Finally, social media platforms impose limitations
[61] on the collection of public data and as of today
the community has produced very limited training
datasets, which typically do not include all the in-
formation relative to false news.

1.6 Survey Focus
Aside from a few works appeared in 2015 and

2016 [8, 55, 54], we build our survey with a focus on
the last two years, as most of the research on false
news has developed in 2017 and 2018. Moreover,
we concentrate on a few social networks which at-
tracted most of the research focus: Twitter, Face-
book and Sina Weibo1. This is mainly due to the
public availability of data and the existence of pro-
prietary application programming interfaces (API)
which ease the burden of collecting data. As a fi-
nal remark, we considered works covering solely the
English language, as this is the prominent approach
in the field.

Since our analysis is focused on the aforemen-
tioned social media, issues concerning false news on
collaborative platforms such as Wikipedia and
Yelp (namely fake reviews, spam detection, etc.)
are out of the scope of this survey; we thus refer
the reader to [30] for an overview of related re-
search. We suggest [34] for a comprehensive review
of the research that focuses, instead, on rumors
detection and resolution, as we observed that
many aspects are shared with our subject. Auto-
mated fact-checking is another related topic; it
1A popular Chinese microblogging website which is a
hybrid between Facebook and Twitter.

deals with verification rather than search of false
news on social media, and we refer the interested
reader to [69]. Finally, we suggest [16] to the read-
ers who may be interested in the research on social
bots.

2. PROBLEM FORMULATION AND
METHODOLOGY

Our presentation of research about false news on
social media is divided into three parts. We first
describe a huge body of works whose objective is
to detect false news, then we describe works that
explain the models of diffusion of false news and
finally works that attempt to mitigate their effects.

We start our survey by considering a variegated
landscape of research contributions which focus on
the detection of false news. Their taxonomy, pre-
sented in Table 1, is based on two aspects: employed
technique and considered features.

The problem has been traditionally formulated
as a supervised binary classification problem, start-
ing with datasets consisting of labeled news articles,
related tweets and Facebook posts which allow to
capture different features, from content based ones
(text, image, video) to those pertaining to the social
context (diffusion networks, users’ profile, metadata)
and, in some cases, to external knowledge bases
(Wikipedia, Google News). Labels carrying the clas-
sification into true and false news are typically ob-
tained via fact-checking organizations or by manual
verification of researchers themselves. Appendix A
comparatively describes the datasets used as ground
truth for false news classification.

For what concerns the classification method, a
wide range of techniques are used, from traditional
machine learning (Logistic Regression, Support Vec-
tor Machines, Random Forest) to deep learning (Con-
volutional and Recurrent Neural Networks) and to
other models (Matrix Factorization, Bayesian Infer-
ence).

Section 4 describes the literature which focuses on
the characterization of misinformation spreading
on social media. This is achieved by reconstructing
the diffusion networks pertaining to false news, as
resulting from multiple users’ interactions on the
platforms.

Finally, Section 5 presents a few works which
tackle the problem of mitigation against false news
on social media, following recent announcements
from major platforms to favor crowd-sourcing ini-
tiatives against malicious information [27].

3. FALSE NEWS DETECTION
We approach these methods by starting from those

20 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Machine Learning Deep Learning Other techniques

Content features

Wang et al (2017) [76]
Horne et al. (2017) [24]

Perez-Rosas et al. (2018) [46]
Potthast et al. (2018) [44]
Fairbanks et al. (2018) [12]

Baird et al. (2017) [6]
Hanselowski et al. (2017) [20]

Riedel et al. (2017) [50]
Wang et al (2017) [76]
Popat et al. (2018) [46]

Fairbanks et al. (2018) [12]
Hosseinimotlagh et al. (2018) [25]

Context features Tacchini et al. (2017) [67]

Volkova et al. (2017) [73]
Wang et al. (2018) [77]
Wu et al. (2018) [79]
Liu et al. (2018) [32]

Tacchini et al. (2017) [67]
Wang et al. (2018) [77]
Yang et al. (2019) [80]

Content and context
features

Shu et al. (2019) [63]
Volkova et al. (2018) [72]

Ruchansky et al. (2017) [55]
Volkova et al. (2018) [72]

Shu et al. (2019) [63]

Table 1. Comparative description of twenty studies for false news detection, in terms of method and consid-
ered features.

contributions which focus only on content-based fea-
tures; we next describe contributions which consider
only the social context and finally those that con-
sider both aspects.

3.1 Content-based
In this section we consider research contributions

which are content-based, meaning that they ana-
lyze solely the textual content of news articles, e.g.
body, title, source.

Stance detection as a helpful first step towards
fake news detection was introduced during the 2017
Fake News Challenge Stage 12 (FNC-1) organized
by D. Pomerleau et al. (2017) [46] (cf. A.5). The
goal was to classify the stance of an entire news
article relative to its headline, i.e. document-level
stance detection. Neural networks are employed
by three top-performing systems, respectively Talos
(Baird et al. (2017) [6]), Athene (Hanselowski et al.
(2017) [20]) and UCL Machine Reading (Baird et
al. (2017) [51]). These models rely on a combi-
nation of lexical features, including Bag-of-Words,
topic modeling and word similarity features. An
extensive analysis of these approaches, with experi-
ments on their ability to generalize on unseen data,
is provided by Hanselowski et al. (2018) [21].

Wang et al. (2017) [77] consider a multi-label
classification task on the Liar dataset (cf. A.9),
one of the first datasets introduced in the litera-
ture. This includes several textual and metadata
features, such as the speaker affiliation or the source
newspaper, and labels are based on the six degrees
of truth provided by the PolitiFact3 fact-checking
organization. They solve the classification problem
by considering several machine learning and deep
learning methods, from logistic regression to convo-
lutional and recurrent neural networks.

A deep textual analysis is carried out in Horne
2http://www.fakenewschallenge.org
3https://www.politifact.com/

at al. (2017) [24], where authors examine the body
and title (cf. A.1) of different categories of news ar-
ticles (true, false and satire), extracting complexity,
psychological and stylistic features. They highlight
the relevance of each aspect in distinct classifica-
tion tasks, using a linear Support Vector Machine
(SVM), finally inferring that real news are substan-
tially different from false news in title whereas satire
and false news are similar in content. They also ap-
ply the Elaboration Likelihood Model [41] to news
categories, and suggest that consuming false news
requires little energy and cognition, making them
more appealing to the readers.

A neural network model is also presented by Popat
et al. (2018) [47], who build a framework to classify
true and false claims, and also provide self-evidence
for the credibility assessment. They evaluate their
model against some state-of-the-art techniques on
different collections of news articles (cf. A.3 and
A.10) and they show examples of explainable re-
sults enabled by the attention mechanism embed-
ded in the model, which highlights the words in the
text that are more relevant for the classification out-
come.

Perez-Rosas et al. (2018) [45] produce a dataset
of false and true news articles (cf. A.4) and consider
different sets of linguistic features (extracted from
the body of news articles) namely ngrams, LIWC
[44], punctuation, syntax and readability. On top
of these features they train a linear SVM classi-
fier, showing different performances depending on
the considered feature. They suggest that compu-
tational linguistics can effectively aide in the process
of automatic detection of false news.

The goal of Potthast et al. (2018) [48] is to assess
the style similarity of several categories of news, no-
tably hyper-partisan, mainstream, satire and false.
The proposed methodology employs an algorithm
called unmasking [29], which is a meta learning ap-
proach originally intended for authorship verifica-

SIGMOD Record, June 2019 (Vol. 48, No. 2) 21

tion. They carry out several experiments comparing
topic and style-based features with a Random For-
est classifier and they conclude that, while hyper-
partisan, satire and mainstream news are well dis-
tinguished, a style-based analysis alone is not effec-
tive for detecting false news.

Fairbanks et al. (2018) [12] also aim to clas-
sify false and true news, using a collection of ar-
ticles gathered from GDELT4); labels are manu-
ally crawled from a fact-checking website5. They
compare two different models, a content-based one
which uses a classifier on traditional textual fea-
tures and a structural method that applies loopy
belief propagation [38] on a graph built from the
link structure of news articles. The conclusions in-
dicate that by modeling just the text content of ar-
ticles it is possible to detect bias, but it not possible
to identify false news.

Hosseini et al. (2018) [25] tackle the problem
of distinguishing different categories of false news
(from satire to junk news), based only on the news
content. They employ the Kaggle dataset (cf. A.8),
where they consider up to six different labels. Their
approach involves a tensor decomposition of docu-
ments which aims to capture latent relationships be-
tween articles and terms and the spatial/contextual
relations between terms. They further use an en-
semble method to leverage multiple decompositions
in order to discover classes with higher homogeneity
and lower outlier diversity. They outperform other
state-of-the-art clustering techniques and are able
to correctly identify all categories of fake news.

3.2 Context-based
Here we describe research contributions which are

(social) context-based in the sense that they focus
on information derived from social interactions be-
tween users, e.g. likes, comment and (re)tweets, as
to detect fake content.

Tacchini et al. (2017) [68] propose a technique
to identify false news on the basis of users who liked
them on Facebook. They collect a set of posts and
users from both conspiracy theories and scientific
pages and they build a dataset where each feature
vector represents the set of users who liked a page.
They eventually compare logistic regression with
a (boolean crowdsourcing) harmonic algorithm for
showing that they are able to achieve high accuracy
with a little percentage of the entire training data.

Volkova et al. (2017) [74] address the problem of
predicting four sub-types of suspicious news: satire,
hoaxes, click-bait and propaganda. They start from
4https://www.gdeltproject.org/
5https://mediabiasfactcheck.com/

a (manually constructed) list of trusted and suspi-
cious Twitter news accounts and they collect a set
of tweets in the period of Brussels bombing in 2016.
They incorporate tweet text, several linguistic cues
(bias, subjectivity, moral foundations) and user in-
teractions in a fused neural network model which
is compared against ad-hoc baselines trained on the
same features. They qualitatively analyze the char-
acteristics of different categories of news observing
the performances of the model.

Wang et al. (2018) [78] propose a multi-modal
neural network model which extracts both textual
and visual features from Twitter and Weibo conver-
sations in order to detect false news items. Inspired
by adversarial settings [18] they couple it with an
event discriminator, which they claim is able to re-
move event-specific features and generalize to un-
seen scenarios, where the number of events is spec-
ified as a parameter. They evaluate the model on
two custom datasets, but they compare it with ad-
hoc baselines which are not conceived for false news
detection.

Wu et al. (2018) [80] instead concentrate on
modelling the propagation of messages carrying ma-
licious items in social networks. Therefore they
build a custom dataset, reflecting both true and
false news, by leveraging the Twitter API and the
fact-checking website Snopes6. They first infer em-
beddings for users from the social graph and in turn
use a neural network model to classify news items.
To this extent they provide a new model to embed
a social network graph in a low-dimensional space
and they construct a sequence classifier, using Long
Short-Term Memory (LSTM) networks [23] to ana-
lyze propagation pathways of messages. They show
that their model performs better than other state-
of-the-art embedding techniques.

Propagation of news items is also taken into ac-
count by Yu et al. (2018) [33], who use a combi-
nation of convolutional and Gated Recurrent Units
(GRU) [7] to model diffusion pathways as multivari-
ate time series, where each point corresponds to the
characteristics of the user retweeting the news, and
perform early detection of false news. The method
is evaluated on two real-world datasets of sharing
cascades (cf. A.11) showing better performances
than other state-of-the-art-techniques, which were
nonetheless originally conceived for rumor resolu-
tion.

The first unsupervised approach to false news de-
tection is provided in Yang et al. (2019a) [81],
where veracity of news and users’ credibility are
treated as latent random variables in a Bayesian
6https://www.snopes.com/

22 SIGMOD Record, June 2019 (Vol. 48, No. 2)

network model, and the inference problem is solved
by means of collapsed Gibbs sampling approach [53].
The method is evaluated on LIAR (cf. A.9) and
BuzzFeedNews (cf. A.1) datasets, performing bet-
ter than other general truth discovery algorithms,
not explicitly designed for false news detection.

3.3 Content and Context-based
In this section we describe research contributions

which consider both news content and the associ-
ated social (context) interactions as to detect mali-
cious information items.

The contribution of Ruchansky et al. (2017) [56]
is a neural network model which incorporates the
text of (false and true) news articles, the responses
they receive in social networks and the source users
that promote them. The model is tested on Twitter
and Weibo sharing cascades datasets (cf. A.11) and
it is evaluated against other techniques conceived
for rumor detection. They finally present an analy-
sis of users behaviours in terms of lag and activity
showing that the source is a promising feature for
the detection.

In Shu et al. (2017) [64] a tri-relationship among
publishers, news items and users is employed in or-
der to detect false news. Overall, user-news interac-
tions and publisher-news relations are embedded us-
ing non-negative matrix factorization [43] and users
credibility scores. Several different classifiers are
built on top of the resulting features and perfor-
mances are evaluated on the FakeNewsNet dataset
(cf. A.6) against other state-of-the-art information
credibility algorithms. Results show that the social
context could effectively be exploited to improve
false news detection.

Volkova et al. (2018) [73] focus on inferring dif-
ferent deceptive strategies (misleading, falsification)
and different types of deceptive news (propaganda,
disinformation, hoaxes). Extending their previous
work [74], they collect summaries, news pages and
social media content (from Twitter) that refer to
confirmed cases of disinformation. Besides tradi-
tional content-based features (syntax and style) they
employ psycho-linguistic signals, e.g. biased lan-
guage markers, moral foundations and connotations,
to train different classifiers (from Random Forests
to neural networks) in a multi-classification setting.
Final results show that falsification strategies are
easier to identify than misleading and that disin-
formation is harder to predict than propaganda or
hoaxes.

3.4 Promising directions
Despite the vast amount of contributions discussed

above, we believe that false news detection requires
a deeper and more structured approach. Several
works appear as academic exercises, not always com-
pared to each other (and often not comparable).
The main problem of most articles is that they achieve
good performance when applied to given input dataset,
but they do not generalize to unseen data. From
our analysis, it seems that methods purely based
upon content analysis work within a limited scope,
whereas context analysis addresses generic actions
(such as liking, commenting, propagating) that gen-
eralize more easily.

Here we highlight most promising approaches among
works reviewed so far. They are also summarized
in Table 2.

Among the articles from Section 3.1, focused on
the content, we cite Perez-Rosas et al. (2018) [45]
for its ability to consider a huge number of linguis-
tic features, highlighting their different weights on
the classification outcome. For such comprehensive
approach, this work outstands on approaches based
solely on news content; but the approach requires
a considerable amount of annotated data (and thus
manual efforts) which may hinder the setup of a
real-world application.

Among the articles from Section 3.2, focused on
the social context, we believe that Liu et al. (2018)
[33] and Wu et al. (2018) [80] are most promis-
ing; they analyzed users’ profiles and online news
sharing cascades. Despite the inherent complexity
of both techniques (and the limited datasets em-
ployed), we argue that a network-based approach
focused on social responses might effectively detect
deceptive information. They opened the way for
new approaches that focus on the models of diffu-
sion of false news on social media, where most of
recent research advances stand as described next.

We finally cite Volkova et al. (2018) [73], among
the articles from Section 3.3 based on both con-
tent and context-based features, for considering ad-
ditional psycho-linguistic signals, e.g. biased lan-
guage markers, moral foundations and connotations,
and inspecting also social responses on Twitter as
to infer different deceptive strategies and types of
malicious information.

4. MODELS OF FALSE NEWS DIFFU-
SION

A first large-scale study on online misinformation
is provided by Del Vicario et al. (2016) [10], who
carry out a quantitative analysis on news consump-
tion relatively to scientific and conspiracy theories
news outlets on Facebook. They leverage the Face-
book Graph API in order to collect a 5-year span

SIGMOD Record, June 2019 (Vol. 48, No. 2) 23

Reference Task Input Data Methodology Results
Perez-Rosas et al.
(2018) [44]

Binary classification of false
and true news articles.

News articles. Linguistic features are extracted from the
article body
(LIWC, punctuation, syntax and readability) as
to train a linear SVM classifier.

Accuracy up to 76%.
Feature ablation study and evaluation of
human performances at detecting false
news.

Liu et al. (2018) [32] Binary classification of false
and true content.

Sharing cascades
on Twitter and
Weibo.

Propagation cascades are modeled as
multivariate time series using users profile
information, and neural networks based on
GRU are used to classify items.

Other baselines are outperformed, with
accuracy up to 92%.
Early detection performance evaluation.

Wu et al. (2018) [79] Binary classification of false
and true content.

Sharing cascades
on Twitter and
Weibo.

The graph of social interactions (between
users) is processed with a low-dimensional
embedding and fed to an LSTM-based
classifier.

Other baselines are outperformed with
F1-score up to 91%.
Performance evaluation in terms of
different training/test size ratio.

Volkova et al. (2018)
[72]

Multi-label classification of
deceptive strategies
(misleading, falsification)
and types (propaganda,
hoaxes, disinformation).

News articles.
News summaries.
Re-tweeting
cascades.

Linguistic features (same as [44] plus word
embeddings, biased language, moral
foundations and connotations) are extracted to
train several classifiers (from Logistic
Regression to neural networks).

﻿The combination of content and moral
foundations and connotations is strongly
predictive, neural networks outperform
other classifiers.

Table 2: A summary of most promising directions for fake news detection.

of all the posts (and user interactions) which be-
long to the aforementioned categories. They ana-
lyze cascades (or sharing trees) in terms of lifetime,
size and edge homogeneity (i.e. an indicator of the
polarization of users involved) and they show that
1) the consumption patterns differ in the two cat-
egories and that 2) the echo chambers (or commu-
nities of interest) appear as the preferential drivers
for the diffusion of content. On top of these results,
they build a data driven percolation model which
accounts for homogeneity and polarization and they
simulate it in a small-world network reproducing
the observed dynamics with high accuracy.

Similarly, a groundbreaking contribution is pro-
vided in Vosoughi et al. (2018) [76], where the en-
tire Twitter universe is explored in order to track
the diffusion of false and true news. Authors build a
collection of links to fact-checking articles (from six
different organizations) which correspond to true,
false and mixed news stories and they accordingly
investigate how these rumors spread on the Twit-
ter network by gathering only tweets that explic-
itly contain the URLs of the articles. The resulting
dataset contains approx. 126000 stories tweeted by
3 million users more than 4.5 million times. A se-
ries of measures are carried out including statisti-
cal and structural indicators of the retweeting net-
works along with sentiment analysis, topic distri-
bution and novelty estimation of the different cat-
egories of news. The final results show that overall
falsehood spread significantly faster, deeper, farther
and broader than the truth in all categories of infor-
mation, with a prominent weight on political news.
Moreover, they observe that false news usually con-
vey a higher degree of novelty and that novel in-
formation is more likely to be shared by users (al-

though they cannot claim this is the only reason
behind the ”success” of misinformation).

A slightly diverse analysis is issued in Shao et
al. (2018a) [61], where authors study the struc-
tural and dynamic characteristics of the core of the
diffusion network on Twitter before and after the
2016 US Presidential Elections. They first illustrate
the implementation and deployment of the Hoaxy
platform [59] which is then employed to gather the
data required for their analysis. They build differ-
ent datasets (relative to a few months before and af-
ter the elections) which correspond to fact-checking
and misinformation articles, i.e. the retweeting net-
work of users that share URLs for related news
items, and they perform a k-core decomposition
analysis to investigate the role of both narratives
in the network. They show that low-credibility ar-
ticles prevail in the core, whereas fact-checking is
almost relegated to the periphery of the network.
They also carry out a network robustness analysis
in order to analyze the role of most central nodes
and guide possible different interventions of social
platforms.

Same authors largely extend previous results in
Shao et al. (2018b) [60], as they carry out a huge
analysis on Twitter in a period of ten months in
2016 and 2017. They aim to find evidence of the
considerable role of social bots in spreading low-
credibility news articles. The Hoaxy [59] platform
is leveraged once again and more than 14 million
tweets, including fact-checking and misinformation
sources, are collected. The Botometer algorithm [9]
is used to assess the presence of social bots among
Twitter users. The results show that bots are ac-
tive especially in the first phase of the diffusion, i.e.
a few seconds after articles are published, and that

24 SIGMOD Record, June 2019 (Vol. 48, No. 2)

although the majority of false articles goes unno-
ticed, a significant fraction tends to become viral.
They also corroborate, to a certain extent, results
provided by Vosoughi et al. (2018) [76]. Moving
on, they highlight bot strategies for amplifying the
impact of false news and they analyze the structural
role of social bots in the network by means of a net-
work dismantling procedure [2]. They finally con-
clude that curbing bots would be an effective strat-
egy to reduce misinformation; using CAPTCHAs
[75] is a simple tool to distinguish bots from hu-
mans, but with undesirable effects to the user ex-
perience of a platform.

Differently from previous works, a study of the
agenda-setting [35] power of false news is instead
accomplished in Vargo et al. (2018) [71], where au-
thors focus on the online mediascape from 2014 to
2016. They leverage a few different agenda-setting
models with a computational approach (collecting
data from GDELT) in order to examine, among
other targets, the influence of false news on real
news reports, i.e. whether and to which extent false
news have shifted journalistic attention in main-
stream, partisan and fact-checking organizations.
To this extent they gather news articles correspond-
ing to partisan and mainstream news outlets as well
as fact-checking organizations and false news web-
sites; they refer to diverse references in the litera-
ture in order to manually construct the list. A net-
work of different events and themes (as identified
in the GDELT database) is built to relate distinct
media and to model time series of (eigenvector) cen-
trality scores [57] in order to carry out Granger
causality tests and highlight potential correlations.
Besides other results, they show that partisan media
indeed appeared to be susceptible to the agendas of
false news (probably because of the elections), but
the agenda setting power of false news–the influence
on mainstream and partisan outlets–is declining.

We described previous works in detail, as we strongly
believe that they provided substantial research con-
tributions to the phenomenon of false news spread-
ing on social media, also due to the wide reach of
large-scale experiments carried out in these stud-
ies. Overall, these approaches have shown that false
news spread deeper, faster, broader and farther than
the truth, with bots and echo chambers playing a
primary role in (dis)information diffusion networks.
They also cautiously suggest possible interventions
which might be put in place by platform govern-
ment bodies in order to curb this malicious phe-
nomenon; nonetheless this can not be easily encour-
aged as it may raise ethical concerns about censor-
ship. As aforementioned, we argue that future re-

search should follow these directions and analyze,
from a network perspective, how social communi-
ties react to online news as to identify malicious
content.

5. FALSE NEWS MITIGATION
Finally, a few potential interventions have been

proposed for reducing the spread of misinformation
on social platforms, from curbing most active (and
likely to be bots) users [60] to leveraging the users’
flagging activity in coordination with fact-checking
organizations. The latter approach is proposed as a
first practical mitigation technique in [27] and [70],
where the goal is to reduce the spread of misinfor-
mation leveraging users’ flagging activity on Face-
book.

Kim et al. (2018) [27] develop CURB, an algo-
rithm to select the most effective stories to send
for fact-checking as to efficiently reduce the spread-
ing of non-credible news with theoretical guaran-
tees; they formulate the problem in the context of
temporal point processes [1] and stochastic differ-
ential equations and they use the Rumors datasets
(A.11) to evaluate it in terms of precision and misin-
formation reduction (i.e. the fraction of prevented
unverified exposures). They show that the algo-
rithm accuracy is very sensitive to the ability of the
crowd at spotting misinformation.

Tschiatschek et al. (2018) [70] also aim to se-
lect a small subset of news to send for verification
and prevent misinformation from spreading; how-
ever, as they remark, with a few differences from
the previous method respectively 1) they learn the
accuracy of individual users rather than considering
all of them equally reliable and 2) they develop an
algorithm which is agnostic to the actual propaga-
tion of news in the network. Moreover, they carry
out their experiments in a simulated Facebook en-
vironment where false and true news are generated
by users in a probabilistic manner. They show that
they are able at once to learn users’ flagging be-
haviour and consider possible adversarial behaviour
of spammer users who want to promote false news.

A different contribution is issued by Vo et al.
(2018) [72], who are the first to examine active
Twitter users who share fact-checking information
in order to correct false news in online discussions.
They incidentally propose a URL recommendation
model to encourage these guardians (users) to en-
gage in the spreading of credible information as
to reduce the negative effects of misinformation.
They use Hoaxy [59] (cf. A.7) to collect a large
number of tweets referring to fact-checking organi-
zations and they analyze several characteristics of

SIGMOD Record, June 2019 (Vol. 48, No. 2) 25

the users involved (activity, profile, topics discussed,
etc). Finally, they compare their recommendation
model, which takes into account the social struc-
ture, against state-of-the-art collaborative filtering
algorithms.

Main social networking platforms, from Facebook
to Twitter, have recently provided to their users
tools to combat disinformation [27], an approach
which seems reasonable enough to tackle the prob-
lem of disinformation without raising censorship alerts.
Resorting to the wisdom of the crowd, as discussed
above, can be effective at identifying malicious news
items and prevent from misinformation spreading
on social networks.

6. CONCLUSIONS
Despite the vast review of literature presented so

far, in agreement with [32] we believe that there
are only a few substantial research contributions,
most of which specifically focus on characterizing
the diffusion of misinformation on social media. It
has been effectively shown that false news spread
faster and more broadly than the truth on social
media, and that social bots and echo chambers play
an important role in the core of diffusion networks.

Although different psycho-linguistic signals de-
rived from textual features are useful for false news
detection, content alone may not be sufficient and
other features, inferred from the social dimension,
should be taken into account in order to distinguish
false news from true news.

The lack of gold-standard agreed datasets and of
research guidelines on the subject has favored the
diffusion of ad-hoc data collections; the related de-
tection techniques share several limitations, as they
do not always compare with each other and do not
explicitly discuss the impact and consequences of
their results.

Nonetheless, the great number of contributions
delivered in the last few years shows that the re-
search community has promptly reacted to the is-
sue, and that can successfully embody previous re-
sults to advance further in the combat against false
news.

Besides the existing challenges highlighted in the
introductory section, we believe that: 1) in light of
recent contributions on the characterization of dis-
information diffusion networks, more insights into
false news detection should be gained from a net-
work perspective; 2) in general, the research com-
munity should coordinate efforts originating from
different areas (from psychology to journalism to
computer science) in a more structured fashion; 3)
future contributions should favor the development

of real-world applications for providing effective help
in the fight against false news.

7. ACKNOWLEDGEMENTS
F.P. and S.C. are supported by the PRIN grant

HOPE (FP6, Italian Ministry of Education). S.C. is
partially supported by ERC Advanced Grant 693174.

8. REFERENCES
[1] O. Aalen, O. Borgan, and H. Gjessing.

Survival and event history analysis: a process
point of view. Springer Science & Business
Media, 2008.

[2] R. Albert, H. Jeong, and A.-L. Barabási.
Error and attack tolerance of complex
networks. Nature, 406(6794):378, 2000.

[3] H. Allcott and M. Gentzkow. Social media
and fake news in the 2016 election. Journal of
Economic Perspectives, 31(2):211–36, 2017.

[4] S. E. Asch and H. Guetzkow. Effects of group
pressure upon the modification and distortion
of judgments. Groups, leadership, and men,
pages 222–236, 1951.

[5] B. E. Ashforth and F. Mael. Social identity
theory and the organization. Academy of
management review, 14(1):20–39, 1989.

[6] S. Baird, D. Sibley, and Y. Pan. Talos targets
disinformation with fake news challenge
victory. Fake News Challenge, 2017.

[7] J. Chung, C. Gulcehre, K. Cho, and
Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555,
2014.

[8] N. J. Conroy, V. L. Rubin, and Y. Chen.
Automatic deception detection: Methods for
finding fake news. In Proceedings of the 78th
ASIS&T Annual Meeting: Information
Science with Impact: Research in and for the
Community, page 82. American Society for
Information Science, 2015.

[9] C. A. Davis, O. Varol, E. Ferrara,
A. Flammini, and F. Menczer. Botornot: A
system to evaluate social bots. In Proceedings
of the 25th International Conference
Companion on World Wide Web, pages
273–274. International World Wide Web
Conferences Steering Committee, 2016.

[10] M. Del Vicario, A. Bessi, F. Zollo, F. Petroni,
A. Scala, G. Caldarelli, H. E. Stanley, and
W. Quattrociocchi. The spreading of
misinformation online. Proceedings of the
National Academy of Sciences,
113(3):554–559, 2016.

26 SIGMOD Record, June 2019 (Vol. 48, No. 2)

[11] L. Derczynski, K. Bontcheva, M. Liakata,
R. Procter, G. W. S. Hoi, and A. Zubiaga.
Semeval-2017 task 8: Rumoureval:
Determining rumour veracity and support for
rumours. In Proceedings of the 11th
International Workshop on Semantic
Evaluation (SemEval-2017), pages 69–76,
2017.

[12] J. Fairbanks et al. Credibility assessment in
the news: Do we need to read? In Proc. of the
MIS2 Workshop held in conjuction with 11th
Int. Conf. on Web Search and Data Mining.
799800., 2018.

[13] D. Fallis. A conceptual analysis of
disinformation. iConference, 2009.

[14] M. Fernandez and H. Alani. Online
misinformation: Challenges and future
directions. In Companion of the The Web
Conference 2018 on The Web Conference
2018, pages 595–602. International World
Wide Web Conferences Steering Committee,
2018.

[15] E. Ferrara. Disinformation and social bot
operations in the run up to the 2017 french
presidential election. First Monday, 22(8),
2017.

[16] E. Ferrara, O. Varol, C. Davis, F. Menczer,
and A. Flammini. The rise of social bots.
Communications of the ACM, 59(7):96–104,
2016.

[17] W. Ferreira and A. Vlachos. Emergent: a
novel data-set for stance classification. In
Proceedings of the 2016 conference of the
North American chapter of the association for
computational linguistics: Human language
technologies, pages 1163–1168, 2016.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza,
B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative
adversarial nets. In Advances in neural
information processing systems, pages
2672–2680, 2014.

[19] J. Gottfried and E. Shearer. News Use Across
Social Medial Platforms 2016. Pew Research
Center, 2016.

[20] A. Hanselowski, P. Avinesh, B. Schiller, and
F. Caspelherr. Description of the system
developed by team athene in the fnc-1. Fake
News Challenge, 2017.

[21] A. Hanselowski, P. Avinesh, B. Schiller,
F. Caspelherr, D. Chaudhuri, C. M. Meyer,
and I. Gurevych. A retrospective analysis of
the fake news challenge stance-detection task.
In Proceedings of the 27th International

Conference on Computational Linguistics,
pages 1859–1874, 2018.

[22] P. Hernon. Disinformation and
misinformation through the internet: Findings
of an exploratory study. Government
Information Quarterly, 12(2):133–139, 1995.

[23] S. Hochreiter and J. Schmidhuber. Long
short-term memory. Neural computation,
9(8):1735–1780, 1997.

[24] B. D. Horne and S. Adali. This just in: fake
news packs a lot in title, uses simpler,
repetitive content in text body, more similar
to satire than real news. arXiv preprint
arXiv:1703.09398, 2017.

[25] S. Hosseinimotlagh and E. E. Papalexakis.
Unsupervised content-based identification of
fake news articles with tensor decomposition
ensembles. In Proc. of the MIS2 Workshop
held in conjuction with 11th Int. Conf. on
Web Search and Data Mining. 799800., 2018.

[26] P. N. Howard and B. Kollanyi. Bots,#
strongerin, and# brexit: computational
propaganda during the uk-eu referendum.
arXiv preprint arXiv:1606.06356, 2016.

[27] J. Kim, B. Tabibian, A. Oh, B. Schölkopf,
and M. Gomez-Rodriguez. Leveraging the
crowd to detect and reduce the spread of fake
news and misinformation. In Proceedings of
the Eleventh ACM International Conference
on Web Search and Data Mining, pages
324–332. ACM, 2018.

[28] B. Kollanyi, P. N. Howard, et al. The junk
news aggregator: Examining junk news
posted on facebook, starting with the 2018 us
midterm elections. arXiv preprint
arXiv:1901.07920, 2019.

[29] M. Koppel, J. Schler, and E. Bonchek-Dokow.
Measuring differentiability: Unmasking
pseudonymous authors. Journal of Machine
Learning Research, 8(Jun):1261–1276, 2007.

[30] S. Kumar and N. Shah. False information on
web and social media: A survey. arXiv
preprint arXiv:1804.08559, To appear in the
book titled Social Media Analytics: Advances
and Applications, by CRC press, 2018, 2018.

[31] S. Kumar, R. West, and J. Leskovec.
Disinformation on the web: Impact,
characteristics, and detection of wikipedia
hoaxes. In Proceedings of the 25th
international conference on World Wide Web,
pages 591–602. International World Wide
Web Conferences Steering Committee, 2016.

[32] D. M. J. Lazer, M. A. Baum, Y. Benkler,
A. J. Berinsky, K. M. Greenhill, F. Menczer,

SIGMOD Record, June 2019 (Vol. 48, No. 2) 27

M. J. Metzger, B. Nyhan, G. Pennycook,
D. Rothschild, M. Schudson, S. A. Sloman,
C. R. Sunstein, E. A. Thorson, D. J. Watts,
and J. L. Zittrain. The science of fake news.
Science, 359(6380):1094–1096, 2018.

[33] Y. Liu and Y.-F. Wu. Early detection of fake
news on social media through propagation
path classification with recurrent and
convolutional networks. AAAI Conference on
Artificial Intelligence, 2018.

[34] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J.
Jansen, K.-F. Wong, and M. Cha. Detecting
rumors from microblogs with recurrent neural
networks. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial
Intelligence, pages 3818–3824. AAAI Press,
2016.

[35] M. McCombs. Setting the agenda: Mass media
and public opinion. John Wiley & Sons, 2018.

[36] J. Millman. The inevitable rise of ebola
conspiracy theories. The Washington Post,
2014.

[37] S. Mukherjee and G. Weikum. Leveraging
joint interactions for credibility analysis in
news communities. In Proceedings of the 24th
ACM International on Conference on
Information and Knowledge Management,
pages 353–362. ACM, 2015.

[38] K. P. Murphy, Y. Weiss, and M. I. Jordan.
Loopy belief propagation for approximate
inference: An empirical study. In Proceedings
of the Fifteenth conference on Uncertainty in
artificial intelligence, pages 467–475. Morgan
Kaufmann Publishers Inc., 1999.

[39] R. S. Nickerson. Confirmation bias: A
ubiquitous phenomenon in many guises.
Review of general psychology, 2(2):175, 1998.

[40] B. Nyhan and J. Reifler. When corrections
fail: The persistence of political
misperceptions. Political Behavior,
32(2):303–330, 2010.

[41] D. J. O’Keefe. Elaboration likelihood model.
The international encyclopedia of
communication, 2008.

[42] E. Pariser. The filter bubble: What the
Internet is hiding from you. Penguin UK,
2011.

[43] V. P. Pauca, F. Shahnaz, M. W. Berry, and
R. J. Plemmons. Text mining using
non-negative matrix factorizations. In
Proceedings of the 2004 SIAM International
Conference on Data Mining, pages 452–456.
SIAM, 2004.

[44] J. W. Pennebaker, R. L. Boyd, K. Jordan,

and K. Blackburn. The development and
psychometric properties of LIWC2015.
Technical report, 2015.

[45] V. Pérez-Rosas, B. Kleinberg, A. Lefevre, and
R. Mihalcea. Automatic detection of fake
news. In Proceedings of the 27th International
Conference on Computational Linguistics,
pages 3391–3401. Association for
Computational Linguistics, 2018.

[46] D. Pomerleau and D. Rao. Fake news
challenge. http://www.fakenewschallenge.org,
2017.

[47] K. Popat, S. Mukherjee, A. Yates, and
G. Weikum. Declare: Debunking fake news
and false claims using evidence-aware deep
learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 22–32, 2018.

[48] M. Potthast, J. Kiesel, K. Reinartz,
J. Bevendorff, and B. Stein. A stylometric
inquiry into hyperpartisan and fake news. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 231–240.
Association for Computational Linguistics,
2018.

[49] K. Rapoza. Can ’fake news’ impact the stock
market? Forbes, 2017.

[50] E. S. Reed, E. Turiel, and T. Brown. Naive
realism in everyday life: Implications for
social conflict and misunderstanding. In
Values and knowledge, pages 113–146.
Psychology Press, 2013.

[51] B. Riedel, I. Augenstein, G. P. Spithourakis,
and S. Riedel. A simple but tough-to-beat
baseline for the fake news challenge stance
detection task. arXiv preprint
arXiv:1707.03264, 2017.

[52] M. Risdal. Fake news dataset.
https://www.kaggle.com/mrisdal/fake-news.
2017.

[53] C. Robert and G. Casella. Monte Carlo
statistical methods. Springer Science &
Business Media, 2013.

[54] V. Rubin, N. Conroy, Y. Chen, and
S. Cornwell. Fake news or truth? using
satirical cues to detect potentially misleading
news. In Proceedings of the Second Workshop
on Computational Approaches to Deception
Detection, pages 7–17, 2016.

[55] V. L. Rubin, Y. Chen, and N. J. Conroy.
Deception detection for news: three types of
fakes. In Proceedings of the 78th ASIS&T
Annual Meeting: Information Science with

28 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Impact: Research in and for the Community,
page 83. American Society for Information
Science, 2015.

[56] N. Ruchansky, S. Seo, and Y. Liu. Csi: A
hybrid deep model for fake news detection. In
Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management,
pages 797–806. ACM, 2017.

[57] B. Ruhnau. Eigenvector centrality: a node
centrality? Social networks, 22(4):357–365,
2000.

[58] G. Santia and J. Williams. Buzzface: A news
veracity dataset with facebook user
commentary and egos. International AAAI
Conference on Web and Social Media, 2018.

[59] C. Shao, G. L. Ciampaglia, A. Flammini, and
F. Menczer. Hoaxy: A platform for tracking
online misinformation. In Proceedings of the
25th International Conference Companion on
World Wide Web, WWW ’16 Companion,
pages 745–750, Republic and Canton of
Geneva, Switzerland, 2016. International
World Wide Web Conferences Steering
Committee.

[60] C. Shao, G. L. Ciampaglia, O. Varol, K.-C.
Yang, A. Flammini, and F. Menczer. The
spread of low-credibility content by social
bots. Nature communications, 9(1):4787, 2018.

[61] C. Shao, P.-M. Hui, L. Wang, X. Jiang,
A. Flammini, F. Menczer, and G. L.
Ciampaglia. Anatomy of an online
misinformation network. PLOS ONE,
13(4):1–23, 04 2018.

[62] K. Shu, D. Mahudeswaran, S. Wang, D. Lee,
and H. Liu. Fakenewsnet: A data repository
with news content, social context and
dynamic information for studying fake news
on social media. arXiv preprint
arXiv:1809.01286, 2018.

[63] K. Shu, A. Sliva, S. Wang, J. Tang, and
H. Liu. Fake news detection on social media:
A data mining perspective. SIGKDD Explor.
Newsl., 19(1):22–36, Sept. 2017.

[64] K. Shu, S. Wang, and H. Liu. Beyond news
contents: The role of social context for fake
news detection. arXiv preprint
arXiv:1712.07709 (2017), to appear in
Proceedings of 12th ACM International
Conference on Web Search and Data Mining
(WSDM 2019).

[65] C. Silverman. This analysis shows how fake
election news stories outperformed real news
on facebook. BuzzFeed,
https://zenodo.org/record/1239675, 2016.

[66] C. Sunstein. On Rumors: How Falsehoods
Spread, Why We Believe Them, What Can Be
Done. New Haven: Yale University Press.
Stowe, 2007.

[67] C. R. Sunstein. Echo chambers: Bush v. Gore,
impeachment, and beyond. Princeton
University Press, 2001.

[68] E. Tacchini, G. Ballarin, M. L. Della Vedova,
S. Moret, and L. de Alfaro. Some like it hoax:
Automated fake news detection in social
networks. arXiv preprint arXiv:1704.07506,
2017.

[69] J. Thorne and A. Vlachos. Automated fact
checking: Task formulations, methods and
future directions. In Proceedings of the 27th
International Conference on Computational
Linguistics, pages 3346–3359, 2018.

[70] S. Tschiatschek, A. Singla,
M. Gomez Rodriguez, A. Merchant, and
A. Krause. Fake news detection in social
networks via crowd signals. In Companion of
the The Web Conference 2018 on The Web
Conference 2018, pages 517–524. International
World Wide Web Conferences Steering
Committee, 2018.

[71] C. J. Vargo, L. Guo, and M. A. Amazeen.
The agenda-setting power of fake news: A big
data analysis of the online media landscape
from 2014 to 2016. New Media & Society,
20(5):2028–2049, 2018.

[72] N. Vo and K. Lee. The rise of guardians:
Fact-checking url recommendation to combat
fake news. In The 41st International ACM
SIGIR Conference on Research &
Development in Information Retrieval, SIGIR
’18, pages 275–284, New York, NY, USA,
2018. ACM.

[73] S. Volkova and J. Y. Jang. Misleading or
falsification: Inferring deceptive strategies and
types in online news and social media. In
Companion Proceedings of the The Web
Conference 2018, WWW ’18, pages 575–583,
2018.

[74] S. Volkova, K. Shaffer, J. Y. Jang, and
N. Hodas. Separating facts from fiction:
Linguistic models to classify suspicious and
trusted news posts on twitter. In Proceedings
of the 55th Annual Meeting of the Association
for Computational Linguistics, volume 2,
pages 647–653, 2017.

[75] L. Von Ahn, M. Blum, N. J. Hopper, and
J. Langford. Captcha: Using hard ai problems
for security. In International Conference on
the Theory and Applications of Cryptographic

SIGMOD Record, June 2019 (Vol. 48, No. 2) 29

Techniques, pages 294–311. Springer, 2003.
[76] S. Vosoughi, D. Roy, and S. Aral. The spread

of true and false news online. Science,
359(6380):1146–1151, 2018.

[77] W. Y. Wang. ” liar, liar pants on fire”: A new
benchmark dataset for fake news detection. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages
422–426, 2017.

[78] Y. Wang, F. Ma, Z. Jin, Y. Yuan, G. Xun,
K. Jha, L. Su, and J. Gao. Eann: Event
adversarial neural networks for multi-modal
fake news detection. In Proceedings of the
24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining,
pages 849–857. ACM, 2018.

[79] S. C. Woolley and P. N. Howard.
Computational Propaganda: Political Parties,
Politicians, and Political Manipulation on
Social Media. Oxford University Press, 2018.

[80] L. Wu and H. Liu. Tracing fake-news
footprints: Characterizing social media
messages by how they propagate. In
Proceedings of the Eleventh ACM
International Conference on Web Search and
Data Mining, pages 637–645. ACM, 2018.

[81] S. Yang, K. Shu, S. Wang, R. Gu, F. Wu, and
H. Liu. Unsupervised fake news detection on
social media: A generative approach. In
Proceedings of 33rd AAAI Conference on
Artificial Intelligence, 2019.

[82] A. Zubiaga, A. Aker, K. Bontcheva,
M. Liakata, and R. Procter. Detection and
resolution of rumours in social media: A
survey. ACM Comput. Surv.,
51(2):32:1–32:36, Feb. 2018.

APPENDIX
A. DATASETS

The research community has produced a rich but
heterogeneous ensemble of data collections for fact
checking, often conceived for similar objectives and
for slightly different tasks. We first introduce the
datasets which are referenced in this survey along
with a short description, the source and the main
references; their features are summarized in Table
2. Next, we present some other interesting datasets.

A.1 BuzzFeedNews
BuzzFeed7 News journalists have produced differ-

ent collections of verified false and true news, shared
7https://www.buzzfeed.com

by both hyperpartisan and mainstream news media
on Facebook in 2016 and 2017; two of them, intro-
duced by Silverman (2016) [65], consist of title and
source of news items and they are used in [81, 24,
58]

A.2 BuzzFeed-Webis
This collection extends the previous one as it also

contains the full content of shared articles with at-
tached multimedia; it is employed in [48].

A.3 DeClare
This dataset contains several articles from Snopes,

PolitiFact and NewsTrust [37] corresponding to both
true and false claims; it is proposed in [47] and used
for false news detection.

A.4 FakeNewsAMT
This collection contains some legitimate articles

from mainstream news, some false news generated
by Amazon Mechanical Turk workers and some false
and true claims from GossipCop8 (a celebrity fact-
checking website); it is introduced in [45] for false
news detection.

A.5 FakeNewsChallenge
This dataset was proposed for the 2017 Fake News

Challenge Stage 1 [46]; it contains thousands of
headlines and documents which have to be classi-
fied in a document-based stance detection task us-
ing 4 different labels (Agree, Discuss, Disagree, Un-
related). It was inspired by [17] where stance de-
tection is instead applied at the level of single sen-
tences. It is employed in [20, 6, 51]; an additional
analysis is provided in [21].

A.6 FakeNewsNet
This dataset contains both news content (source,

body, multimedia) and social context information
(user profile, followers/followee) regarding false and
true articles, collected from Snopes and BuzzFeed
and shared on Twitter; it was presented in [62] and
employed in [64].

A.7 Hoaxy
The Hoaxy platform9 has been first introduced

in [59] and employed in several studies [72, 60, 61]
for different goals; it is continuously monitoring the
diffusion network (on Twitter, since 2016) of news
articles from both disinformation and fact-checking
websites and it allows to generate custom data col-
lections.
8https://www.gossipcop.com
9https://hoaxy.iuni.iu.edu

30 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Content Features Social Context Features Size Labeling Platform Reference

BuzzFeedNews Article title and source Engagement ratings 102 BuzzFeed Facebook [65]

BuzzFeedWebis Full Article - 103 BuzzFeed Facebook [48]

DeClare Fact-checking post - 105
NewsTrust
PolitiFact
Snopes

- [47]

FakeNewsAMT Article text only - 103
Manual
GossipCop

- [45]

FakeNewsChallenge Full article - 103 Manual - [46]

FakeNewsNet Full article Users metadata 103
BuzzFeed
PolitiFact

Twitter [62]

Hoaxy Full article
Diffusion network
Temporal trends
Bot score (for users)

> 106 - Twitter [59]

Kaggle Article text and metadata - 104 BS Detector - [52]

Liar Short statement - 104 PolitiFact - [77]

SemEval-2017 Task8
Full article
Wikipedia articles

Threads (tweets, replies) 104 Manual Twitter [11]

Rumors Fact-checking title
Diffusion network (Twitter)
Original message, replies (Weibo)

104
Snopes
Weibo

Twitter
Sina Weibo

[34]

Table 3. Comparative description of the datasets referenced in this survey.

A.8 Kaggle
This dataset was conceived for a Kaggle false

news detection competition [52] which contains text
and metadata from websites indicated in the BS De-
tector10; it is employed in [25].

A.9 Liar
This is a collection of short labeled statements

from political contexts, collected from PolitiFact,
which serve for false news classification; it first ap-
peared in [77] and it is employed in [81].

A.10 SemEval-2017 Task8
This data collection, composed of tweets and replies

which form specific conversations, was designed for
the specific tasks of stance and veracity resolution
of social media content on Twitter; it is described
in [11] and used in [47].

A.11 Rumors
This dataset was originally conceived for rumor

detection and resolution in Twitter and Sina Weibo;
10https://github.com/bs-detector/bs-detector

introduced in [34], it contains retweet and discus-
sion cascades corresponding to rumors/non-rumors
and it is employed for false news detection and mit-
igation in [56, 27, 33].

A.12 Others
BuzzFace is a novel data collection composed of

annotated news stories that appeared on Facebook
during September 2016; it extends previous Buz-
zFeed dataset(s) (cf. A.1) with comments and the
web-page content associated to each news article;
itjunknews is introduced in [58].

As a complement to Hoaxy (cf. A.7), JunkNewsAg-
gregator is a platform that tracks the spread of
disinformation on Facebook pages; it is described
in [28].

Other datasets point to relevant organizations in
the context of false news: [71] contains a list of false
news outlets as indicated by different fact-checking
organizations, whereas the list of signatories11 of
the International Fact Checking Network’s code of

11https://ifcncodeofprinciples.poynter.org/
signatories

SIGMOD Record, June 2019 (Vol. 48, No. 2) 31

principles is a collector of the main fact-checking
organizations which operate in different countries.
Finally, [3] provides a set of the most shared false
articles identified on Facebook during 2016 US elec-
tions.

32 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Build your own SQL-on-Hadoop Query Engine

A Report on a Term Project in a Master-level Database Course

Stefanie Scherzinger
Ostbayerische Technische Hochschule Regensburg

Regensburg, Germany
stefanie.scherzinger@oth-regensburg.de

ABSTRACT
This is a report on a course taught at OTH Regensburg
in the summer term of 2018. The students in this course
built their own SQL-on-Hadoop engine as a term project
in just 8 weeks. miniHive is written in Python and com-
piles SQL queries into MapReduce workflows. These
are then executed on Hadoop. miniHive performs gene-
ric query optimizations (selection and projection push-
down, or cost-based join reordering), as well as Map-
Reduce-specific optimizations.

The course was taught in English, using a flipped class-
room model. The course material was mainly compiled
from third-party teaching videos. This report describes
the course setup, the miniHive milestones, and gives a
short review of the most successful student projects.

1. MOTIVATION
When taking a big data course at an applied uni-

versity of sciences such as OTH Regensburg, stu-
dents expect a hands-on, coding-intensive experi-
ence. Since the majority of our students pursues
a career in industry, they expect to get in touch
with technology that will be an immediate asset for
their CVs. Currently, this seem to be the Apache
projects HDFS, Hadoop, Hive, and Spark.

Yet to the first-time user, interacting with HDFS
may just feel like a simple file system. “Teaching
HiveQL” is tricky, too: For the student fluent in
SQL, writing first HiveQL queries seems unspectac-
ular. Of course, these first impressions are treacher-
ous, as there are language features in HiveQL that
require a deeper understanding of the MapReduce
data flow (e.g., SORT-BY versus ORDER-BY).

In designing her Master-level course titled “Mod-
ern Database Concepts”, the author of this report
wanted to teach the ideas behind engines like Hive,
as well as the design decisions regarding query lan-
guage constructs.

The students were therefore asked to build mini-
Hive, an SQL-on-Hadoop engine for compiling SQL
queries into MapReduce workflows. miniHive was

designed according to the original presentation of
Hive as a VLDB demo [14] in 2009: This version of
Hive supported no updates, used an internal algebra
to represent query plans, and could perform com-
mon logical optimizations (in particular, selection
and projection pushdown). Back then, all physical
operators were implemented as MapReduce jobs.
As a MapReduce-specific optimization, Hive merges
jobs using a technique called chain folding [11].

Among the 60 students taking the final exam,
25 students built a working SQL-on-Hadoop engine,
which compiles SQL queries, performs generic log-
ical optimizations, and executes them on Apache
Hadoop. This is impressive insofar as the term
project was optional, and stretched over just 8 weeks.
Moreover, 11 submissions of miniHive also imple-
mented chain folding among further optimizations.

Structure. In the following, we describe the course
and its term project. Section 2 outlines the develop-
ment of miniHive in four milestones, as well as how
the students then perceived working with Apache
Hive and Apache Spark. Section 3 describes the
testbed and evaluation. Section 4 concludes.

2. THE FOUR MILESTONES
In “flipping” the course, the instructor relied on

students to prepare the required theory on their
own. Each week, they were assigned videos or book
chapters. While studying the material, they an-
swered a set of questions and submitted their an-
swers online, prior to class. Since the students were
allowed to take these notes into the final exam as
reference material, they were motivated to diligently
compile their answers.

During the weekly classroom sessions, the instruc-
tor and the students revised the prepared notes to-
gether, and worked on paper-based exercises to prac-
tice and apply the material.

During the lab sessions and in the students’ own
time, miniHive was built with Python 3.6 in four
successive milestones. The deadlines for submitting

SIGMOD Record, June 2019 (Vol. 48, No. 2) 33

the milestones were spaced two weeks apart, which
admittedly, is a sporty pace. Milestone specifica-
tions came with unit tests that submissions had to
pass. Successful submissions were awarded bonus
points that counted towards the exam.1

We now describe the scope of each milestone,
the required material for self-study, and the coding
challenges, in turn. We then report on our obser-
vations how students interacted with Apache Hive
and Spark, having already built miniHive.

2.1 Compiling SQL to Relational Algebra
Scope: In the first milestone, the students im-
plemented the canonical translation of conjunctive
SQL queries into relational algebra. In particular,
we support the fragment of queries of the form

SELECT DISTINCT 〈 list of attributes to select 〉
FROM 〈 list of relation names 〉

[WHERE 〈 condition 〉]

where the condition is a conjunction of atomic
equality conditions. Different from Hive, miniHive
does not support nested relations. The translation
into an equivalent relational algebra expression was
intended as a warm-up exercise for students new
to Python. For instance, the following query over
Jennifer Widom’s pizza scenario [7] produces the
ages of all persons who eat mushroom pizza:

SELECT DISTINCT P.age
FROM Person P, Eats E
WHERE P.name = E.name AND E.pizza = 'mushroom'

The compilation of this query into relational al-
gebra is by the book. Below, we make use of the
straightforward syntax of the radb interpreter for
relational algebra [15]. This interactive interpreter
was written by Jun Yang from Duke University and
is a great teaching tool.

\project_{P.age}
\select_{P.name = E.name and E.pizza = 'mushroom'}
(\rename_{P:*}(Person) \cross \rename_{E:*}(Eats))

Several MapReduce-specific algebras have been
proposed that provide powerful operators, e.g. [13].
However, this author chose to settle with traditional
relational algebra, which is taught as part of the un-
dergraduate database course at OTH Regensburg.

Independent Study: In advance, students taught
themselves Python with a free course offered on
the Udacity MOOC platform [10]. Moreover, they

1Examination regulations at OTH Regensburg for this
course require that the final grade is determined by a
written exam. They further prohibit that the final grade
is earned in part by an assignment. Thus, bonus points
are our incentive for students to write code.

watched Jennifer Widom’s video lectures for a re-
fresher on relational algebra, offered on Stanford’s
MOOC platform Lagunita [7]. This teaching unit
comes with interactive exercises that use the very
same radb syntax as above.

The video lectures were to be completed over the
first four weeks of the semester. The author took
great care in choosing appealing material. Indeed,
in the course evaluation, several students stated
that they very much enjoyed taking these altogether
excellent online courses.

Coding: The students then set out to compile SQL.
As a query parser, they used the Python module
sqlparse [1]. With over 50 contributors and over
1,600 stars on GitHub, this is a popular SQL parser.

As datastructures to represent relational algebra
queries, the students simply used the Python classes
declared within the radb source code [15].

2.2 Selection Pushdown
Scope: In the second milestone, the students per-
formed selection pushing on the relational algebra
queries, and translated cross products into joins,
where possible. For this milestone, a data dictio-
nary was provided. Selection pushing is also a key
feature in first public release of Hive, as described
in [14], whereas projection pushing, also included
in the first release of Hive, was left as an optional
feature for the final milestone.

In the example from before, this yields the fol-
lowing equivalent query in radb syntax:

\project_{P.age}
(\rename_{P:*}(Person) \join_{P.name = E.name}
(\select_{E.pizza = 'mushroom'}
\rename_{E:*}(Eats)))

Independent Study: For the theory on logical
query optimization (selection and projection push-
down, as well as cost-based join reordering), the
students followed parts of Jens Dittrich’s flipped
database course, which comes complete with in-
class quizzes and exercises [3]. This material covers
more than what is necessary for milestone 3, but is
also a basis for the final milestone, where students
could choose which optimizations to implement.

Coding: Coding for this milestone mainly involved
recursive rewriting of the relational algebra trees.
This gave the students the opportunity to familiar-
ize themselves with the radb module.

2.3 A First Physical Query Plan
Scope: In the third milestone, logical operators
were mapped to physical, MapReduce-based oper-
ators. The output is a tree-shaped workflow of

34 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Figure 1: Naive physical query plan: Each
node implements a single operator.

Figure 2: Plan after chain folding.

MapReduce jobs. Figure 1 shows the physical query
plan for our running example. The data flow is
from bottom to top. Renaming and selection can
be realized as Map-only jobs. In the syntax used
in this figure, this is denoted as “Map: [ρE]” and
“Map: [σE.pizza='mushroom']” respectively, where we
first specify the type of the function (either Map
or Reduce), and then state the relational algebra
operator implemented in brackets.

In contrast, join and relational projection (due
to duplicate elimination) require a full MapReduce
job. Let us consider the final MapReduce job imple-
menting the projection. The implementation of the
Map-job, which we denote as “Map: [MπP.age]”,
will emit key-value pairs where the key is the per-
son’s age. The Reduce-job “Reduce: [RπP.age]”
simply outputs the unique key from its input.2

The resulting workflow can be immediately exe-

2We chose this involved syntax in preparation for chain
folding, as shown in Figure 2, where code from different
jobs is merged into stages. This allows us to track which
parts of the code go where.

cuted on Hadoop, to naively evaluate SQL queries.
Like in Hive, the intermediary results of the physi-
cal operators in the query plan are stored in HDFS.

Independent Study: The students familiarized
themselves with MapReduce processing by taking
an online course offered by Cloudera [9]. This course
also uses Python and contains a set of introductory
MapReduce coding exercises. MapReduce jobs can
be run on Hadoop on a Linux-based virtual ma-
chine, the Cloudera Quickstart VM3.

Implementing relational algebra operators with
MapReduce is comprehensively described in the book
“Mining Massive Datasets” [5].

Coding: The students were started off with skele-
ton code that translates radb-encoded relational al-
gebra expressions to a luigi-managed workflow of
MapReduce jobs. luigi [8] is a Python package
for building pipelines of long-running batch pro-
cesses. luigi supports several execution platforms,
and among them, Hadoop. The students were al-
ready provided with this code. Thus, they could
focus on implementing the code stubs for realizing
selection, projection, renaming, and join.

Figure 3 shows the skeleton code for a luigi-task
that implements the relational selection-operator as
a Map-only job on Hadoop. All that remains for the
students to do is to flesh out lines 25 through 29,
having ready access to the selection predicate (see
line 22) represented with radb datastructures. The
mapper-function is invoked once for each line of in-
put, which is then parsed into a key-value pair.

The input is formatted as shown in Figure 4,
consisting of the relation name as the key and the
JSON-encoded tuple as its value. Like in the origi-
nal Hive, all intermediate results are stored in HDFS
before they are processed by the next operator.

The code skeleton supports three mode of operan-
di: (1) Reading and writing to main memory only,
and merely mocking a cluster-based execution en-
vironment. This makes unit testing easy, hermetic,
and fast. (2) Reading and writing to local disk,
rather than HDFS, and again mocking a cluster-
based environment. This is the development mode,
with quick turnaround times and the option to in-
spect all intermediate data in local files. Moreover,
the development mode does not require an HDFS or
Hadoop installation. Finally, (3) reading and writ-
ing to HDFS, and running on a Hadoop cluster in
the Cloudera Quickstart VM. This was the intended
production mode.

Switching between these modes with a runtime
flag, the students experienced the pain of debug-

3Available at https://www.cloudera.com/downloads/
quickstart_vms/5-13.html.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 35

1 # SelectTask implements selection as a Map-only job.
2 class SelectTask(luigi.contrib.hadoop.JobTask):
3

4 # The radb-encoded relational algebra expression
5 # that this operator evaluates, serialized as a string
6 # of the form "\select_{cond}(R)".
7 qs = luigi.StringParameter()
8

9 # Omitting some luigi/workflow-specific code.
10 ...
11

12 def mapper(self, line):
13 # Parses the input line into a key-value pair,
14 # where the key is the relation name and the
15 # tab-separated value is a JSON-encoded tuple.
16 relation, tuple = line.split('\t')
17 json_tuple = json.loads(tuple)
18

19 # Deserializes the query string into an radb expression
20 # to gain access to the selection condition.
21 query = radb.parse.one_statement_from_string(self.qs)
22 condition = query.cond
23

24

25 ''' fill in your code below'''
26

27 yield("foo", "bar") # To be replaced with your code.
28

29 ''' fill in your code above '''

Figure 3: The luigi skeleton code for the
selection operator from relational algebra.

Person {"name": "Amy", "age": 16, "gender": "female"}
Person {"name": "Ben", "age": 21, "gender": "male"}
... ...

Eats {"name": "Amy", "pizza": "pepperoni"}
Eats {"name": "Amy", "pizza": "mushroom"}
Eats {"name": "Ben", "pizza": "pepperoni"}
Eats {"name": "Ben", "pizza": "cheese"}
... ...

Figure 4: The pizza data instance [7] encoded
as key-value pairs. The key is the relation
name, the value is a JSON-encoded tuple.

ging in a distributed environment: Just because the
unit tests passed and everything worked fine in de-
velopment mode is no guarantee that their imple-
mentation succeeds in the production environment
(often due to careless use of global variables, or pro-
prietary packages not available in the production
environment). Digging through the logs and trou-
bleshooting Hadoop turned out to be cumbersome,
which in itself is a good learning experience.

2.4 Beyond Selection Pushdown
Scope: With the third milestone, the students had
already built a working SQL-on-Hadoop engine. Yet
since each MapReduce stage only evaluates a single
relational algebra operator, and reads its input from
HDFS, the runtimes are unnecessarily high.

Thus, in the fourth milestone, the students were
asked to optimize their query engine. While the ear-
lier milestones came with tight specifications, the
students could now decide for themselves which op-
timizations to implement. As an incentive, the top
ranking solutions would receive extra points.

It was stated as a requirement that for a pre-
defined set of queries over TPC-H data, the stu-
dents had to beat their milestone 3 implementation
in 75% of the cases. These queries had been engi-
neered such that the students would see the benefits
of the optimization techniques discussed in class.
The students were further provided with the car-
dinality estimates from the official TPC-H bench-
mark. For instance, execution of the following query

SELECT DISTINCT CUSTOMER.C_CUSTKEY
FROM CUSTOMER, NATION, REGION
WHERE CUSTOMER.C_NATIONKEY = NATION.N_NATIONKEY
AND NATION.N_REGIONKEY = REGION.R_REGIONKEY

benefits from projection pushdown (provided the
pushed projections do not remove duplicates), in
combination with chain folding. Moreover, reorder-
ing the joins, so that the relations with smaller car-
dinalities (REGION and NATION have only 5 and 25
tuples respectively, whereas the CUSTOMER relation
contains a multiple of 150K tuples, depending on
the scale factor chosen when generating the data)
are joined first. This effectively reduces the costs
for storing intermediary results in HDFS.

As a practical means for capturing the effects of
optimization, we measured the amount of interme-
diate data stored in HDFS. Of course, it would have
been great to actually benchmark the students’ so-
lutions on a Hadoop cluster. Yet since the course
was taught without any supporting staff, the in-
structor had to find a way to limit the adminis-
trative overhead for validation: In the development
mode of miniHive, where all data is stored as local
files on disk, measuring the data temporarily stored
in HDFS can be realized with basic shell script com-
mands. Also, the metric chosen is roughly aligned
with the communication costs introduced in [5].

Independent Study: In preparation to the fi-
nal milestone, several optimizations, some of them
MapReduce-specific, were addressed:

(1) Chain Folding. The most “bang” for one’s
money was to be gained with rewriting the work-
flow of MapReduce jobs by merging several jobs into
multi-functional stages. This approach is sketched
in the original Hive paper [14], and has meanwhile
been explored systematically in academic research,
e.g. also motivated and described in [13] and bench-
marked in [6]. This is considered a generic MapRe-
duce design pattern also among practitioners [11].

36 SIGMOD Record, June 2019 (Vol. 48, No. 2)

We go by the terminology of [11] and refer to this
strategy as chain folding . By chain folding, which
can be as simple as collapsing sequences of Map-
only jobs, we need to store fewer temporary files in
HDFS. This evidently reduces the overall communi-
cation costs, and accordingly, the elapsed wall-clock
time. In Figure 2, we show the physical query plan
for our running example after chain folding. Now,
renaming, selection and join are evaluated within a
single stage (symbolized by the Unix pipe operator).

(2) Projection Pushdown. Projection pushdown
only makes sense in combination with chain folding,
provided that the pushed projections do not elim-
inate duplicates and therefore can be implemented
as Map-only jobs. These can be merged in sub-
sequent chain folding. Otherwise, adding blocking
Reduce jobs drives up the communication costs.

(3) Multi-way Joins. Besides Reduce-side joins,
we further discussed multi-way joins, covered in [5].

Coding: For the final milestone, the students were
provided with a list of queries over TPC-H data, to-
gether with the cardinality estimates for this data
model. The most successful student submission im-
plemented optimizations (1) through (3) from above,
as well as cost-based join reordering, heuristically
joining the relations with lower cardinalities first.

2.5 Moving from miniHive to Apache Hive
Included in Cloudera Quickstart VM is an instal-

lation of Apache Hive, as well as Spark. Towards
the end of the term, students interacted with these
systems. By then, they had gained an apprecia-
tion for the scalability of Hive. Moreover, the stu-
dents could now make sense of the output of Hive’s
EXPLAIN statements, and had an easier time un-
derstanding certain design decisions, such as Hive
trying to avoid MapReduce jobs in query compila-
tion. For instance, a simple exploratory query like
“SELECT * FROM Person LIMIT 10” can be evalu-
ated without spinning up MapReduce jobs, just by
scanning a single chunk of the input file on HDFS.

Having implemented eager query evaluation in
miniHive, the students now understood how lazy
evaluation, as implemented in Spark, can make for
a great interactive user experience.

3. TESTBED AND EVALUATION
Figure 5 summarizes the number of submissions.

In total, 60 students participated in the final exam.
The majority of these students also submitted a so-
lution to milestone 1. A Python script was used to
unpack the submitted zip files, run the unit tests,
and to cross-check solutions with pycode-similar,

1 2 3 4

10

20

30

40

50

Milestones

N
u

m
b

er
o
f

su
b

m
is

si
on

s

Invalid (plagiates)
Zero points
Reduced points
Full points

Figure 5: Submissions and points earned for
the milestones in a class of 60 students.

Rank Improvement

Top 1 4.6×
Top 2 2.9×
Top 3 2.8×

Figure 6: Improvements in milestone 4 over
milestone 3 by the top-3 solutions.

a simple plagiarism checker.4 This immediately re-
vealed 10 submissions as plagiates, which their au-
thors also admitted to.5 In consequence, these stu-
dents received no points for their submissions.

One milestone 1 submission was awarded no points,
since the majority of unit tests had failed. A total
of 30 submissions received full points, having passed
all unit tests. 12 submissions further received re-
duced points, since non-public unit tests had failed.
These tests checked for simple syntactic variations
of the provided queries, and revealed submissions
where students had not tested their code diligently.
The students had been made aware that their sub-
missions would undergo non-public unit tests.

Fewer students made submissions for the later
milestones, which is owed to the fact that submis-
sions were time-intensive, optional, and awarded
only with bonus points. Nevertheless, the enthu-
siasm of the participating students remained high,
and with milestone 3, still 40% of the students sub-
mitted a working SQL-on-Hadoop engine.

Figure 6 lists the improvements achieved by the
top 3 submissions to milestone 4. As described ear-
lier, we compare the size of data written into tem-

4https://github.com/fyrestone/pycode_similar.
5Apparently, code plagiarism is quite common in com-
puter science education, a topic also noted by the press,
e.g. [2]. It is a debate whether this problem is specific
to our field, or merely revealed by tool-based checks.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 37

porary files into HDFS against the milestone 3 im-
plementation. As the specifications for milestone 3
were tight, all successful milestone 3 submissions
had the same baseline regarding costs. The best
miniHive engine achieved a 4.6× improvement, us-
ing all optimizations discussed in Section 2.4.

4. SUMMARY AND OUTLOOK
In their anonymous course feedback, the students

described miniHive as work-intensive. When asked
about the time spent on the individual milestones,
the students reported anything between five and
forty hours per milestone. It is up to debate whether
this may be seen as evidence of the “factor 10 coder”
effect, a controversial theory among developers stat-
ing that some coders are more effective by a fac-
tor 10. At the same time, the majority of students
who participated in the project stated that they
believed they had learned a lot. The students who
completed miniHive where literally ecstatic about
the improvements that they had achieved.

While the term project was not mandatory, the
students who did well with miniHive also excelled in
the final exam, since they had acquired a solid un-
derstanding of MapReduce processing and the asso-
ciated communication costs. It is one thing to learn
about the theory of query optimization, it’s another
thing to watch your own code perform the magic.

As a future feature for miniHive, it would be
very instructive to add partition pruning , as also
implemented in the first version of Hive from 2009:
Provided that a Hive table is partitioned into sev-
eral HDFS folders, based on attribute values (sim-
ilar to building a traditional cluster index), Hive
can ignore irrelevant folders in evaluating selection
predicates. Indexing for Hadoop processing has, of
course, also been explored in research, e.g. [12], so
this would be an opportunity to integrate more re-
cent research results into class. Experiencing the
speedups achievable by indexing would be a further
valuable learning experience.

The miniHive material for students, including the
assignment descriptions as well as skeleton code and
unit tests, is available at: https://github.com/

miniHive/assignment.
To instructors, the complete course material, in-

cluding a prototype and selected student solutions,
can be made available upon request.

Acknowledgements: In 2006, my PhD advisor Christoph

Koch taught a database systems course at Saarland Univer-

sity, where students built a native XML database that could

evaluate a practical fragment of XQuery [4]. The miniHive

term project is inspired by this experience.

5. REFERENCES
[1] A. Albrecht. python-sqlparse - Parse SQL

statements, 2019. A Python package, available
as open source at https:
//github.com/andialbrecht/sqlparse.

[2] J. Bidgood and J. B. Merrill. As Computer
Coding Classes Swell, So Does Cheating. New
York Times, May 29, 2017.

[3] J. Dittrich. Patterns in Data Management: A
Flipped Textbook. CreateSpace Independent
Publishing Platform, 2016.

[4] C. Koch, D. Olteanu, and S. Scherzinger.
Building a native XML-DBMS as a term
project in a database systems course. In
Proceedings of XIME-P’06, 2006.

[5] J. Leskovec, A. Rajaraman, and J. D. Ullman.
Mining of Massive Datasets, 2nd Ed.
Cambridge University Press, 2014.

[6] H. Lim, H. Herodotou, and S. Babu. Stubby:
A Transformation-based Optimizer for
MapReduce Workflows. Proc. VLDB Endow.,
5(11):1196–1207, July 2012.

[7] Jennifer Widom. Database Mini-Courses,
2014. Online course, available at
https://lagunita.stanford.edu/courses/

DB/2014/SelfPaced/about.
[8] Spotify AB. luigi, 2018. A Python package,

available as open source at
https://github.com/spotify/luigi.

[9] Udacity Inc. Intro to MapReduce and
Hadoop, 2018. Online course, available at
https:

//classroom.udacity.com/courses/ud617.
[10] Udacity Inc. Introduction to Python

Programming, 2018. Online course, available
at https:
//classroom.udacity.com/courses/ud1110.

[11] D. Miner and A. Shook. MapReduce Design
Patterns. O’Reilly Media, Inc., 2012.

[12] S. Richter, J.-A. Quiané-Ruiz, S. Schuh, and
J. Dittrich. Towards Zero-overhead Static and
Adaptive Indexing in Hadoop. The VLDB
Journal, 23(3):469–494, June 2014.

[13] C. Sauer and T. Härder. Compilation of
Query Languages into MapReduce.
Datenbank-Spektrum, 13(1):5–15, 2013.

[14] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao,
et al. Hive: A Warehousing Solution over a
Map-Reduce Framework. Proc. VLDB
Endow., 2(2):1626–1629, Aug. 2009.

[15] J. Yang. RA (radb): A relational algebra
interpreter over relational databases, 2019. A
Python package, available as open source at
https://github.com/junyang/radb.

38 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Richard	Hipp	Speaks	Out	on		
SQLite	

	
Marianne	Winslett	and	Vanessa	Braganholo	

Richard Hipp

http://www.hwaci.com/drh/index.html

Welcome to ACM SIGMOD Record Series of interviews with distinguished members of the database community. I'm
Marianne Winslett, and today we are at the 2017 SIGMOD and PODS Conference in Chicago. I have here with me,
Richard Hipp, who won the 2017 SIGMOD Systems Award and the 2005 Google O'Reilly Open Source Award for
SQLite. Richard has his own consulting firm, Hwaci, and his Ph.D. is from Duke University.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 39

So, Richard, welcome!

Thank you for having me here.

It's a pleasure. Can you take off your glasses for a
moment and show off what you have there?

Oh, you mean, this?

This black eye! It must have been a real battle to win
that SIGMOD Systems Award!

Oh, no, this is nothing. You should see the other guy.
No, no! There was no fight or anything. This is actually
a farming accident.

A farming accident?

I went to visit my parents last week. I was helping dad
put up some new fencing on the farm, and I was cutting
through the fence, and when I cut the last wire the whole
thing sprung up, and a piece of wire hit me right there
above the eye. By the grace of God, it missed my eyeball
and didn't put an eye out. But I'm fine; everything is fine
now. But this just goes to show that programmers
should stick to programming computers and should not
try to grow their own food. Leave farming to
professionals!

All right, that's probably easy advice to swallow for our
audience.

So, SQLite is the most widely deployed database engine
in the world! Take that Oracle! SQLite is in just about
every modern phone, PC browser, car, you name it, it
might even be the single most widely deployed software
component of any type! My first question: How did you
happen to write such an insanely popular piece of
software?

It was entirely by accident. I was working as a
consultant doing some really interesting problems, and
I wrote a product for my client and it had to pull the data
off of Informix. And that worked great. Except for
sometimes, the Informix server would go down for
reasons that were out of my control, and then I'd pop-up
a dialog box that says, “Can't access the database.” And,
of course, it was not my fault but I got the support call
because it was my software painting the dialog box.
So, I thought, well, why can't I have a database that just
reads directly off the disc? And I looked around and
there were none available. I thought, “oh, I'll just write
my own, how hard can that be?” Well, it turns out to be
harder than you might think at first, but I didn't know

that at the time. But we got it out there and I just put it
out as open source. And before long, I started getting
these phone calls from the big tech companies of the
day, like Motorola and AOL, and, “Hey, can you
support this?”, and “Sure!” And it's like, wow, you can
make money by supporting open source software? Who
knew?
So, I built a small team and we've been doing that for
about 10 or 12 years now. So, it was an accidental
database, I didn't intend to take over the world.

The accidental database… You know you're in big
company with that? Because Mike Stonebraker, when
he first got started he had the exact same thought, he
said, "How hard can this be?" They say that knowledge
is power, but I think often ignorance is power.

Right. If I'd known how hard it would be I probably
never would've have written it.

So, why is it so popular?

You know, I don't really know. I mean, I can guess.
Well, one, it's really easy to use. I mean it comes as a
single file source code, and so people just plop the single
file of source down into their application and recompile,
and they have a complete SQL stack.
The database is one file on disc. So, it's really easy to
email to colleagues. It's fast. It's really easy to use. It's
small, got a small footprint. That's why it's real popular
on cell phones and things, because especially in the
early days they were really interested in saving every
byte of memory they could.

How small is it?

Compiled for size, it's less than a half megabyte.

Ooh, and how many lines of code, vaguely?

I think it's about 120,000 source lines of code; 200,000
if it includes the comments, all in one big file. We don't
edit that one big file, okay, we actually have a bunch of
little files that we developed and then there's a build
process that stacks them all together.
But that makes it very easy to deploy because it's just
one file that you drop in the middle of your application.
And so, if you go look at popular applications like
Chromium or Firefox or these open source things, you
will find sqlite3.c in the tree which just gets linked in
with the rest of their product and then they've got a
complete stack. They don't have any external
dependencies, and it just works.

40 SIGMOD Record, June 2019 (Vol. 48, No. 2)

What were the main technical challenges you faced in
creating SQLite?

Well, a technical challenge is apart from the fact that I
didn't know what I was doing? Well, so, SQLite doesn't
have a server, you know, it's just a library. And so, you
make a call into the library and then it returns, and
there's not a thread or a process hanging around behind
to take care of all the housekeeping details normally
associated with a relational database, like concurrency
control, rolling up LSM trees, or feeding the write-
ahead log back into the database. These are all normally
taken care of by some background thread. We don't have
a background thread. So, we have to handle all of that
in the foreground without causing unnecessary latency
on the library calls. And we just don't have something
persistent there to remember the state of things. And it
causes you to have to think about the design of the
engine very differently from when you're working on a
client-server install.

Most developers are using SQLite as just a key-value
store. Should we be trying to convince them to take more
advantage of SQL?

I think so. I think that's the whole point. Well, I see so
many developers that think that SQL is just the wire
protocol for talking to the database engine. They don't
really grasp that the whole concept of the declarative
language, it's gonna do lots of really cool things for
them. Once people get that, it makes a huge difference
to them, they become so much more productive.
But, you think about it, the whole programming world
has become so complicated. I mean, when I started in
this business all these decades ago, my first computer
had 4k of RAM, total. And that included the video
RAM. And so, I could know everything that was
happening in my computer, but that's no longer possible.
And now we get people and we're trying to teach them
how to program in four years? And there's just so much
to learn and so much has to be left out, and I think that
the whole declarative idea is being completely omitted.

And people come out and, you know, it's easy to kind of
think about things in a key-value store, that's a very
familiar concept. But nobody's ever really taught the
value of a declarative language and how much work that
can really save. How many thousands of lines of code in
your application you can save by specifying the join in
SQL, rather than pulling all the information in and doing
the join in your application, which is what we see a lot
of people doing in actual applications. Yeah.
So, yeah, I think that about 90 percent of the use of
SQLite is a key-value type thing. But that other 10
percent, people are really using it to the max, they're
really putting these complex queries in there. And I see
some of those queries sometimes and I think, wow, is
my database computing this, that's amazing! But that's
the way it's intended to be used.

If you had the ability to redesign SQLite from scratch,
what would you change?

Mostly just piddly details. I mean, because SQLite is
used in so many millions of applications, we cannot fix
mistakes that I've made in the interface. So, for
example, the database file format uses Big Endian
numbers. And now all the processors are Little Endian.
And so, we could save a few cycles here and there if the
database stored everything as Little Endian.
And there are a few quirks in the language… If you say
“integer primary key” that means one thing, but if you
say “integer” and then put “primary key” into column
name it works slightly differently and it's just wrong.
But we can't change that now because there's a lot of
databases out there that do make use of that distinction
and that would break compatibility. And we're all about
preserving compatibility to the hundreds of billions of
instances that are out there already.
So, yeah, we could do a few tweaks like that to improve
the performance, but I'm really kind of happy with the
overall design and how it worked out. I wish I could
claim that I had this brilliant insight and foresight and
was able to predict that that's the way it was gonna work
out (it was dumb luck). But it worked out well in the
end.

You say that SQLite has aviation grade testing. What
does that mean?

So, we follow a design process that's inspired by DO-
178B, which is a Spec followed by the FAA, actually I
think it's been superseded now with DO-178C, but I'm
told it's not much different. And it's a Spec that the FAA
requires for safety-critical systems, safety-critical
software systems in the aircraft. It's a very detailed
design Spec about the processes you do in developing
the software. And the key point is that you have to test

Wouldn't	it	be	great	if	SQL	or	
something	like	that	were	
extended	in	a	way	that	you	
could	have	relations,	you	

could	have	graphs,	you	could	
have	arrays,	you	could	have	
JSON,	and	it	all	worked	
together	seamlessly?	

SIGMOD Record, June 2019 (Vol. 48, No. 2) 41

it to 100 percent modified condition/decision coverage
(100% MC/DC). Which, basically, means you have to
test the machine level such that every branch instruction
has been taken and falls through at least once. It's an
incredible amount of testing.
This started because years ago I had this idea that, oh,
I'll come up with this test suite and then I'll sell it to
people and make money. That didn't really play out. But
what we found is when we did this and spent a year
developing all these tests and, of course, tons of time
since then maintaining them, is that the number of bugs
just dropped dramatically. And it will amaze you how
many bugs pop up when your software is deployed on
two billion cell phones. And, yeah, I used to think that I
could write bug-free software and it got put on cell
phones and then, no…
But once we got that and got this aviation grade testing
in place, the number of bugs just dropped to a trickle.
Now we still do have bugs but the aviation grade testing
allows us to move fast, which is important because in
this business you either move fast or you're disrupted.
So, we're able to make major changes to the structure of
the code that we deliver and be confident that we're not
breaking things because we had these intense tests.
Probably half the time we spend is actually writing new
tests, we're constantly writing new tests. And over the
17-year history, we have amassed a huge suite of tests
which we run constantly.
Other database engines don't do this; don't have this
level of testing. But they're still high quality, I mean, I
noticed in particular, PostgreSQL is a very high-quality
database engine, they don't have many bugs. I went to
the PostgreSQL and ask them “how do you prevent the
bugs”? We talked about this for a while. What I came
away with was they've got a very elaborate peer review
process, and if they've got code that has worked for 10
years they just don't mess with it, leave it alone, it
works. Whereas we change our code fearlessly, and we
have a much smaller team and we don't have the peer
review process. So, that's the basic difference. People
hear aviation grade testing, that means it must be bug-
free. Not really. It's low bug, but there are bugs. The key
benefit is that it allows us to move fast and aggressively
and make big changes to the code without fear of
breaking things.

Now, why do you want to make big changes to the code
if you've already written something that clearly is
working for almost everybody?

Well, because, you know, you can always make
improvements to the query planner. The query planner
is an AI, and so there's no perfect solution. And so, no
matter what we do there's gonna be somebody come
along and find some query that it comes up with a bad

plan for. And then a lot of times we have to make pretty
radical changes to the query planner in order to come up
with a good query plan for some bizarre bit of SQL. Of
course, the first question we always ask is, why did you
want to do this? Who would ever issue such a query?
And it's often machine-generated queries.

So, it occurs to me that one factor in your success is the
fact that only 10 percent of the billions of installations
are doing the SQL queries. Because if all those key-
value store people were actually making full use of the
abilities of the SQL language, heaven knows what kinds
of strange queries they'd be asking…

Well, I'd suppose but, no, 10 percent of a billion is still
a lot!

It is.

And the people who are doing the elaborate queries are
companies that use it really heavily. Customers! I wish
I could name them for you.

That's fine. We don't wanna know, we don't wanna
know. So, if commercial database engines don't undergo
nearly that amount of testing, why do you work so hard
at testing an open source product that you give away for
free?

Well, that's a good question. You know, the intense
testing allows us to keep a really small team. The
product is free, and so, we make all our money from
support. And we’ve been following of the open source
world and people are saying “you can't make money
selling support.” And they're basically right, you can't
make a lot of money. So, a typical start-up would be 30
to 50 guys in an office building in San Francisco. And
you cannot make enough money selling support to
support that operation. But we only have three
developers, including me. And we're a distributed
company, we don't have office space, everybody works
from home. We keep our overhead really low. And we
only have three people. And so, with only three people
this high level of testing allows us to produce a quality
product without having a lot of eyeballs on it.

Wait, it almost suggests that a giant company could also
get by with three people on some major product. If they
did mega testing.

It	was	an	accidental	
database,	I	didn't	intend	to	

take	over	the	world.	

42 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Possibly so. You know, the DO-178B Spec is very
detailed. And what I've seen is a lot of companies trying
to implement it and they get very legalistic about it.
And, I mean, it's a really great thing if you do it well,
but if you don't implement it carefully it can just become
bureaucratic overhead. And then it actually multiplies
the number of people rather than reducing them.

Okay. Got it.

It's a tricky thing; it's a knife edge there.

People use SQLite in some places where you really don't
want a hacker to be able to get at the data. So, beyond
aviation grade testing, are there other considerations
you give to the security?

Yes, we do. Well, so the MC/DC testing is great for
verifying that sensible queries that normal programmers
would write actually work and give the correct answer.
But to prevent attacks we use fuzz testing. And there are
a number of great products out there that do this for us.

I think a lot of our audience might not know what fuzz
testing is.

Fuzz testing is when you take a library or a product and
you start pounding it with just seemingly random inputs
and trying to get it to break. You're not trying to see if it
gets the right or wrong answer, you just wanna break it,
you wanna get a segmentation fault error or something
like that. And that's an opportunity to break into the
system.
And so, there are some researchers at Google, and what
they've done is they have these fuzz testers where they
start with a random input. But they also instrument the
source code, or the object code. And they monitor the
path through the object code that that test case took and
it finds new behaviors, it learns from that. When it finds
a new path it says, “oh, I'm gonna keep changing that
mutation” and it finds new paths to the codes. It's a very
powerful thing. It's only been out for two to three years.
And it will find an amazing number of the bugs, even in
very well tested software.
So, an example of this is they took a jpeg library and
they started it with an empty file and started fuzzing it.
And the fuzzer actually discovered valid .jpeg files.
That's the power of the system. So, we feed these sorts
of things into SQLite. Because it's a library, it's very
easy to do this and we can give it thousands and
thousands of queries per second, fuzzing them, trying to
find bugs.

1 Editor’s note: His name is Michal Zalewski.

And when we first started doing that we did find a dozen
or two dozen ways of crashing it. But since then, and we
continue to test, we've fixed those and we haven't had
any more problems.
So, SQLite can be safely used as, for example, a file
format transferring data from across the internet. And
you can receive a SQLite file from an untrusted source
and bring it up and be confident that it's not going to –

Be a trojan horse…

Exactly.

So, what's the name of the Google tool for fuzz testing?

The first one was American Fuzzy Lop. And then the
following one to that was OSS-Fuzz.

(Laughs) I laughed because the first name American
Fuzzy Lop definitely sounds like the name of a kind of
funny rabbit.

That's where he got the name. I won't try to pronounce
the developer's name, it's Michael1 and he's Polish. I will
totally mispronounce his name so I won't try to
pronounce it. But he wrote it and he picked that name
because of the pun.

So, vaguely, how long would it take, when you've made
some changes to your source, to run through your entire
set of tests? Just vaguely.

Well, on one platform, because we run it on multiple
platforms.

No, just one.

If it's a fast work station we can, running on multiple
cores, we can do a complete set of tests in about 12
hours. But then we also run on multiple platforms,
including some slow ones, like phones and that sort of
thing. Some antique hardware, like ancient Mac Books
that are still using Power PC processors, so we can test
that it runs on Big Endian as well as the Low Endian.
And so, it normally takes us about three or four days to
do a complete test. But we can do full coverage testing,
the 100 percent MC/DC testing in about three minutes.
And so, after any change, we always do that. But then
we have these long soak tests that do a lot of additional
testing, and that's what takes a large amount of time.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 43

Why did you choose the license for SQLite to be public
domain rather than BSD or MIT?

Well, of course, technically, public domain is not a
license, but the absence of one. Actually, SQLite
Version 1 in 2000 used GDBM2 as the storage engine.
And that's a key-value storage thing. And it's GPL, and
so SQLite Version 1 was GPL, it had to be because it
was linking against the GPL library.
But GDBM is only key-value, I can't do range queries
with it. Then I said, “I'm gonna write my own B-tree
layer”. And so, I wrote my own and at that point it
became all my code and I thought, well, what license
shall I do? And I thought, well, you know, BSD, MIT.
And I thought, well, what's the point, why not just say it
is public domain? And so, I put it out there as public
domain. People can do whatever they want, I have
disavowed all copywrite to it.

And that was cool and that worked great. What I later
learned is that the ability to put something in the public
domain is kind of unique to countries that follow British
common law. Other countries don't allow people to
disavow their rights to the code. And so, it's a problem
in that sense.
But it's to tradition and we've stuck with it. It's worked
well and people understand it, and it makes people
confident that they can use it their products and not have
to worry about legal repercussions. Some companies
still do worry about that because, I mean, anybody can
grab some piece of code from somebody and put it out
in the internet and say, oh, this public domain, you
know.
So, another way that we do make money is we actually
sell licenses for it. Actually, it's not a license, it's a
warranty of title. It's an official document that says we
do have the right to place this in the public domain and
we will accept legal responsibility if anybody comes
forward and accuses you of stealing it. And companies
send us money for this piece of paper. And that's what
we use to fund the development.

2 https://www.gnu.org.ua/software/gdbm/gdbm.html

Okay. Anything to keep those lawyers satisfied. And if
you were starting again today, would you still go the
public domain route?

It's hard to say. I mean, it's fun to be unique in that, but
practically speaking the two-clause BSD license or MIT
license, accomplishes the same thing, and doesn't run
into the problems that are in non-British common law
jurisdictions. So, that would probably be a better choice.

After they graduate, most computer science grad
students go to the university, or a big company or a
start-up. So, what led you to be a consultant instead?

Oh, that's a long story. Because I've temperamentally ill-
suited for working in the –

Corporate life?

Yeah. I don't play well with others.

Oh! The small team is just a matter of preference!

It is. I really like working for myself. And one reason
we haven't grown to a big team is that there's no way in
the world that I could manage a big team. And the
people I have working for me are great and we get along
well, and I think trying to manage 30 to 50 people would
really be a disaster for me. I really enjoy working for
myself.
Back in 1992, when I took my Ph.D., there were 500
applicants for any tenure track position. And I decided
“I'm not gonna get in that rat race.” And so, I started the
consulting thing and it's worked out really well. I get to
set my own hours, you know because when you work
for yourself you can work any 80 hours of the week you
want, work from home, work in projects that I wanna
work on. And it's really worked out well. It's been a
dream job. All of us on the team have really enjoyed
working on SQLite.

Yeah, it sounds like if you graduated in a year when it
was a seller's market, buyer's market, I'm not sure which
direction, you might've taken a completely different
path!

Well, I may have. But I guess it's providential that it
worked out as well as it did.

Yeah! For everybody.

I	would	love	to	see	people	spend	
more	time	researching	

query	languages	as	opposed	
to	storage	engines	

44 SIGMOD Record, June 2019 (Vol. 48, No. 2)

Yeah. I'm very happy.

But for someone who's graduating today, what
considerations do you think should make them choose a
consulting path?

Well, you get to choose your own destiny. You don't
have to deal with the big company or the big university
bureaucracy and the politics that comes with that.
Maybe I'm sort of an urban prepper you might think of,
in the sense that I wanna live off grid. Not really! Not
really! It's just that I wanna do my own thing. No, I
actually enjoy very much having the conveniences of
modern city life. I don't wanna go off grid. But the
concept is similar in that I want to decide for myself
what I'm working on. I want the freedom to move
around from lots of different customers.
You know, one really great thing about working in this
is I've had the opportunity to visit so many different
businesses and see the really different cultures there are
in all these different places all over the world. And I
can't really explain it unless you've experienced it, but
you go to one company and see how they operate and
how many people interact, and you go to a different
company and have a totally different culture there. And
then you step back and look and that culture kind of
comes out in their products, and you can see it after
you've visited their engineering facilities.

Interesting.

It's very interesting. And I don't know of any way of
describing that other than just say go there and see for
yourself and then you'll understand.

So, even inside the banks in Charlotte where you live,
all those big banks, can you see the difference in culture
in the products that come out of these giant banks?

A little bit. I don't have a whole lot of insight into the
banks there in Charlotte. I'm thinking of like visiting,
well, companies that you know well like Facebook and
Google and Apple.

Oh, computer companies?

Yes. Motorola, AOL, these sorts of things. I get
opportunities to go and visit and talk, and give talks
there, and meet with the people and see their
environment. And it's really exciting to be able to see all
of these differences, coming in, not have to be a part of
that company, but get a glimpse into their culture and
see how they're all very different. You'd think that a

3https://fossil-scm.org/home/doc/trunk/www/index.wiki

bunch of companies all in the Bay Area would be very
similar, but they're not, they're really very different. And
when you travel to other countries and do this, it gets
really, really different.

Yes, definitely. So, you don't see an evolution toward a
single culture at computer companies? There's no
convergence, it sounds like. If anything, it's divergence.

No, everybody pretty much copied Google's idea of
giving the people free food, okay. That was a big win,
apparently, and everybody copied that. So, there are
some ideas that get around. And so, maybe you're right,
maybe there was a lot more diversity a decade ago than
there is today. But still, even today you can see a big
difference in the different companies.

Cool. Among all your past accomplishments, do you
have a favorite piece of work other than SQLite?

I'm kind of proud of the version control system that we
wrote specifically for SQLite called Fossil3. So, SQLite
started out using CVS because back then that's what
everybody used. But CVS is great if you had to use what
came before CVS, you know. Some people bad mouth
CVS, I know that those people never had to use what
came before. But it has its limitations, and so we wanted
to go with something better, and the other options
weren't really making it for me. So, I wrote my own and
called it Fossil.
And it's interesting in that Fossil stores all of its data in
an SQLite database, and SQLite is controlled by Fossil,
so we have this recursion here – if something breaks the
whole project sort of collapses. It's a house of cards. But
it works really well and it's been really flattering that
thousands of other people have picked it up and started
using it. So, it's a distributed version control system like
Git. Nowhere near as many users, orders of magnitude
fewer. But those who do use it are really enthusiastic
about it.
And it keeps me in touch with the application
development side of things. Because if you're
developing just the database engine for so long, you get
heads down and you don't see what's happening. But I
can go out and work on Fossil and it's helping so many
people, and then I also get to work on an actual
application that uses SQLite and understand the pain of

SQL	is	the	language	that	
everybody	loves	to	hate.	

SIGMOD Record, June 2019 (Vol. 48, No. 2) 45

the users who have to deal with the interfaces that I
design. And that's very good.

Eating your own dog food.

Yes. We're very much into dog food in SQLite.

If you magically had enough extra time to do one
additional thing at work that you're not doing now, what
would it be?

Oh, I've got a long list. But my #1 thing right now I think
would be a new version control system which the
working name is Fit, it's a combination of Fossil with
Git. Uses the Fossil user interface but it uses the low-
level file format of Git. So that then you can work with
Fossil's interface but push and pull to legacy Git users.
And I think that would be huge.

Why? What's better about the Fossil interface?

Well, it's not the perfect interface, but all the users say
“oh, the Fossil interface is great, it's so wonderful, I hate
having to use Git.” But then they're compelled to use Git
because everybody else in the world is and they wanna
collaborate. So, I think that by merging these two
producing Fit, Fossil plus Git, that would be a really big
win for a lot of people.

Sounds like it.

It sounds like a lot of work, too.

Maybe… Do you have any words of advice for fledgling
or mid-career database people?

I would love to see people spend more time researching
query languages as opposed to storage engines. I mean,

storage engines are a very important thing, we need to
work on that, but it's like query languages are ignored.

Do you mean like changing SQL or do you mean like…

Enhancing SQL. SQL is the language that everybody
loves to hate. And of course, I guess, everybody in the
database world has at one point or another tried to come
up with a better SQL. I know I've tried multiple times
myself with indifferent results.
But the relational model is great and it'll represent
anything, but there're some problems that just work out
better with like a graph model or an array, or something
like that, or JSON. Wouldn't it be great if SQL or
something like that were extended in a way that you
could have relations, you could have graphs, you could
have arrays, you could have JSON, and it all worked
together seamlessly? And that would be really, really
amazing.

If you could change one thing about yourself as a
computer scientist what would it be?

Well, I think we'd all like to be smarter, right? The
ability to communicate better. I don't know. I've had
such a blessed career, truly. I mean, I fell into this, I
didn't plan to be a database guy, that was never in my
career plans it just happened, but it's been an enormous
amount of fun. And if I were to design it I'd mess it up.
So, I'm just gonna go with what we've got.

Sounds good. Thank you very much for talking with us
today.

Thank you for your time.

46 SIGMOD Record, June 2019 (Vol. 48, No. 2)

The SIGMOD 2019 Research Track Reviewing System

Anastasia Ailamaki†‡ Periklis Chrysogelos† Amol Deshpande¶ Tim Kraska§

†EPFL, ‡RAW Labs SA
{firstname}.{lastname}@epfl.ch

¶University of Maryland
amol@cs.umd.edu

§MIT
kraska@mit.edu

1. INTRODUCTION
While organizing the submission evaluation pro-

cess for the SIGMOD 2019 research track, we aim
at maximizing the value of the reviews while mini-
mizing the probability of misunderstandings due to
factual errors, thereby valorizing impactful ideas.
The objective is an educating and rewarding expe-
rience for both the authors and the reviewers.

The actionable goals are:

1. Maximize review depth and breadth. For
depth, optimizing the assignment of papers
to reviewers is of key importance; “low con-
fidence” reviews should be few to none, in or-
der for reviewers to provide extensive and use-
ful comments to the authors. To cover the
breadth and to address controversial issues, re-
cruit as many reviewers as needed to converge
to a unanimous set of comments.

2. Ensure that all submissions are treated equally
fairly by experts in the respective domains.

3. Obtain as much input from the authors as pos-
sible during the process. Enabling author feed-
back is the key step in the process.

4. Allow re-evaluation of papers with non-critical
flaws through revisions.

The better part of the infrastructure is devoted
to optimizing reviewer assignments and to orches-
trating the first set of reviews and discussions, both
of which are critical parts in the entire process. The
rest of this paper describes the process we set forth
and our experiences from running it.

2. REVIEWER ASSIGNMENT
We address two issues in the reviewing process.

PC member load and responsibilities. Re-
viewer load and responsibilities must be clear and
predictable. Some research areas are at times more

popular than others; when selecting reviewers, we
make sure that the PC composition reflects topic
popularity, albeit not always perfectly. Trying to
achieve uniform load across all reviewers therefore
inevitably results in non-expert reviews. In addi-
tion, after reviews are submitted, a discussion starts
which ends at the very end of the process with a de-
cision which is summarized in a meta-review and is
supported by final, polished reviews. Orchestrat-
ing the discussion and ensuring final review quality
is a major responsibility and a critical step toward
an unanimous and educated decision. Top database
conferences employ a two-level reviewer hierarchy:
A large set of reviewers who provide the reviews
and a smaller set of meta-reviewers who act as area
chairs for a subset of papers (typically four times
as many as the average reviewer load). The advan-
tage is that the work is distributed and the qual-
ity of the final result is increased. Nevertheless, the
meta-reviewers can only help resolve a disagreement
if they have read the paper in question themselves,
which is only partly possible and typically happens
under severe time constraints (after the end of the
review period).

Reviewer assignment. The typical method for
reviewer assignment relies on topic relevance: re-
viewers of a paper with intellectual contributions
in a certain topic provide useful comments if they
work on the same or a related topic. Feedback from
recent conferences, however, shows that the evalua-
tion methods play a significant role in the apprecia-
tion of a paper’s contributions. The evaluation of a
paper’s contributions is typically based on theoreti-
cal proofs or on observations from experiments with
implemented systems. Experience shows that a pa-
per is evaluated most fairly when at least a subset
of its reviewers are experienced on the evaluation
methods the paper uses.

The rest of this section describes how we struc-
ture the program committee work in order to resolve
the aforementioned issues.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 47

2.1 PC member load and responsibilities
The number of assigned papers may vary across

program committee members – this is due to un-
expectedly disproportional number of submissions
in a subset of topics. This is a fact that reviewers
need to be alerted about. Reviewers also need to
be prepared to provide impromptu reviews in se-
vere conflict cases.

A subset of reviewers form the core commit-
tee and are responsible for (a) providing reviews
for their assigned papers, monitoring discussions,
ensuring high review quality, and writing meta-
reviews as needed. Core committee members (aka
meta-reviewers) are assigned about double the num-
ber of papers that regular committee members
are assigned; the latter are responsible for provid-
ing reviews for their assigned papers and for par-
ticipating in discussions. Reviewer invitations are
clear about load and responsibilities. In SIGMOD
2019, about 25% of the reviewers are core commit-
tee members.

For review assignments, we collect a number of
attributes that describe reviewers and submissions
to enrich the data provided by the conference man-
agement tool and provide better assignments.

2.2 Reviewer assignment preparation
The goal of assigning papers to reviewers is to

maximize the average reviewer expertise per paper,
and minimize the number of non-expert reviews. To
maximize the level of expertise per paper we char-
acterize papers and reviewers with respect to the
style of evaluation and contributions.

Paper characterization. The SIGMOD 2019 pa-
per submission form asks authors to characterize
their paper as either systems or non-systems.
The call for papers describes systems papers as:

• Papers that describe an entire new system,
covering, e.g., the system architecture and de-
sign issues or experiences learned from build-
ing the system.

• Papers that extend an existing (open-source)
system with new or more efficient functional-
ity. Such papers may add new functionality to
Spark, Hadoop, PostgreSQL, etc. The moti-
vation may be to better support new applica-
tions.

• Papers that concern specific aspects of a sys-
tem or systems. Such papers may concern
storage management, query processing, index-
ing, transaction management, access control,
authentication, etc.

• Papers that concern systems support for new
hardware, e.g., multi core, SIMD, NUMA,
HTM, SGX, GPU, FPGA.

• Papers that analyze system performance.

The systems/non-systems annotation helps en-
sure that system papers are assigned not only to
reviewers who are experts on the topic of the pa-
pers but also have extensive expertise in writing and
evaluating systems papers.

Reviewer categorization. Similarly to papers,
each program committee member is annotated as
“systems” or “non-systems” according to their own
published work. As a result, each of the core and
regular program committees is further divided into
systems and non-systems subcommittees. (To pre-
serve reviewer anonymity, the systems annotation
is not announced on the website.)

To match reviewer and paper research areas,
we use both the Conference Management Toolkit
(CMT) [4] and the Toronto Paper Matching Sys-
tem (TPMS) [3]. Upon acceptance of the invita-
tion to the program committee and prior to abstract
submission, all reviewers mark their research areas
on CMT and upload a set of their own represen-
tative publications on TPMS. After paper submis-
sion, all submissions are uploaded to TPMS that
outputs baseline matching scores for each reviewer-
paper combination.

Using TPMS scores as a similarity measure.
TPMS analyzes the submitted papers and the re-
viewers’ uploaded list of papers and produces a
score based on their topics similarity, extracted
based on word counts and LDA [2].

Preferred reviewer similarity measures. We
solicit proposals for reviewers from both paper au-
thors and core committee members as follows. At
submission time, authors can optionally propose
“preferred” reviewers (inside or outside the pro-
gram committee) for their submissions, which we
use opportunistically as an additional indicator of
the quality of a reviewer-paper combination. Simi-
larly, at the first submission cycle, we asked meta-
reviewers to suggest reviewers for each of their as-
signments. Handling meta-reviewer input, however,
was manual and incurred more overhead than its
associated benefit, so we dropped this option in
the second submission cycle. Nevertheless, meta-
reviewer input can prove useful if the suggestions
are incorporated into the process automatically.

Conflicts of interest. We augment the conflicts of
interest inserted by authors and reviewers through
CMT with additional ones based on the mined col-
laboration graphs provided by AMiner [1]. This was

48 SIGMOD Record, June 2019 (Vol. 48, No. 2)

a useful step as none of the COI lists was a super-
set of the other: AMiner is not aware of ongoing
collaborations and conflicts outside of what can be
inferred from published work or employment status,
while authors may forget to register some conflicts.

2.3 Meta-reviewer assignment
We assign meta-reviewers to submissions using an

expanded variant of the integer program proposed
by Taylor [7] and reused in TPMS [3]:

maximize
yrp

∑

r

∑

p

ŝrpyrp

subject to yrp ∈ {0, 1}, ∀r, p
∑

r

yrp = R, ∀p

yrp = 0, ∀(r, p) ∈ COI
∑

p

yrp ≤ Smax, ∀r

Smin ≤
∑

p

yrp, ∀r

(1)

where, yrp is constrained to 0-1, with yrp = 1 if
and only if reviewer r is assigned to paper p, R
is the number of required reviews per paper and
Smin, Smax is the minimum and maximum number
of assignments per reviewer, ŝrp is the gain from
matching reviewer r to paper p and COI is the set of
conflicts of interest. We observe that for large values
of Smax and as there is no lower bound, two groups
of reviewers are created: the “misunderstood” ones
who are assigned a very small number of papers
and the “rockstars” that are assigned almost Smax

papers, with almost no one in between. To avoid
bipolar groups, we augment Taylor’s formulation by
setting a lower bound Smin for the number of assign-
ments per reviewer. For meta-reviewer assignments,
r is simply restricted to the set of meta-reviewers
and, as we assign only one meta-reviewer per sub-
mission, R = 1.

For SIGMOD 2019, we use:

ŝrp = srpwrp + refinementrp (2)

where srp is the TPMS score, refinementrp is added
to allow penalizing or embracing matches after man-
ual inspection of the results and wrp is a factor we
calculate based on the collected information:

wrp = 1 + αf (Rankrp)− βTrp − γPrp − δArp (3)

where f (Rankrp) depends on the position, if any, of
reviewer r in the list of proposed reviewers by the
authors and Trp, Prp, Arp are indicator variables
described in Table 1.

We select constants α, β, γ and δ by trying dif-
ferent combinations and subjectively evaluating the
results based on our experience, until we find a set
that produces overall good assignments. (Ideally,
however, these parameters should be tuned using
data collected from previous editions of the confer-
ence and community feedback. The same holds for
selecting a linear model for combining the factors in
Equation 2: we use a simple model, but collecting
previous conference data allows for more informed
decisions.) Using Equation 1, we produce the meta-
reviewer assignments and then go over them to de-
tect and correct corner cases. For the meta-reviewer
assignments we only consider reviewers from core
program committee.

Symbol is 1 if r and p do ... otherwise it is 0
Trp differ in system/non-system trait
Prp differ in registered primary areas
Arp have no common registered areas

Table 1: Indicator variables used in modeling

2.4 Reviewer assignments
For reviewer assignments, we use a similar pro-

cess as for meta-reviewer assignments but now we
consider both core and regular program commit-
tee members. For starters, we mark meta-reviewers
also as reviewers of their assigned papers. For reg-
ular reviewers, we solve once again Equation 1 but
this time with r going over the set of light review-
ers and R set to the target number of reviews per
paper (minus one, as the meta-reviewer is provid-
ing one of the reviews). Also, for regular program
committee members, Smin and Smax change due to
the higher number of regular program committee
members, compared to core ones.

As in the first submission cycle we solicited re-
viewer suggestions from the meta-reviewers, an ex-
tra factor in the calculation of wrp incorporates the
suggestions into the formula. Finally, we readjust
the weights to tune the relative importance of the
features. As both the area and the system traits
are input to the process, the set of reviewers per pa-
per may be a mix of both systems and non-systems
reviewers. For example, a paper on data cleaning
which evaluates the performance of a system will be
assigned to both systems and non-systems reviewers
who work in the field of data cleaning.

2.5 Timeline
The reviewing process of each submission cycle

is divided into four phases as shown in the Gantt
chart of Figure 1.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 49

Review cycle

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Submission
Abstract submission

Paper submissions

Review
Run matching

MR suggest Rs

MR/R review papers

Rebuttal

Update reviews

Additional reviews

Finalize reviews

Revision
Authors revision

Review revisions

Finalize decisions

Figure 1: Approximate timeline of reviewing the submissions of each research submission cycle

We augment the submission form with a manda-
tory field for the authors to characterize their paper
as system or non-system, and with an optional field
to supply a list of suggested reviewers. Before the
submission deadline, we ask the reviewers to upload
a sample of their work on TPMS and we manually
annotate reviewers as systems or non-systems.

After the submission deadline, we run TPMS to
obtain the scores and solve the optimization prob-
lem 1, using the collected information to create the
meta-reviewer assignments. Then, we manually re-
view the assignments to find sub-optimal assign-
ments and fix them using author suggestions, or
secondary matches generated from TPMS. If no re-
viewers are found, we solicit suggestions from the
research community. Afterwards, we upload final
reviewer assignments to CMT and launch the re-
view phase. We allow two days for reviewers to ex-
press concerns about their eligibility to review pa-
pers, and reassign the (typically very few) papers.

Author feedback. Review time is three to four
weeks. During that time each reviewer (including
meta-reviewers) reads all papers assigned to them
and writes their reviews independently. At the end
of the reviewing period (plus a few days waiting for
late reviews to come in), meta-reviewers initiate dis-
cussions. At the same time, we invite author feed-
back in order to avoid misunderstandings of the text
and clarify factual errors. We allow 72 hours for au-

thors to read the (draft) reviews and provide short
feedback on factual errors; the time is more than
sufficient considering that clarifying any factual er-
rors in the reviews should not take more than a few
hours (author feedback is not a revision). In ad-
dition, we allow authors to express sensitive issues
about the reviews through a new field in the feed-
back form for specific reviewer complaints which
is only visible by the chairs. The meta-reviewers
(and chairs) ensure that author feedback is taken
into account in the discussions, and the chairs in-
ject themselves into the discussions when a red flag
is raised from the authors (through the feedback
or via email) or from the reviewers, or when there
is a significant disagreement among the reviewers
(typically chairs are alerted to such cases by the
meta-reviewers).

Assigning additional reviews. If a paper is
headed for rejection and at least one reviewer has
rated it “weak accept” or more, we invite two addi-
tional reviews. We select the additional reviewers as
before, i.e., using author suggestions, or secondary
matches generated from TPMS, or suggestions from
the research community. Reviewers have a one-to-
two week time period to review the (typically very
few, if any) additional papers.

Review refinement. After all reviews are sub-
mitted, reviewers discuss and converge to accept or
reject the paper or invite a revision, and the meta-

50 SIGMOD Record, June 2019 (Vol. 48, No. 2)

reviewer summarizes the rationale for the decision
and revision points (if applicable). An important
step before releasing the reviews and meta-review
is to carefully polish the reviews to consider author
feedback and discussion points, as well as to ensure
that all reviewers agree with the meta-review.

Revision. Authors of papers that have been in-
vited for a revision have approximately a month to
submit the revised manuscripts along with a letter
detailing the main revision points. The reviewers
have a couple of weeks to ensure that the revised
papers address all points in a satisfactory way. The
final decision is to accept or reject the paper. If
a paper addresses the revision points but there are
still some less significant issues to be fixed, we ac-
cept the paper with shepherding (with one of the
reviewers acting as a shepherd and communicating
with the authors directly). The authors send an up-
dated version of paper to the shepherd a few days
before the camera-ready deadline, and the shep-
herd ensures that all additional points have been
addressed and clears the paper for inclusion in the
proceedings.

Submission cycles. There are two submission cy-
cles in SIGMOD 2019, one with deadline in July
and the other with deadline in November. The de-
scribed process was repeated for each cycle.

2.6 Implementation
We use CMT as the conference management tool

and both the reviewers and authors use this plat-
form. To apply our reviewer assignment process,
we extract the required information from CMT and
submit our queries for TPMS scores using CMT-
TPMS integration.

The integration with our implementation is done
by downloading the corresponding files from CMT
and incorporating our own files, such as the AMiner
generated COI list and our systems/non-systems
annotated list of reviewers. We query files with mul-
tiple formats in order to generate the ŝrp matrix, as
CMT exports almost each part of the data in a dif-
ferent format: xml, tsv, csv, lists per tuple (e.g.,
list of authors in a submission) and semi-structured
text (e.g., author suggestions for reviewers). Then,
we solve Equation 1 using CVX [5] and convert the
solution to assignments. Finally, we create differ-
ent views of the assignments and share them with
program chairs to inspect a subset of the assign-
ments, excluding from their views and redistribut-
ing among them conflicting papers. For simplicity,
we flush views into spreadsheets.

Any changes are introduced back to our tool. We
use refinementrp to lock assignments across itera-

tions as well as replace some of them. As allow-
ing the integer optimization program to re-run af-
ter small manual changes of the weights can pro-
duce ripple effects and thus require to recheck ev-
ery assignment, currently we only use refinementrp
for adding and removing assignments rather than
changing a weight.

The final assignments are converted into XML
files and uploaded to CMT.

3. REWARDING OUTCOMES
Setting up and operating the SIGMOD 2019 re-

viewing infrastructure for the research track was an
end-to-end exciting and rewarding experience. Here
we briefly report on the rewarding outcomes and
some issues which would make future realizations
of our methods a lot easier.

• The number of reviews and average expertise
level per paper were improved. We had 3.36
reviews per paper on average (4.64 reviews per
rejected paper with at least one weak-accept).
Average expertise level1 per paper was 67.4%.

• Systems and non-systems papers had the same
acceptance rate (22.6% vs 20.1%, respectively;
calculated over papers of the same trait).

• Reportedly, reviews were of generally higher-
quality. Figure 2 shows that 77% of the re-
views were made by knowledgeable (50%) or
expert (27%), on the topic, reviewers. Only
2% of the reviews had low confidence. Lastly,
the distribution of expertise level across sys-
tem and non-system papers was almost iden-
tical, (within a 5% difference).

• Having meta-reviewers actually read and re-
view the papers ensures that the core commit-
tee members are aware of the technical details
and are involved in discussions more actively
than if they are engaged at the end of the re-
view period.

• Establishing author feedback, revisions, and
shepherding improves two-way communication
between reviewers and authors significantly.

• Allowing authors to express complaints con-
fidentially prevents and defuses subsequent
author-reviewer conflicts.

1Where 0%, 33%, 66% and 100% correspond to re-
viewers claiming to be unfamiliar, somewhat familiar,
knowledgeable and experts, respectively, with the pa-
per’s topic

SIGMOD Record, June 2019 (Vol. 48, No. 2) 51

No
familiarity

Some
familiarity

Knowledgeable Expert

0%

20%

40%

60%

80%

100%
P
ro
p
o
rt
io
n
o
f
re
v
ie
w
s System papers Non-system papers

Figure 2: Distribution of review expertise
level, as reported by reviewers, over pa-
pers in the same author-annotated category
(system/non-system). Non-system papers
were twice as many as system papers.

4. POINTS FOR IMPROVEMENT
We list the issues which need to be addressed in

future editions of the process.

• The most serious time sink was the solic-
itation of late reviews and trying to reach
non-responsive reviewers, through multiple re-
minders sent via CMT and personal email.
Even a handful of late reviewers throws the
process off, while non-responsiveness is ex-
tremely problematic.

• Some papers are borderline between systems
and non-systems; some authors mis-classified
their papers. Maybe an option to select “in-
between” would have mitigated the problem.

• People change affiliations and thus emails of-
ten, which causes problems as CMT uses email
addresses as IDs.

• We had to ask CMT many how-to questions.
CMT responds swiftly within one to two days.
Nevertheless, updated CMT documentation
and a more accessible API would facilitate
tasks enormously.

• Reviewers need to be educated to provide full
citations and to be careful with asking for com-
parisons with non-peer-reviewed publications
such as ArXiv papers. Reviewers should def-
initely alert authors to such publications, but
asking for a head-to-head comparison against
recent, non-peer-reviewed work is typically un-
fair to authors and needs strong justification.

• Re-submissions: If a reviewer receives the
same submission that they reviewed for a prior
conference, they should be able to mark the

paper as a re-submission (visible only to the
Chairs to avoid biasing other reviewers). This
flag gives the chairs options to appropriately
act on it. For example, the chairs might (1)
assign an additional (un-)biased reviewer or,
(2) in case the paper really has not changed,
they may allow the reviewer to resubmit the
same review. Another idea is to allow the au-
thor to submit the previous reviews with the
paper including a description of how they ad-
dressed the reviews. This might help papers
that are highly controversial and might give
the reviewers additional points of view.

• TPMS scores generally worked well, but there
were definitely papers and reviewers for which
those scores were way off. More specifically,
we observed that:

– The program chairs had to manually check
all the reviewer-provided papers in TPMS
and manually upload papers for review-
ers who did not do it on time. The very
helpful CMT and TPMS teams make it
easy to send papers from CMT to TPMS
and retrieve scores and proposed assign-
ments. Nevertheless, synchronizing the
reviewer emails between the two systems
and checking whether reviewers have up-
loaded papers is done through email cor-
respondence with the TPMS team.

– For some reviewers, the scores result re-
peatedly in clearly sub-optimal assign-
ments. TPMS works off of a set of repre-
sentative papers that are uploaded by the
reviewers. However, some reviewers up-
load papers which misrepresent their ex-
pertise. We had at least 2 cases for which
the assigned papers were far outside the
expertise because of that issue. We fixed
those cases manually.

– TPMS logic is counter-intuitive at times:
a senior researcher who works on five dif-
ferent topics in depth may upload two pa-
pers for each topic. By contrast, a ju-
nior researcher who works on one of these
topics uploads ten papers on that topic.
TPMS appears to give a higher match-
ing score to the junior researcher. The
consequences are only mitigated through
manual check and adjustment.

– TPMS can be gamed through rare key-
words and it seems trivial to build a
tool that tries to significantly increase the

52 SIGMOD Record, June 2019 (Vol. 48, No. 2)

chances of getting certain reviewers from
the committee even without their knowl-
edge. While this shouldn’t be problematic
in practice as it is very similar to explic-
itly listening “preferred” reviewers, it is
something to be aware of.

• The formula we used to combine the “systems”
flag and TPMS scores sometimes results in a
sub-optimal assignment. For example, con-
sider a systems paper on semantic data inte-
gration and two reviewers, one working on the
theoretical aspects of semantic data integra-
tion and another building systems focused on
data cleaning (a topic relevant to, but differ-
ent than data integration). The first reviewer
scores high on topic relevance and the second
scores high on the system trait. It is not clear
which of these two reviewers is preferable and
it becomes even worse considering that the
“relevance” and the research area aspects are
neither discrete nor well-defined values. This
is unfortunately a fundamental issue – it is just
not clear how these two indicators should be
properly combined to generate a quantifiable
“appropriateness” measure. We resolved the
issues by checking the assignments ourselves
visually as well as asking the reviewers for con-
firmation on the appropriateness of the assign-
ments and correcting as needed.

• Additional reviews were solicited manually by
the chairs and this was a huge time sink, es-
pecially when some reviewers refused to take
on the additional assignment. The additional
review solicitation needs to be automated and
reviewer expectations need to be set appropri-
ately beforehand.

• The chairs discovered low-confidence reviews
manually; such reviews, however, should be
flagged automatically to allow for immediate
action.

• A continuous automated analysis of the re-
views as they come in to spot problematic
text, low-confidence reviews, and poorly at-
tended discussions, could all dramatically al-
leviate the overhead that chairs and meta-
reviewers endure while trying to detect the
problem cases manually.

• The meta-reviewers can help suggest appro-
priate reviewers for papers, but this is only
efficient if it is automated.

5. CONCLUSIONS
Overall, the experiment of SIGMOD 2019 with

all its changes (TPMS, no reviewer bidding, re-
viewer suggestions by authors, automatic additional
reviewers for papers with one “weak accept”, etc.)
was a success. Like with every large conference we
did receive some complaints, but those were signif-
icantly fewer than other years. Furthermore, sys-
tems and non-systems papers were treated exactly
the same and neither were at a disadvantage. This
indicates that SIGMOD should remain a single con-
ference and not be split up as recently suggested [6].

However, there is of course also room for im-
provements for future conferences and more poten-
tial things to try out to improve the overall quality
of the reviewing process and with it the quality of
the papers.

Automatically adding reviewers for every pa-
per with one “weak accept” is extremely reward-
ing. In many cases it significantly helped to in-
crease the reviewing quality. Furthermore, review-
ing effort is not wasted on papers which are clear
rejects/accepts. However, assigning additional re-
views has side effects: for instance, the additional
reviews may cause the paper to be rejected while
without the additional reviewers the paper might
have been accepted. This happened with a cou-
ple of SIGMOD 2019 submissions and while authors
expressed concerns, careful monitoring of the pro-
cess revealed that the final decision was the correct
one: a solid paper can withstand thorough review-
ing. As discussed earlier, this process needs to be
more streamlined and better integrated into the re-
viewing workflows.

Preferred Reviewers: Authors have the best
understanding of their work and know their peers.
As a result they are the experts to resolve mis-
conceptions and propose reviewers for their work.
Therefore, increasing author feedback improves the
quality of the conference while asking them to sug-
gest reviewers for their work typically provides ex-
cellent reviewing matches. Of course, as reviewer
identities should be hidden and authors may mis-
use the feature, great care has to be taken on how
the author suggestions are used. Our approach
gives low weight to the authors’ suggestions dur-
ing the automatic assignments and increases the
weight when chairs are looking for additional re-
viewers; this reduces the probability of leaking re-
viewer identities and using malevolent suggestions.

Open reviews: Some conferences have already
moved to the open-review concept. While obvi-
ous reservations exist (e.g., that a reviewer of a
re-submission looks at the reviews of the original
rejected submission), open reviewing constitutes a

SIGMOD Record, June 2019 (Vol. 48, No. 2) 53

strong incentive to create stronger, more thorough
reviews. Thus, testing open reviews for SIGMOD
would be an interesting experiment.

Feedback: A rewarding decision is to allow au-
thors to complain about specific reviews. The chairs
considered every complaint carefully, investigated
them personally, and followed up by discussing with
the reviewers and by inviting additional reviews.
Several authors expressed their appreciation about
the additional steps the SIGMOD organization took
to alleviate all misunderstandings.

Recruiting and tracking reviewers: Recruit-
ing reviewers is a manual and slow process, the lack
of constructive feedback towards the reviewers and
of proper guidelines in writing reviews is still an
issue, and external reviewer load and unresponsive-
ness can have a ripple effect on increasing the load
of other PC members. This entire process has to be
reconsidered and automated as much as possible.

Reviewer delays Reviewers are typically ex-
pected to complete their assignment over several
weeks and stage the work. In practice, however, few
reviewers are organized enough to distribute their
work evenly throughout the review period; most re-
view their entire set of assigned papers in the last
few days before the deadline. As is expected, when
the deadline arrives several papers are missing re-
views and time is wasted trying to hunt down delin-
quent reviewers and obtain guarantees for delivery
of reviews. The reviewing system can provide an
optional parameter setting to enable the reviewers
to plan their work. The parameter can enable fine-
grained deadlines for reviews. For example, if a re-
viewer is responsible for 20 papers, they can set the
deadline for the first five papers in two weeks, the
next five after four weeks and so on, and receive au-
tomatic reminders. The PC chair may enforce such
fine-grained deadlines and receive input on progress.
Based on the input, the chair can re-balance load
among reviewers as needed.

Plug-in Structure: If existing conference man-
agement tools were providing APIs for integrating
external plugins/tools and potentially a sandbox
environment, many tasks we had to perform would
be much easier and faster to do.

Evaluation: The conference system can provide
custom success metrics defined based on the pro-
cedures in place, and collect data accordingly. For
example, it would have been great to know how
many reviewers changed their rating after the dis-

cussion or after reading author feedback, and how
they changed it (favorably or not).

To implement the suggestions above it is impor-
tant that the PC Chairs are engaged two years be-
fore the conference (one year before the first dead-
line) so that they have time to work with the con-
ference system to put all processes in place.

6. ACKNOWLEDGMENTS
We wholeheartedly thank the authors of SIG-

MOD 2019 submissions as well as the reviewers
for their impeccable collaboration and timely re-
sponse during the process. We also thank the SIG-
MOD 2019 executive committee for their support
and feedback.

7. AUTHORS AND ROLES
The four authors worked together from Decem-

ber 2017 until June 2019. Anastasia Ailamaki is
the SIGMOD 2019 Program Chair, and Amol Desh-
pande and Tim Kraska are the vice Program Chairs
for the SIGMOD 2019 Research Track. The three
collaborated with the reviewers in shaping the pro-
gram of SIGMOD 2019. Periklis Chrysogelos sup-
ported the entire reviewing assignment system by
designing the formulas, implementing the scripts
and tuning and interacting with CMT as needed.

8. REFERENCES
[1] Aminer. https://aminer.org/.
[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent

dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

[3] L. Charlin and R. Zemel. The toronto paper
matching system: an automated
paper-reviewer assignment system. Proceedings
of the 30th International Conference on
Machine Learning, 2013.

[4] Conference management toolkit.
https://cmt3.research.microsoft.com.

[5] M. Grant and S. Boyd. Cvx: Matlab software
for disciplined convex programming, 2014.

[6] M. Stonebraker. My top ten fears about the
DBMS field. In 34th IEEE International
Conference on Data Engineering, 2018.

[7] C. J. Taylor. On the optimal assignment of
conference papers to reviewers. Technical
Report, 2008.

54 SIGMOD Record, June 2019 (Vol. 48, No. 2)

