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Guest Editor’s Notes 
	

Welcome	to	the	March	2020	issue	of	the	ACM	SIGMOD	Record!		
	
The	new	year	of	2020	begins	with	a	special	issue	on	the	2019	ACM	SIGMOD	Research	Highlight	
Award.	This	 is	an	award	 for	 the	database	community	 to	showcase	a	set	of	 research	projects	 that	
exemplify	core	database	research.	In	particular,	these	projects	address	an	important	problem,	rep-
resent	a	definitive	milestone	 in	 solving	 the	problem,	and	have	 the	potential	of	 significant	 impact.	
This	award	also	aims	to	make	the	selected	works	widely	known	in	the	database	community,	to	our	
industry	partners,	and	to	the	broader	ACM	community.		
	
The	 award	 committee	 and	 editorial	 board	 included	 Rada	 Chirkova,	Wim	Martens,	 Jun	 Yang,	 and	
Divesh	Srivastava.	 	We	solicited	articles	 from	PODS	2019,	SIGMOD	2019,	VLDB	2019,	 ICDE	2019,	
EDBT	2019,	and	ICDT	2019,	as	well	as	from	community	nominations.	Through	a	careful	review	pro-
cess	 eight	 articles	were	 finally	 selected	 as	 2019	Research	Highlights.	 The	 authors	 of	 each	 article	
worked	 closely	with	 an	 associate	 editor	 to	 rewrite	 the	 article	 into	 a	 compact	 8-page	 format,	 and	
improved	it	to	appeal	to	the	broad	data	management	community.	In	addition,	each	research	high-
light	is	accompanied	by	a	one-page	technical	perspective	written	by	an	expert	on	the	topic	present-
ed	 in	 the	 article.	 	 The	 technical	 perspective	provides	 the	 reader	 with	 an	 overview	 of	 the	 back-
ground,	the	motivation,	and	the	key	innovation	of	the	featured	research	highlight,	as	well	as	its	sci-
entific	and	practical	significance.		
	
The	2019	research	highlights	cover	a	broad	set	of	topics,	including	(a)	an	automatic	way	of	checking	
for	invariant	confluence	to	enable	scaling	distributed	database	systems	with	consistent	semantics	
(“Checking	Invariant	Confluence,	In	Whole	or	In	Parts”);	(b)	a	checkpoint	and	recovery	method	with	
the	ability	to	scale	throughput	linearly	on	a	large	multicore	server	with	negligible	increase	of	laten-
cy	(“Concurrent	Prefix	Recovery:	Performing	CPR	on	a	Database”);	(c)	the	computational	complexi-
ty	of	regular	document	spanners,	which	provide	an	abstraction	for	Information	Extraction	rules	
(“Constant-Delay	Enumeration	for	Nondeterministic	Document	Spanners”);	(d)	a	database	perspec-
tive	on	the	problem	of	fairness	in	machine	learning	(“Database	Repair	Meets	Algorithmic	Fair-
ness”);	(e)	showing	the	potential	of	recursive	computations	on	an	RDBMS	as	the	backend	for	large-
scale	machine	learning	(“Declarative	Recursive	Computation	on	an	RDBMS”);	(f)	a	general	frame-
work	for	detecting	if	all	three	problems	of	enumeration,	counting	and	uniform	generation	are	effi-
ciently	solvable	(“Efficient	Logspace	Classes	for	Enumeration,	Counting,	and	Uniform	Generation”);	
(g)	the	use	of	core	RDMBS	techniques	to	explain	the	predictions	of	a	deep	ML	model	(“Query	Opti-
mization	for	Faster	Deep	CNN	Explanations”);	and	(h)	an	efficient	and	tamper-proof	way	to	retrieve	
and	use	historical	data	on	a	blockchain	(“Revealing	Every	Story	of	Data	in	Blockchain	Systems”).	

On	 behalf	 of	 the	 SIGMOD	Record	Editorial	 Board,	 I	 hope	 that	 you	 enjoy	 reading	 the	March	 2020	
issue	of	the	SIGMOD	Record!		
	

Divesh	Srivastava	

March	2020	
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TECHNICAL PERSPECTIVE:
Checking Invariant Confluence, In Whole or In Parts

Johannes Gehrke
Microsoft Research
Redmond, WA; USA

johannes@acm.org

Never make a promise - you may have to keep it. — Neil
Jordan

Database systems were known to provide strong consis-
tency guarantees. As an example, database textbook de-
fines the ACID guarantees as “four important properties of
transactions to maintain data in the face of concurrent ac-
cess and system failures” [2]. Beyond atomicity, consistency,
and durability, the “I” in ACID is loosely defined as “Users
should be able to understand a transaction without consider-
ing the effects of other concurrently executing transactions,
even if the DBMS interleaves the actions of several trans-
actions for performance reasons” [2]. In the resulting model
called serializable execution, each transaction operates like
it has the database to itself, and the result of running a set
of transactions is equivalent to some serial execution of these
transactions.

Serializable execution implies an ordering of transactions
based on conflicts, where a conflict means that we have two
transactions that are accessing the same database record,
and at least one of them is a write. To ensure a serial order-
ing of the transactions, the conflicts must be totally ordered
across transactions. In other words, if two transactions con-
flict, they need to coordinate. However, coordination has a
price. If the database system is located within a single data
center, coordination across nodes costs a few hundred mi-
croseconds, but if the system is wide-area distributed across
several data centers, the delay between nodes may be in the
10s of milliseconds, restricting throughput to 10s of opera-
tions in the worst case. And in case the network is parti-
tioned, the system may not be available at all.

For a while, most distributed systems dealt with this trade-
off in one of two ways. One popular option was to focus on
high availability and low latency and perform the coordi-
nation asynchronously. Unfortunately this approach only
provides weak consistency guarantees, so applications must
use additional mechanisms such as compensation transac-
tions or custom conflict resolution strategies, or they must
restrict the programming model to eliminate the possibility
of conflicts, for example by only allowing updates of a single
record. Another approach was to insist on strong consis-
tency and to accept slower response times because of coor-
dination between nodes. It seemed like consistent semantics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

was not such a good idea after all.
In a recent landmark paper, Bailis et al asked the intrigu-

ing question: Are there cases where we may not need coordi-
nation between transactions at all, and thus we can achieve
both high availability and low latency while maintaining
application-level constraints [1]? The somewhat surprising
answer is that in many practical scenarios the answer is yes.
The paper introduced invariant confluence, a criterion that
determines whether a set of transactions requires coordina-
tion for correct execution while maintaining integrity con-
straints. The framework requires developers to state the in-
tegrity constraints of the application on the database state
a priori, but then it provides a necessary and sufficient con-
dition for coordination-free execution. The resulting system
only needs to coordinate in cases where the framework in-
dicates that coordination is necessary; if it is possible, the
framework guarantees that transactions do not violate any
of the stated integrity constraints even if transactions do not
coordinate. Analyzing TPC-C with invariant confluence by
manually extracting the inherent constraints enabled Bailis
et al. to show that only two of the twelve TPC-C constraints
are not invariant confluent, and when applying the result-
ing insights to scaling TPC-C, they outperformed the previ-
ous best result of scaling TPC-C New-Order performance by
factor of 25! However, coming up with the constraints and
analyzing them is challenging as the authors admit them-
selves in the paper: “We have found the process of invariant
specification to be non-trivial but feasible in practice;” [1].

The following paper is automating this manual process.
The task of determining invariant confluence for an object
given a set of transactions is no longer an exercise for the
reader; instead, the paper provides an automatic way of
checking for invariant confluence — a leap forward towards
making the concept practical. The paper also goes a step
further by taking objects that are not invariant confluent
and in some cases allowing at least only occasional coor-
dination instead of requiring coordination all the time. A
beautiful set of results that is an important step towards
scaling distributed database systems — with consistent se-
mantics after all.

1. REFERENCES
[1] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.

Hellerstein, and I. Stoica. Coordination avoidance in
database systems. Proc. VLDB Endow., 8(3):185–196,
2014.

[2] R. Ramakrishnan and J. Gehrke. Database
management systems (3. ed.). McGraw-Hill, 2003.
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Checking Invariant Confluence, In Whole or In Parts

Michael Whittaker
UC Berkeley
Berkeley, CA

mjwhittaker@berkeley.edu

Joseph M. Hellerstein
UC Berkeley
Berkeley, CA

hellerstein@berkeley.edu

ABSTRACT
Strongly consistent distributed systems are easy to reason
about but face fundamental limitations in availability and
performance. Weakly consistent systems can be implemented
with very high performance but place a burden on the ap-
plication developer to reason about complex interleavings
of execution. Invariant confluence provides a formal frame-
work for understanding when we can get the best of both
worlds. An invariant confluent object can be efficiently repli-
cated with no coordination needed to preserve its invariants.
However, actually determining whether or not an object is
invariant confluent is challenging.

In this paper, we establish conditions under which a com-
monly used sufficient condition for invariant confluence is
both necessary and sufficient, and we use this condition to
design a general-purpose interactive invariant confluence de-
cision procedure. We then take a step beyond invariant
confluence and introduce a generalization of invariant con-
fluence, called segmented invariant confluence, that allows
us to replicate non-invariant confluent objects with a small
amount of coordination. We implement these formalisms
in a prototype called Lucy and find that our decision pro-
cedures efficiently handle common real-world workloads in-
cluding foreign keys, escrow transactions, and more.

1. INTRODUCTION
When an application designer decides to replicate a piece

of data, they have to make a fundamental choice between
weak and strong consistency. Replicating the data with
strong consistency using a technique like distributed trans-
actions [7] or state machine replication [14] makes the appli-
cation designer’s life very easy. To the developer, a strongly
consistent system behaves exactly like a single-threaded sys-
tem running on a single node, so reasoning about the be-
havior of the system is simple [12]. Unfortunately, strong
consistency is at odds with performance. The CAP theorem

The original version of this paper is entitled “Interactive
Checks for Coordination Avoidance” and was published in
PVLDB Vol. 12.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
c©VLDB Endowment 2018. This is a minor revision of the pa-

per entitled “Interactive Checks for Coordination Avoidance”, pub-
lished in PVLDB, Vol. 12, No. 1, ISSN 2150-8097. DOI:
https://doi.org/10.14778/3275536.3275538

and PACELC theorem tell us that strongly consistent sys-
tems suffer from higher latency at best and unavailability
at worst [9, 1]. On the other hand, weak consistency mod-
els like eventual consistency [24], PRAM consistency [17],
causal consistency [2], and others [19, 20] allow data to be
replicated with high availability and low latency, but they
put a tremendous burden on the application designer to rea-
son about the complex interleavings of operations that are
allowed by these weak consistency models. In particular,
weak consistency models strip an application developer of
one of the earliest and most effective tools that is used to
reason about the execution of programs: application invari-
ants [13, 5] such as database integrity constraints [11]. Even
if every transaction executing in a weakly consistent system
individually maintains an application invariant, the system
as a whole can produce invariant-violating states.

Is it possible for us to have our strongly consistent cake
and eat it with high availability too? Can we replicate a
piece of data with weak consistency but still ensure that its
invariants are maintained? Yes... sometimes. Bailis et al.
introduced the notion of invariant confluence as a necessary
and sufficient condition for when invariants can be main-
tained over replicated data without the need for any coor-
dination [3]. If an object is invariant confluent with respect
to an invariant, we can replicate it with the performance
benefits of weak consistency and (some of) the correctness
benefits of strong consistency.

Unfortunately, to date, the task of identifying whether or
not an object actually is invariant confluent has remained
an exercise in human proof generation. Bailis et al. man-
ually categorized a set of common objects, transactions,
and invariants (e.g. foreign key constraints on relations, lin-
ear constraints on integers) as invariant confluent or not.
Hand-written proofs of this sort are unreasonable to expect
from programmers. Ideally we would have a general-purpose
program that could automatically determine invariant con-
fluence for us. The first main thrust of this paper
is to make invariant confluence checkable: to design
a general-purpose invariant confluence decision procedure,
and implement it in an interactive system.

Unfortunately, designing such a general-purpose decision
procedure is impossible because determining the invariant
confluence of an object is undecidable in general. Still, we
can develop a decision procedure that works well in the com-
mon case. For example, many prior efforts have developed
decision procedures for invariant closure, a sufficient (but
not necessary) condition for invariant confluence [16, 15].
The existing approaches check whether an object is invari-
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ant closed. If it is, then they conclude that it is also invariant
confluent. If it’s not, then the current approaches are un-
able to conclude anything about whether or not the object
is invariant confluent.

In this paper, we take a step back and study the underly-
ing reason why invariant closure is not necessary for invari-
ant confluence. Using this understanding, we construct a
set of modest conditions under which invariant closure and
invariant confluence are in fact equivalent, allowing us to
reduce the problem of determining invariant confluence to
that of determining invariant closure. Then, we use these
conditions to design a general-purpose interactive invariant
confluence decision procedure.

The second main thrust of this paper is to par-
tially avoid coordination even in programs that re-
quire it, by generalizing invariant confluence to a property
called segmented invariant confluence. While invariant con-
fluence characterizes objects that can be replicated without
any coordination, segmented invariant confluence allows us
to replicate non-invariant confluent objects with only occa-
sional coordination. The main idea is to divide the set of
invariant-satisfying states into segments, with a restricted
set of transactions allowed in each segment. Within a seg-
ment, servers act without any coordination; they synchro-
nize only to transition across segment boundaries. This de-
sign highlights the trade-off between application complex-
ity and coordination-freedom; more complex applications
require more segments which require more coordination.

Finally, we present Lucy: an implementation of our deci-
sion procedures and a system for replicating invariant conflu-
ent and segmented invariant confluent objects. Using Lucy,
we find that our decision procedures can efficiently handle
a wide range of common workloads. For example, in Sec-
tion 6, we apply Lucy to foreign key constraints and escrow
transactions. Lucy processes these workloads in less than
half a second, and no workload requires more than 66 lines
of code to specify.

2. INVARIANT CONFLUENCE
Informally, a replicated object is invariant confluent

with respect to an invariant if every replica of the object
is guaranteed to satisfy the invariant despite the possibility
of different replicas being concurrently modified or merged
together [3]. In this section, we make this informal notion
of invariant confluence precise.

We begin by introducing our system model of replicated
objects in which a distributed object and an invariant are
replicated across a set of servers. Clients send transactions
to servers, and servers execute transactions so long as they
maintain the invariant. Servers execute transactions without
coordination, but to avoid state divergence, servers periodi-
cally gossip with one another and merge their replicas.

2.1 System Model
A distributed object O = (S,t) consists of a set S of

states and a binary merge operator t : S × S → S that
merges two states into one. A transaction t : S → S is a
function that maps one state to another. An invariant I is
a subset of S. Notationally, we write I(s) to denote that s
satisfies the invariant (i.e. s ∈ I) and ¬I(s) to denote that
s does not satisfy the invariant (i.e. s /∈ I).

Example 1. O = (Z,max) is a distributed object consisting
of integers merged by the max function; t(x) = x + 1 is a
transaction that adds one to a state; and {x ∈ Z |x ≥ 0} is
the invariant that states x are non-negative.

In our system model, a distributed object O is replicated
across a set p1, . . . , pn of n servers. Each server pi manages
a replica si ∈ S of the object. Every server begins with
a start state s0 ∈ S, a fixed set T of transactions, and an
invariant I. Servers repeatedly perform one of two actions.

First, a client can contact a server pi and request that
it execute a transaction t ∈ T . pi speculatively executes t,
transitioning from state si to state t(si). If t(si) satisfies
the invariant—i.e. I(t(si))—then pi commits the transac-
tion and remains in state t(si). Otherwise, pi aborts the
transaction and reverts to state si.

Second, a server pi can send its state si to another server
pj with state sj causing pj to transition from state sj to
state si t sj . Servers periodically merge states with one
another in order to keep their states loosely synchronized.
Note that unlike with transactions, servers cannot abort a
merge; server pj must transition from sj to si t sj whether
or not si t sj satisfies the invariant.

Informally, O is invariant confluent with respect to s0,
T , and I, abbreviated (s0, T, I)-confluent, if every replica
s1, . . . , sn is guaranteed to always satisfy the invariant I in
every possible execution of the system.

2.2 Expression-Based Formalism
To define invariant confluence formally, we represent a

state produced by a system execution as a simple expression
generated by the grammar

e ::= s | t(e) | e1 t e2

where s represents a state in S and t represents a transac-
tion in T . As an example, consider the system execution in
Figure 1a in which a distributed object is replicated across
servers p1, p2, and p3. Server p3 begins with state s0, tran-
sitions to state s2 by executing transaction u, transitions to
state s5 by executing transaction w, and then transitions to
state s7 by merging with server p1. Similarly, server p1 ends
up with state s6 after executing transactions t and v and
merging with server p2. In Figure 1b, we see the abstract
syntax tree of the corresponding expression for state s7.

p1

p2

p3

s0 s1 s3 s6

s0 s2 s4

s0 s2 s5 s7

t v

u

u w

(a) System Execution

t
s7

w
s5

t
s6

u
s2

s0

v
s3

t
s1

s0

t
s4

t
s1

s0

u
s2

s0

(b) Expression
Figure 1: A system execution and corresponding
expression

We say an expression e is (s0, T, I)-reachable if it corre-
sponds to a valid execution of our system model. Formally,
we define reachable(s0,T,I)(e) to be the predicate that satis-
fies the following conditions:
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• reachable(s0,T,I)(s0).

• For all expressions e and for all transactions t in the
set T of transactions, if reachable(s0,T,I)(e) and I(t(e)),
then reachable(s0,T,I)(t(e)).

• For expressions e1 and e2, if reachable(s0,T,I)(e1) and
reachable(s0,T,I)(e2), then reachable(s0,T,I)(e1 t e2).

Similarly, we say a state s ∈ S is (s0, T, I)-reachable if
there exists an (s0, T, I)-reachable expression e that evalu-
ates to s. Returning to Example 1 with start state s0 = 42,
we see that all integers greater than or equal to 42 (i.e.
{x ∈ Z |x ≥ 42}) are (s0, T, I)-reachable, and all other inte-
gers are (s0, T, I)-unreachable.

Finally, we say O is invariant confluent with respect to
s0, T , and I, abbreviated (s0, T, I)-confluent, if all reach-
able states satisfy the invariant:

{s ∈ S | reachable(s0,T,I)(s)} ⊆ I

3. INVARIANT CLOSURE
Our ultimate goal is to write a program that can auto-

matically decide whether a given distributed object O is
(s0, T, I)-confluent. Such a program has to automatically
prove or disprove that every reachable state satisfies the in-
variant. However, automatically reasoning about the possi-
bly infinite set of reachable states is challenging, especially
because transactions and merge functions can be complex
and can be interleaved arbitrarily in an execution. Due to
this complexity, existing systems that aim to automatically
decide invariant confluence instead focus on deciding a suf-
ficient condition for invariant confluence—dubbed invari-
ant closure—that is simpler to reason about [16, 15]. In
this section, we define invariant closure and study why the
condition is sufficient but not necessary. Armed with this
understanding, we present conditions under which it is both
sufficient and necessary.

We say an object O = (S,t) is invariant closed with
respect to an invariant I, abbreviated I-closed, if invariant
satisfying states are closed under merge. That is, for every
state s1, s2 ∈ S, if I(s1) and I(s2), then I(s1 t s2).

Theorem 1. Given an object O = (S,t), a start state s0 ∈
S, a set of transactions T , and an invariant I, if I(s0) and
if O is I-closed, then O is (s0, T, I)-confluent.

Theorem 1 states that invariant closure is sufficient for
invariant confluence. Intuitively, our system model ensures
that transaction execution preserves the invariant, so if merg-
ing states also preserves the invariant and if our start state
satisfies the invariant, then inductively it is impossible for
us to reach a state that doesn’t satisfy the invariant.

This is good news because checking if an object is invariant
closed is more straightforward than checking if it is invariant
confluent. Existing systems typically use an SMT solver like
Z3 to check if an object is invariant closed [8, 4, 10]. If it is,
then by Theorem 1, it is invariant confluent. Unfortunately,
invariant closure is not necessary for invariant confluence,
so if an object is not invariant closed, these systems cannot
conclude that the object is not invariant confluent. The
reason why invariant closure is not necessary for invariant
confluence is best explained through an example.

x

y

s0

s1

s2

s3

(a) Invariant

x

y

s0

s1

s2

s3

(b) Reachable points
Figure 2: An illustration of Example 2

Example 2. Let O = (Z×Z,t) consist of pairs (x, y) of in-
tegers where (x1, y1)t (x2, y2) = (max(x1, x2),max(y1, y2)).
Our start state s0 ∈ Z×Z is (0, 0). Our set T of transactions
consists of two transactions: tx+1((x, y)) = (x + 1, y) which
increments x and ty−1((x, y)) = (x, y− 1) which decrements
y. Our invariant I = {(x, y) ∈ Z×Z |xy ≤ 0} consists of all
points (x, y) where the product of x and y is non-positive.

The invariant and the set of reachable states are illus-
trated in Figure 2 in which we draw each state (x, y) as a
point in space. The invariant consists of the second and
fourth quadrant, while the reachable states consist only of
the fourth quadrant. From this, it is immediate that the
reachable states are a subset of the invariant, so O is in-
variant confluent. However, letting s1 = (−1, 1) and s2 =
(1,−1), we see that O is not invariant closed. I(s1) and
I(s2), but letting s3 = s1 t s2 = (1, 1), we see ¬I(s3).

In Example 2, s1 and s2 witness the fact that O is not
invariant closed, but s1 is not reachable. This is not partic-
ular to Example 2. In fact, it is fundamentally the reason
why invariant closure is not equivalent to invariant conflu-
ence. Invariant confluence is, at its core, a property of reach-
able states, but invariant closure is completely ignorant of
reachability. As a result, invariant-satisfying yet unreach-
able states like s1 are the key hurdle preventing invariant
closure from being equivalent to invariant confluence. This
is formalized by Theorem 2.

Theorem 2. Consider an object O = (S,t), a start state
s0 ∈ S, a set of transactions T , and an invariant I. If the
invariant is a subset of the reachable states (i.e. I ⊆ {s ∈
S | reachable(s0,T,I)(s)}), then

(I(s0) and O is I-closed) ⇐⇒ O is (s0, T, I)-confluent

The forward direction of Theorem 2 follows immediately
from Theorem 1. The backward direction holds because any
two invariant satisfying states s1 and s2 must be reachable
(by assumption), so their join s1 t s2 is also reachable. And
because O is (s0, T, I)-confluent, all reachable points, includ-
ing s1 t s2, satisfy the invariant.

4. INTERACTIVE DECISION PROCEDURE
Theorem 2 tells us that if all invariant satisfying points are

reachable, then invariant closure and invariant confluence
are equivalent. In this section, we present the interactive in-
variant confluence decision procedure shown in Algorithm 1,
that takes advantage of this result.

A user provides Algorithm 1 with an object O = (S,t),
a start state s0, a set of transactions T , and an invariant I.
The user then interacts with Algorithm 1 to iteratively elim-
inate unreachable states from the invariant. Meanwhile, the
algorithm leverages an invariant closure decision procedure
to either (a) conclude that O is or is not (s0, T, I)-confluent
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Algorithm 1 Interactive invariant confluence decision pro-
cedure

// Return if O is (s0, T, I)-confluent.
function IsInvConfluent(O, s0, T , I)

return I(s0) and Helper(O, s0, T , I, {s0}, ∅)

// R is a set of (s0, T, I)-reachable states.
// NR is a set of (s0, T, I)-unreachable states.
// I(s0) is a precondition.
function Helper(O, s0, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I −NR)
if closed then return true
Augment R,NR with random search and user input
if s1, s2 ∈ R then return false

return Helper(O, s0, T , I, R, NR)

or (b) provide counterexamples to the user to help them
eliminate unreachable states. After all unreachable states
have been eliminated from the invariant, Theorem 2 allows
us to reduce the problem of invariant confluence directly to
the problem of invariant closure, and the algorithm termi-
nates. We now describe Algorithm 1 in detail. An example
of how to use Algorithm 1 on Example 2 is given in Figure 3.

IsInvConfluent assumes access to an invariant closure
decision procedure IsIclosed(O, I). IsIclosed(O, I) re-
turns a triple (closed, s1, s2). closed is a boolean indicating
whether O is I-closed. If closed is true, then s1 and s2 are
null. Otherwise, s1 and s2 are a counterexample witnessing
the fact that O is not I-closed. That is, I(s1) and I(s2),
but ¬I(s1 t s2) (e.g., s1 and s2 from Example 2). As we
mentioned earlier, we can (and do) implement the invariant
closure decision procedure using an SMT solver like Z3 [8].
IsInvConfluent first checks that s0 satisfies the invari-

ant. s0 is reachable, so if it does not satisfy the invari-
ant, then O is not (s0, T, I)-confluent and IsInvConfluent
returns false. Otherwise, IsInvConfluent calls a helper
function Helper that—in addition to O, s0, T , and I—
takes as arguments a set R of (s0, T, I)-reachable states and
a set NR of (s0, T, I)-unreachable states. Like IsInvCon-
fluent, Helper(O, s0, T, I, R,NR) returns whether O is
(s0, T, I)-confluent (assuming R and NR are correct). As
Algorithm 1 executes, NR is iteratively increased, which
removes unreachable states from I until I is a subset of
{s ∈ S | reachable(s0,T,I)(s)}.

First, Helper checks to see if O is (I − NR)-closed. If
IsIclosed determines that O is (I − NR)-closed, then by
Theorem 1, O is (s0, T, I −NR)-confluent, so

{s ∈ S | reachable(s0,T,I−NR)(s)} ⊆ I −NR ⊆ I

Because NR only contains (s0, T, I)-unreachable states, then
the set of (s0, T, I)-reachable states is equal to set of (s0, T, I−
NR)-reachable states which, as we just showed, is a subset
of I. Thus, O is (s0, T, I)-confluent, so Helper returns true.

If IsIclosed determines that O is not (I − NR)-closed,
then we have a counterexample s1, s2. We want to determine
whether s1 and s2 are reachable or unreachable. We can do
so in two ways. First, we can randomly generate a set of
reachable states and add them to R. If s1 or s2 is in R, then
they are reachable. Second, we can prompt the user to tell
us directly whether the states are reachable or unreachable.

In addition to labelling s1 and s2 as reachable or unreach-

able, the user can also refine I by augmenting R and NR
arbitrarily (see Figure 3 for example). In this step, we also
make sure that s0 /∈ NR since we know that s0 is reachable.

After s1 and s2 have been labelled as (s0, T, I)-reachable
or not, we continue. If both s1 and s2 are (s0, T, I)-reachable,
then so is s1 t s2, but ¬I(s1 t s2). Thus, O is not (s0, T, I)-
confluent, so Helper returns false. Otherwise, one of s1 and
s2 is (s0, T, I)-unreachable, so we recurse.
Helper recurses only when one of s1 or s2 is unreachable,

so NR grows after every recursive invocation of Helper.
Similarly, R continues to grow as Helper randomly explores
the set of reachable states. As the user sees more and more
examples of unreachable and reachable states, it often be-
comes easier and easier for them to recognize patterns that
define which states are reachable and which are not. As
a result, it becomes easier for a user to augment NR and
eliminate a large number of unreachable states from the in-
variant. See Figure 3, for example. Once NR has been
sufficiently augmented to the point that I − NR is a sub-
set of the reachable states, Theorem 2 guarantees that the
algorithm will terminate after one more call to IsIclosed.

5. SEGMENTED INVARIANT CONFLUENCE
If a distributed object is invariant confluent, then the ob-

ject can be replicated without the need for any form of coor-
dination to maintain the object’s invariant. But what if the
object is not invariant confluent? In this section, we present
a generalization of invariant confluence called segmented
invariant confluence that can be used to maintain the in-
variants of non-invariant confluent objects, requiring only a
small amount of coordination.

The main idea behind segmented invariant confluence is
to segment the state space into a number of segments and
restrict the set of allowable transactions within each segment
in such a way that the object is invariant confluent within
each segment (even though it may not be globally invariant
confluent). Then, servers can run coordination-free within a
segment and need only coordinate when transitioning from
one segment to another. We now formalize segmented invari-
ant confluence, describe the system model we use to repli-
cate segmented invariant confluent objects, and introduce a
segmented invariant confluence decision procedure.

5.1 Formalism
Consider a distributed object O = (S,t), a start state

s0 ∈ S, a set of transitions T , and an invariant I. A segmen-
tation Σ = (I1, T1), . . . , (In, Tn) is a sequence of n segments
(Ii, Ti) where every Ti is a subset of T and every Ii ⊆ S
is an invariant. Note that Σ is a sequence, not a set. The
reason for this will become clear in the next subsection. O is
segmented invariant confluent with respect to s0, T , I,
and Σ, abbreviated (s0, T, I,Σ)-confluent, if the following
conditions hold:

• The start state satisfies the invariant (i.e. I(s0)).

• I is covered by the invariants in Σ (i.e. I = ∪n
i=1Ii).

Note that invariants in Σ do not have to be disjoint.
That is, they do not have to partition I; they just have
to cover I.

• O is invariant confluent within each segment. That is,
for every (Ii, Ti) ∈ Σ and for every state s ∈ Ii, O is
(s, Ti, Ii)-confluent.
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R NR I −NR

(a) IsInvConfluent determines I(s0) and
then calls Helper with R = {s0}, NR = ∅,
and I = {(x, y) |xy ≤ 0}.

R NR I −NR

(b) Helper determines that O is not (I −NR)-closed with coun-
terexample s1 = (−1, 1) and s2 = (1,−1). Helper randomly gener-
ates some (s0, T, I)-reachable points and adds them to R. Luck-
ily for us, s2 ∈ R, so Helper knows that it is (s0, T, I)-reachable.
Helper is not sure about s1, so it asks the user. After some
thought, the user tells Helper that s1 is (s0, T, I)-unreachable,
so Helper adds s1 to NR and then recurses.

R NR I −NR

(c) Helper determines that O is not
(I −NR)-closed with counterexample s1 =
(−1, 2) and s2 = (3,−3). Helper randomly
generates some (s0, T, I)-reachable points
and adds them to R. s1, s2 /∈ R,NR, so
Helper ask the user to label them. The
user puts s1 in NR and s2 in R. Then,
Helper recurses.

R NR I −NR

(d) Helper determines that O is not (I −NR)-closed with coun-
terexample s1 = (−2, 1) and s2 = (1,−1). Helper randomly gener-
ates some (s0, T, I)-reachable points and adds them to R. s2 ∈ R
but s1 /∈ R,NR, so Helper asks the user to label s1. The user
notices a pattern in R and NR and after some thought, con-
cludes that every point with negative x-coordinate is (s0, T, I)-
unreachable. They update NR to −Z×Z. Then, Helper recurses.
Helper determines that O is (I −NR)-closed and returns true!

Figure 3: An example of a user interacting with Algorithm 1 on Example 2. Each step of the visualization
shows reachable states R (left), non-reachable states NR (middle), and the refined invariant I −NR (right) as
the algorithm executes.

Example 3. Consider again the object O = (Z × Z,t),
transactions T = {tx+1, ty−1}, and invariant I = {(x, y) |xy ≤
0} from Example 2, but now let the start state s0 be (−42, 42).
O is not (s0, T, I)-confluent because the points (0, 42) and
(42, 0) are reachable, and merging these points yields (42, 42)
which violates the invariant. However, O is (s0, T, I,Σ)-
confluent for Σ = (I1, T1), (I2, T2), (I3, T3), (I4, T4) where

I1 = {(x, y) |x < 0, y > 0} T1 = {tx+1, ty−1}
I2 = {(x, y) |x ≥ 0, y ≤ 0} T2 = {tx+1, ty−1}
I3 = {(x, y) |x = 0} T3 = {ty−1}
I4 = {(x, y) | y = 0} T4 = {tx+1}

Σ is illustrated in Figure 4. Clearly, s0 satisfies the invariant,
and I1, I2, I3, I4 cover I. Moreover, for every (Ii, Ti) ∈ Σ, we
see that O is Ii-closed, so O is (s, Ti, II)-confluent for every
s ∈ Ii. Thus, O is (s0, T, I,Σ)-confluent.

(a) (I1, T1). (b) (I2, T2). (c) (I3, T3). (d) (I4, T4).
Figure 4: An illustration of Example 3

5.2 System Model
Now, we describe the system model used to replicate a

segmented invariant confluent object without any coordi-

nation within a segment and with only a small amount of
coordination when transitioning between segments. As be-
fore, we replicate an object O across a set p1, . . . , pn of n
servers each of which manages a replica si ∈ S of the object.
Every server begins with s0, T , I, and Σ. Moreover, at any
given point in time, a server designates one of the segments
in Σ as its active segment. Initially, every server chooses
the first segment (Ii, Ti) ∈ Σ such that Ii(s0) to be its ac-
tive segment. We’ll see momentarily the significance of the
active segment.

As before, servers repeatedly perform one of two actions:
execute a transaction or merge states with another server.
Merging states in the segmented invariant confluence system
model is identical to merging states in the invariant conflu-
ence system model. A server pi sends its state si to another
server pj which must merge si into its state sj . Transac-
tion execution in the new system model, on the other hand,
is more involved. Consider a server si with active segment
(Ii, Ti). A client can request that pi execute a transaction
t. We consider what happens when t ∈ Ti and when t /∈ Ti.

If t /∈ Ti, then pi initiates a round of global coordina-
tion to execute t. During global coordination, every server
temporarily stops processing transactions and transitions to
state s = s1t . . .tsn, the join of every server’s state. Then,
every server speculatively executes t transitioning to state
t(s). If t(s) violates the invariant (i.e. ¬I(t(s))), then every
server aborts t and reverts to state s. Then, pi replies to the
client. If t(s) satisfies the invariant (i.e. I(t(s))), then every
server commits t and remains in state t(s). Every server
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then chooses the first segment (Ii, Ti) ∈ Σ such that Ii(t(s))
to be the new active segment. Note that such a segment is
guaranteed to exist because the segment invariants cover I.
Moreover, Σ is ordered, as described in the previous sub-
section, so every server will deterministically pick the same
active segment. In fact, an invariant of the system model is
that at any given point of normal processing, every server
has the same active segment.

Otherwise, if t ∈ Ti, then pi executes t immediately and
without coordination. If t(si) satisfies the active invariant
(i.e. Ii(t(si))), then pi commits t, stays in state t(si), and
replies to the client. If t(si) violates the global invariant (i.e.
¬I(t(si))), then pi aborts t, reverts to state si, and replies to
the client. If t(si) satisfies the global invariant but violates
the active invariant (i.e. I(t(si)) but ¬Ii(t(si))), then pi re-
verts to state si and initiates a round of global coordination
to execute t, as described in the previous paragraph.

This system model guarantees that all replicas of a seg-
mented invariant confluent object always satisfy the invari-
ant. All servers begin in the same initial state and with
the same active segment. Thus, because O is invariant con-
fluent with respect to every segment, servers can execute
transactions within the active segment without any coordi-
nation and guarantee that the invariant is never violated.
Any operation that would violate the assumptions of the
invariant confluence system model (e.g. executing a transac-
tion that’s not permitted in the active segment or executing
a permitted transaction that leads to a state outside the
active segment) triggers a global coordination. Globally co-
ordinated transactions are only executed if they maintain
the invariant. Moreover, if a globally coordinated transac-
tion leads to another segment, the coordination ensures that
all servers begin in the same start state and with the same
active segment, reestablishing the assumptions of the invari-
ant confluence system model.

5.3 Interactive Decision Procedure
In order for us to determine whether or not an object O

is (s0, T, I,Σ)-confluent, we have to determine whether or
not O is invariant confluent within each segment (Ii, Ti) ∈
Σ. That is, we have determine if O is (s, Ti, Ii)-confluent
confluent for every state s ∈ Ii. Ideally, we could leverage
Algorithm 1, invoking it once per segment. Unfortunately,
Algorithm 1 can only be used to determine if O is (s, Ti, Ii)-
confluent for a particular state s ∈ Ii, not for every state
s ∈ Ii. Thus, we would have to invoke Algorithm 1 |Ii| times
for every segment (Ii, Ti), which is clearly infeasible given
that Ii can be large or even infinite.

Instead, we develop a new decision procedure that can be
used to determine if an object is (s, T, I)-confluent for ev-
ery state s ∈ I. To do so, we need to extend the notion
of reachability to a notion of coreachability and then gen-
eralize Theorem 2. Two states s1, s2 ∈ I are coreachable
with respect to a set of transactions T and an invariant I,
abbreviated (T, I)-coreachable, if there exists some state
s0 ∈ I such that s1 and s2 are both (s0, T, I)-reachable.

Theorem 3. Consider an object O = (S,t), a set of trans-
actions T , and an invariant I. If every pair of states in the
invariant are (T, I)-coreachable, then

O is I-closed ⇐⇒ O is (s, T, I)-confluent for every s ∈ I

The proof of the forward direction is exactly the same
as the proof of Theorem 1. Transactions always maintain

Algorithm 2 Interactive invariant confluence decision pro-
cedure for arbitrary start state s ∈ I

// Return if O is (s, T, I)-confluent for every s ∈ I.
function IsInvConfluent(O, T , I)

return Helper(O, T , I, ∅, ∅)

// R is a set of (T, I)-coreachable states.
// NR is a set of (T, I)-counreachable states.
function Helper(O, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I, NR)
if closed then return true
Augment R,NR with random search and user input
if (s1, s2) ∈ R then return false

return Helper(O, T , I, R, NR)

the invariant, so if merge does as well, then every reachable
state must satisfy the invariant. For the reverse direction,
consider two arbitrary states s1, s2 ∈ I. The two points are
(T, I)-coreachable, so there exists some state s0 from which
they can be reached. O is (s0, T, I)-confluent and s1 t s2 is
(s0, T, I)-reachable, so it satisfies the invariant.

Using Theorem 3, we develop Algorithm 2: a natural gen-
eralization of Algorithm 1. Algorithm 1 iteratively refines
the set of reachable states whereas Algorithm 2 iteratively
refines the set of coreachable states, but otherwise, the core
of the two algorithms is the same. Now, a segmented invari-
ant confluence decision procedure, can simply invoke Algo-
rithm 2 once on each segment.

Example 4. Let O = (Z3 × Z3,t) be an object that sep-
arately keeps positive and negative integer counts (dubbed
a PN-Counter [23]), replicated on three machines. Every
state s = (p1, p2, p3), (n1, n2, n3) represents the integer (p1+
p2 + p3) − (n1 + n2 + n3). To increment or decrement the
counter, the ith server increments pi or ni respectively, and
t computes an element-wise maximum. Our start state
s0 = (0, 0, 0), (0, 0, 0); our set T of transactions consists of
increment and decrement; and our invariant I is that the
value of s is non-negative.

Applying Algorithm 1, IsIclosed returns false with the
states s1 = (1, 0, 0), (0, 1, 0) and s2 = (1, 0, 0), (0, 0, 1). Both
are reachable, so O is not (s0, T, I)-confluent and Algorithm 1
returns false. The culprit is concurrent decrements, which
we can forbid in a simple one-segment segmentation Σ =
(I, T+) where T+ consists only of increment transactions.
Applying Algorithm 2, IsIclosed again returns false with
the same states s1 and s2. This time, however, the user
recognizes that the two states are not (T+, I)-coreachable.
The user refines NR with the observation that two states
are coreachable if and only if they have the same values of
n1, n2, n3. After this, IsIclosed (and thus Helper) returns
true, and Algorithm 2 terminates.

6. EVALUATION
In this section, we describe and evaluate Lucy: a pro-

totype implementation of our decision procedures and sys-
tem models. A more complete evaluation can be found in
[25]. Lucy includes a Python implementation of the inter-
active decision procedures described in Algorithm 1 and Al-
gorithm 2. Users specify objects, transactions, invariants,
and segmentations in Python. Lucy also includes a C++
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implementation of the invariant confluence and segmented
invariant confluence system models.

We now evaluate the practicality and efficiency of our de-
cision procedure prototypes. Specifically, we show that spec-
ifying objects is not too onerous and that our decision pro-
cedures’ latencies are small enough to be used comfortably
in an interactive way [18].

Example 5 (Foreign Keys). A 2P-Set X = (AX , RX) is a
set CRDT composed of a set of additions AX and a set of
removals RX [23]. We view the state of the set X as the
difference AX − RX of the addition and removal sets. To
add an element x to the set, we add x to AX . Similarly,
to remove x from the set, we add it to RX . The merge of
two 2P-sets is a pairwise union (i.e. (AX , RX)t (AY , RY ) =
(AX ∪AY , RX ∪RY )).

We can use 2P-sets to model a simple relational database
with foreign key constraints. Let object O = (X,Y ) =
((AX , RX), (AY , RY )) consist of a pair of two 2P-Sets X
and Y , which we view as relations. Our invariant X ⊆ Y
(i.e. (AX − RX) ⊆ (AY − RY )) models a foreign key con-
straint from X to Y . We ran our decision procedure on
the object with initial state ((∅, ∅), (∅, ∅)) and with trans-
actions that allow arbitrary insertions and deletions into X
and Y . After less than a tenth of a second, the decision
procedure produced a reachable counterexample witnessing
the fact that the object is not invariant confluent. A con-
current insertion into X and deletion from Y can lead to a
state that violates the invariant. This object is not invariant
confluent and therefore not invariant closed. Thus, existing
systems that depend on invariant closure as a sufficient con-
dition are unable to conclude definitively that the object is
not invariant confluent.

We also reran the decision procedure, but this time with
insertions into X and deletions from Y disallowed. In less
than a tenth of a second, the decision procedure correctly
deduced that the object is now invariant confluent. These
results were manually proven in [3], but our tool was able to
confirm them automatically in a negligible amount of time.

Example 6 (Escrow Transactions). Escrow transactions
are a concurrency control technique that allows a database
to execute transactions that increment and decrement nu-
meric values with more concurrency than is otherwise pos-
sible with general-purpose techniques like two-phase lock-
ing [21]. The main idea is that a portion of the numeric
value is put in escrow, after which a transaction can freely
decrement the value so long as it is not decremented by more
than the amount that has been escrowed. We show how
segmented invariant confluence can be used to implement
escrow transactions.

Consider again the PN-Counter s = (p1, p2, p3), (n1, n2, n3)
from Example 4 replicated on three servers with transac-
tions to increment and decrement the PN-Counter. In Ex-
ample 4, we found that concurrent decrements violate in-
variant confluence which led us to a segmentation which
prohibited concurrent decrements. We now propose a new
segmentation with escrow amount k that will allow us to per-
form concurrent decrements that respect the escrowed value.
The first segment ({(p1, p2, p3), (n1, n2, n3) | p1, p2, p3 ≥ k ∧
n1, n2, n3 ≤ k}, T ) allows for concurrent increments and
decrements so long as every pi ≥ k and every ni ≤ k. Intu-
itively, this segment represents the situation in which every
server has escrowed a value of k. Each server can decrement

freely, so long as they don’t exceed their escrow budget of
k. The second segment is the one presented in Example 4
which prohibits concurrent decrements. We ran our decision
procedure on this example and it concluded that it was seg-
mented invariant confluent in less than a tenth of a second
and without any human interaction.

Further Decision Procedure Evaluation. In [25], we
also specify workloads involving Example 1, an auction ap-
plication, and TPC-C. Lucy processes all of these workloads,
as well as the workloads described above, in less than half
a second, and no workload requires more than 66 lines of
Python code to specify. This shows that the user burden of
specification is not too high and that our decision procedures
are efficient enough for interactive use.

System Model Evaluation. In addition to our decision
procedures, we also evaluate the performance of distributed
objects deployed with segmented invariant confluence [25].
Namely, we show that segmented invariant confluent repli-
cation can achieve an order of magnitude higher through-
put compared to linearizable replication, but the through-
put improvements decrease as we increase the fraction of
transactions that require coordination. For example, with
5% coordinating transactions, segmented invariant conflu-
ent replication performs over an order of magnitude better
than linearizable replication; with 50%, it performs as well;
and with 100%, it performs two times worse.

7. RELATED WORK
RedBlue consistency [16], is a consistency model that sits

between causal consistency and linearizability. In [16], Li
et al. introduce invariant safety as a sufficient (but not nec-
essary) condition for RedBlue consistent objects to be in-
variant confluent. Invariant safety is an analog of invariant
closure. In [15], Li et al. develop sophisticated techniques
for deciding invariant safety that involve calculating weak-
est preconditions. These techniques are complementary to
our work and can be used to improve the invariant closure
subroutine used by our decision procedures.

The homeostasis protocol [22], a generalization of the de-
marcation protocol [6], uses program analysis to avoid un-
necessary coordination between servers in a sharded database
(whereas invariant confluence targets replicated databases).

Explicit consistency [5] is a consistency model that com-
bines invariant confluence and causal consistency, similar
to RedBlue consistency with invariant safety. Balegas et al.
also describe a variety of techniques—like conflict resolution,
locking, and escrow transactions [21]—that can be used to
replicate workloads that do not meet their sufficient condi-
tions. Segmented invariant confluence is a formalism that
can be used to model simple forms of these techniques.

In [10], Gotsman et al. discuss a hybrid token based con-
sistency model that generalizes a family of consistency mod-
els including causal consistency, sequential consistency, and
RedBlue consistency. The token based approach allows users
to specify certain conflicts that are not possible with seg-
mented invariant confluence. However, segmented invariant
confluence also introduces the notion of invariant segmen-
tation, which cannot be emulated with the token based ap-
proach. For example, it is difficult to emulate escrow trans-
actions with the token based approach.
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8. CONCLUSION
This paper revolved around two major contributions. First,

we found that invariant closure fails to incorporate a no-
tion of reachability, and using this intuition, we developed
conditions under which invariant closure and invariant con-
fluence are equivalent. We implemented this insight in an
interactive invariant confluence decision procedure that au-
tomatically checks whether an object is invariant confluent,
with the assistance of a programmer. Second, we proposed
a generalization of invariant confluence, segmented invari-
ant confluence, that can be used to replicate non-invariant
confluent objects with a small amount of coordination while
still preserving their invariants.
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Where do novel database system research results come from? In
the 1970’s, most systems research papers proposed mechanisms to
support abstractions that were being explored for the first time,
such as data translation, indexing, query optimization, high perfor-
mance transactions, distributed databases, heterogeneous databases,
and replicated databases. Novelty was easy to come by. These ab-
stractions now form the core of the database systems field.

Since then, the main abstractions of database systems have not
changed much. So where do novel solutions come from now? I claim
they are driven by six trends, listed belowwith some recent examples:

1. New hardware mechanisms –multicore, solid-state disks, vector
processing, non-volatile RAM, RDMA, GPUs, FPGAs, enclaves.

2. New software mechanisms – log-structured storage, column
storage, transactional memory, blockchain, consensus algo-
rithms, distributed hash tables, machine learning.

3. New data models – key-value stores, XML, JSON, graphs.

4. New system platforms – cloud computing, cloud storage, large
main memories, cloud-fog-edge, serverless computing.

5. New workloads – stream processing, OLAP, map-reduce, train-
ing and serving ML models, graph algorithms over big data, data
science, stateful web services.

6. Different system-level goals – scalability, throughput, consis-
tency, latency, fault tolerance, availability, elasticity, cost, exten-
sibility, security, privacy, manageability, robustness.

There is a well-known repertoire of techniques to address these
challenges. They include access control, asynchronous operations,
batching, caching, checkpointing, compare-and-swap, compression,
cost-based optimization, encryption, function shipping, indirection,
lazy updates, locking, materialization, multi-versioning (copy-on-
write), parallelism, partitioning, pipelining, pre-fetching, replication,
speculation, state machines, timeouts, timestamping, transactional
queues, triggers, watchdogs, workflow, and those in (2) above. There
are many more of course, but probably not hundreds.

Let us use the paper I am introducing as an example. It addresses
the problem of checkpoint and recovery for a transactional key-value
store—a well-known workload. Its novelty arises from its ability to
scale throughput linearly on a large multicore server with negligible
increase of latency and from the way it attains this goal.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2020 ACM 0001-0782/08/0X00 ...$5.00.

To appreciate the significance of the paper’s novel contributions,
let us consider classical solutions to the problem it solves. A sim-
ple approach is partitioning, that is, partition the workload so that
each core is responsible for reads and writes on a distinct partition
of the database. This would ensure there is no interference between
the cores. It would enable each core to log its updates independently
of the others, thereby ensuring recoverability. However, it would not
be robust with respect to changes in the fraction of operations that
are directed to each partition. One core could be overloaded while
another has spare capacity.
Ifwe relax the partitioning assumption, the problembecomesmuch

harder. For example, updates by different cores may conflict, which
creates dependencies between them. Suppose transaction T updates
x in one core and a transaction T ′ in another core reads x’s updated
value and updates y. Then if a checkpoint includes that updated value
of y, it must also include the updated value of x. That is, the check-
pointed state needs to be consistent with respect to updates that were
acknowledged to users and with respect to each other. In a classical
database system, these problems are addressed by locking and logging.
However, locking introduces contention among parallel operations,
which limits scalability. Logging also introduces contention, such as
the need for parallel threads to coordinate their append operations
to the shared log, plus it has many other inefficiencies. Although ef-
fective techniques have been developed for many of these problems,
logging still poses limits to multicore scalability.
This paper’s solution circumvents the scalability bottleneck by

combining several techniques: a new recoverymodel called concurrent
prefix recovery, the use of a 2-version data model, and a state machine.
With concurrent prefix recovery, the system defines a commit point,

in contrast to standard techniqueswhere clients issue commit. Clients
independently synchronize with this commit request, never blocking
each other. In the Rest state (i.e., normal operation), each client runs
transactions serially on the latest active version, v. When the system
issues a commit, it moves to the Prepare state. Each client periodically
reads the system’s state. After a client moves into the Prepare state, it
continues executing normally. However, if its transaction accesses an
item already at version v+1, the transaction aborts, the client moves
to the next state, called In-Progress, and the transaction re-executes.
After all clients have entered Prepare, the systemmoves its state to In-
Progress. At this point, version v of all items are immutable and can be
checkpointedwithout interference from clients. Now, if a transaction
wants to update an itemx at version v, it creates a newversion v+1 of
x instead of updating version v. (Another client that is still in Prepare
state might see this version v + 1, leading to an abort as explained
above.) If x is already at version v + 1, the transaction updates x in
place. After all version v items have been checkpointed, the system
returns to the Rest state with v + 1 as the latest active version.
Voilà. Simple, scalable, and novel. Read on, for details.
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ABSTRACT
This paper proposes a new recovery model based on group commit,
called concurrent prefix recovery (CPR). CPR differs from traditional
group commit implementations in two ways: (1) it provides a seman-
tic description of committed operations, of the form “all operations
until time ti from session i”; and (2) it uses asynchronous incremen-
tal checkpointing instead of a WAL to implement group commit in a
scalable bottleneck-free manner. CPR provides the same consistency
as a point-in-time commit, but allows a scalable concurrent imple-
mentation. We used CPR to make two systems durable: (1) a custom
in-memory transactional database; and (2) FASTER, our state-of-the-
art, scalable, larger-than-memory key-value store. Our detailed eval-
uation of these modified systems shows that CPR is highly scalable
and supports concurrent performance reaching hundreds of millions
of operations per second on a multi-core machine.

1. INTRODUCTION
The last decade has seen huge interest in building extremely scal-

able, high-performancemulti-threaded data systems – both databases
and key-value stores. Main memory databases exploit multicores (up
to 1000s of cores [14]) aswell asNUMA, SIMD,HTM, and other hard-
ware advances yielding orders-of-magnitude higher performance than
traditional databases. In the open-sourceFASTER researchproject [1],
we have been developing key-value store technologies that push per-
formance even further. FASTER achievesmore than150Mops/sec on
one machine for point updates and lookups, while supporting larger-
than-memory data and caching the hot working set in memory [5].

Applications using such systems generally require some form of
durability for the changes made to application state. Modern systems
can handle extremely high update rates in memory but struggle to re-
tain their high performance when durability is desired. Two broad
approaches address this requirement for durability today.

WAL with Group Commit. The traditional approach to achieve
durability in databases is to use awrite-ahead log (WAL) that records ev-
ery change to the database. Group commit amortizes the cost of writ-
ing the log to disk as large chunks, but update-intensive applications
§Work started during internship at Microsoft Research.
©ACM2019. This is aminor revision of the paper entitled “Concurrent Prefix
Recovery: Performing CPR on a Database”, published in SIGMOD’19, ISBN
978-1-4503-5643-5/19/06, June 30-July 05, 2019, Amsterdam, Netherlands.
DOI: https://doi.org/10.1145/3299869.3300090
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2019 ACM 0001-0782/08/0X00 ...$5.00.

still stress disk write bandwidth. Even without the I/O bottleneck,
a WAL introduces overhead – one study [7] found that 30% of CPU
cycles are spent in generating log records due to lock contention, ex-
cessive context switching, and buffer contention during logging. Re-
cent research has improved the traditional WAL algorithm along di-
mensions such as buffer allocation [9], by using thread-local REDO
logs [15], and optimizing for small I/Os on flash storage [6]. Johnson
et al. [8] propose a distributed group commit using Lamport clocks
which reduces the concurrency bottleneck but still incurs log writes.
Overall, the overheads of WAL continue to affect scalability today.

Checkpoint-Replay. An alternate to WAL, popular in streaming
databases, is to take periodic, consistent, point-in-time checkpoints,
and use them with input replay for recovery. Cao et. al. [3] propose
asynchronous checkpointing algorithms for applications that are fre-
quently physically consistent i.e. the state of the application is transac-
tionally consistent at a physical point in time. Such a consistent state
cannot be attained without quiescing the database in most common
scenarios. Traditionally, databases obtain a fuzzy checkpoint of its
state asynchronously and use the WAL to recover a consistent snap-
shot during recovery. However, as noted earlier, this approach limits
throughput due to the WAL bottleneck. VoltDB [10] uses an asyn-
chronous checkpointing technique which takes checkpoints by mak-
ing every database record “copy-on-write”, and this approach is shown
to be expensive in update-intensive workloads [5]. CALC [13] obtains
asynchronous consistent checkpoints using an atomic commit log (in-
stead of WAL), in which case the atomic log becomes the new bottle-
neck. To summarize, existing checkpoint-replay based durability so-
lutions are unable to support the ever growing need for scalability.

These alternatives are depicted in Figs. 1(a) and (b). Both WAL and
point-in-time checkpoints have scalability issues. To validate this point,
we augmented FASTER with a WAL. An in-memory workload that
previously achievedmore than150Mops/sec dropped to around15M
ops/sec after theWALwas enabled, evenwhenwriting the log tomem-
ory. Creating a copy of data on the log for every update is expen-
sive and stresses contention on the log’s tail. Further, we built an in-
memory transactional database with WAL and point-in-time check-
points and found both techniques to bottleneck at around20Msingle-
key txns/sec (see Sec. 6 for details). This huge performance gap has
caused many real deployments to forego durability altogether, e.g., by
disablingWAL in RocksDB, or by using workarounds such as approx-
imate recovery and quiesce-and-checkpoint [4]. These approaches in-
troduce complexity, latency, quality, and/or performance penalties.

Our Solution
In this paper, we advocate a different approach. We adopt the seman-
tics of group commit, which commits operations as a batch, as our user
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Figure 1: Approaches to Durability

model for durability. However, instead of acknowledging individual
commits, we notify commit as “all operations issued up to time t”: we
call this model prefix recovery. Clients can use this acknowledgment
to prune1 their in-flight operation log until t and expose commit to
users. Based on this model, we make the following contributions:
• We argue that it is not possible to guarantee a system-wide prefix

recovery without quiescing or introducing a central bottleneck. To
address this problem, we propose concurrent prefix recovery (CPR).
In CPR (see Fig. 1(c)), the system periodically notifies each client
(or session) Si of a commit point ti in its local operation timeline,
such that all operations before ti are committed, but none after.
We show that CPR has the same consistency as prefix recovery, but
allows a scalable asynchronous implementation.
• Traditional group commit is implemented using aWAL. Instead, we

implement CPR commits using asynchronous consistent checkpoints
that capture all changes between commits without introducing any
scalability bottleneck. However, this solution requires the ability
to take incremental checkpoints very quickly. Fortunately, systems
such as FASTER store data in an in-place-updatable log-structured
format, making incremental checkpoints very quick to capture and
commit. Our approach unifies the worlds of (1) asynchronous in-
cremental checkpoints; and (2) a WAL with group commit, aug-
mented with in-place updates on the WAL between commits.
• While CPR makes it theoretically possible to perform group com-

mit in a scalable asynchronous fashion, it is non-trivial to design
systems that achieve these properties without introducing expen-
sive runtime synchronization. To complete the proposal, therefore,
we use CPR to build new scalable, non-blocking durability solu-
tions for (1) a custom in-memory transactional database; and (2)
FASTER, our state-of-the-art larger-than-memory key-value store.
We use an extended version of epoch framework as our building
block for loose synchronization, and introduce new state-machine
based protocols to perform a CPR commit. As a result, our simple
main-memory database implementation scales linearly up to 90M
txns/sec – an order-of-magnitude higher than current solutions –
while providing periodic CPR commits. Further, our implementa-
tion of FASTER with CPR reaches up to 180Mops/sec (the higher
throughput compared to [5] is due to a better machine used in this
paper) while supporting periodic CPR commits.

To recap, we identify the scalability bottleneck introduced by durabil-
ity on update-intensive workloads, and propose CPR to alleviate this
bottleneck. We then develop solutions to realize CPR in two broad
1Prefix recovery andCPR alsoworkwith reliablemessaging systems
e.g. Kafka, which prunes input messages until some point in time.
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Figure 2: Concurrent Prefix Recovery Model

classes of systems: an in-memory database and a larger-than-memory
key-value store. Our detailed evaluation shows that it is possible to
achieve very high performance in both these CPR-enabled systems,
incurring no overhead during normal runtime, and lowoverhead dur-
ing commit (in terms of throughput and latency).

2. CONCURRENT PREFIX RECOVERY
A database snapshot is “transactionally consistent” if it reflects all

changes made by committed transactions, and none made by uncom-
mitted or in-flight transactions. When the database fails, it can recover
to a consistent state using the snapshot, but some in-flight transac-
tions may be lost.
A stricter recovery guarantee is “prefix recovery,” where the database

– upon failure – can recover to a systemwide prefix of transactions
accepted for processing by the database. A naïve method to obtain
a prefix recovery snapshot is to stop accepting new transactions un-
til we obtain a consistent snapshot. This technique, called commit-
consistent checkpointing [2], forcefully creates a physical point in time
at which the database state is consistent, but reduces availability. An
alternate method [13] achieves this asynchronously using multiver-
sioning and an atomic commit log. The commit log records every
transaction commit and is key to demarcating a prefix that determines
which transactions are part of the snapshot. However, the log intro-
duces a scalability bottleneck.
Current state-of-the-art techniques to obtain a prefix recovery snap-

shot quiesces the database or impedes scalability, neither of which is
desirable. We indeed argue that one cannot obtain such a snapshot
without these limitations. The key insight is that to obtain the snap-
shot, we must create a virtual time-point t corresponding to a prefix.
As incoming transactions are processed simultaneously, depending on
whether they are issued before or after t, they must be executed dif-
ferently. For example, consider two transactions: T that is accepted
before t and T ′ that is accepted after. Threads must execute T and T ′

differently as the effect ofT must reflect in the snapshot, whereas that
of T ′ should not. So, all threads must agree on a common protocol to
determine this unique t, when chosen. To guarantee prefix recovery,
threads must coordinate before executing every transaction, which is
not possible without introducing a serial communication bottleneck.
To circumvent this fundamental limitation, we introduce CPR. In a

prefix recovery snapshot, the database commits all transactions issued
before a time-point t. CPR relaxes this requirement by eliminating the
need for a “system-wide” time across all clients. Instead, it provides a
client-local time, tC , to each clientC , such that all transactions issued
byC before tC are committed and none after tC are.

Definition 1 (CPR Consistency). A database state is CPR consistent
if and only if, for every clientC , the state contains all its transactions com-
mitted before a unique client-local time-point tC , and none after.
Consider the example shown in Fig. 2. The database has 4 clients

issues transactions, each assigned a client-local sequence number. A
CPR commit, commit 1 (marked as curve) for instance, commits the
transactions C1 : {T1, T2}, C2 : {T1, T2, T3}, C3 : {T1, T2}, and
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C4 : {T1, T2, T3}. Upon failure, the database recovers the appro-
priate prefix for each client: for instance, the effects of {T1, T2, T3}
for client C2. C2 : T4 cannot be recovered using commit 1. A later
commit, commit 2, persists the effects of transactions until C2 : T7

includingC2 : T4, and henceC2 : T4 can then be recovered.
It is desirable to be able to commit the database state at client de-

termined time tC . For example, concurrent clients issuing update
requests as batches of transactions might want to commit at batch
boundaries. We claim that client-determined CPR commit cannot be
performed without quiescing the database. Let the client-determined
set of CPR points for a commit with k clients be s1, s2, ..., sk . A
transaction request s′ by client Ci just after si can be executed only
when all transactions issued before each of s1, s2, ..., sk have been
executed. Hence, s′ is blocked till then. Extending this to all clients,
the entire database is blocked until all transactions before s1, ..., sk
have been processed. As a result, client-determined CPR commits
are unattainable without blocking. The fundamental limitation here
is that s′ is blocked because it must read the effects of transactions
before CPR points of every client, and these are predetermined (e.g.
at a batch boundary). However, in case of CPR, we could circumvent
this problem by flipping the roles: clients request for a commit, and
the database determines the CPR points for each client collaboratively
while obtaining the snapshot.

3. EPOCH FRAMEWORK
The epoch framework helps avoid synchronization between threads

whenever possible. An epoch managed thread executes user operations
(e.g. transactions) independently most of the time. It uses thread-local
data structures to maintain system state, letting threads lazily syn-
chronize over critical systemwide events. The epoch framework is a
key building block in CPR commit protocols. We describe its abstract
function here (Refer [5, 12] for details).
We extended the standard epoch framework with custom trigger

actions. Threads can register to lazily execute arbitrary global actions,
called trigger actions, after a global event has occurred. For instance, a
thread can register to execute a global actionA (e.g. close a file) after
a certain thread-local eventE happens in every thread (e.g. a thread-
local done flag set after reading a partition of the file). The key guar-
antee provided by the framework is thatA is executed once and only
after all thread-local events have occurred. This functionality is ex-
posed using the following interface:
• Acquire: Add the current thread to the epoch managed threads.
• Refresh: All epoch managed threads must invoke Refresh peri-

odically, but never during an user operation (e.g. only in-between
and never in the middle of a transaction).
• BumpEpoch(cond, action): Register 〈cond, action〉 with the

framework; action is executed only after cond is satisfied.
• Release: Remove the current thread fromepochmanaged threads.

4. CPR COMMIT PROTOCOL
We now present an asynchronous protocol for performing CPR

commit in a simple in-memory transactional database. The database
has a shared-everything architecture where any thread can access any
record. It uses strict 2-Phase Locking withNo-Wait deadlock preven-
tion policy for concurrency control. We chose this setup for ease of
exposition, and we believe that our algorithm can be easily extended
for other protocols as well. We also assume memory twice the size of
the database to simplify explanation of the key benefit of CPR.

4.1 Commit Algorithm
Each record in the database has two values, stable and live, and an

integer that stores its current version. In steady state, the database is at

REST

PREPARE

IN-
PROGRESS

WAIT 
FLUSH

! (! + 1)

Figure 3: State Machine for CPR Commit in DB

Function Run()
phase, version = Global.phase, Global.version;
while true do

repeat
if inputQueue.TryDequeue(txn) then

if not Execute(txn, phase, version) then
if txn aborted due to CPR then

break;
until k times;
Refresh();
newPhase, newVersion = Global.phase, Global.version;
if phase is PREPARE and newPhase is IN_PROGRESS then

Record time tT for thread T ;
phase, version = newPhase, newVersion;

Procedure Execute(txn, phase, version)
foreach (record, accessType) in txn.ReadWriteSet() do

if record.TryAcquireLock(accessType) then
lockedRecords.Add(record);
if phase is PREPARE then

if record.version > version then
Unlock all lockedRecords;
Abort txn due to CPR;

else if phase is IN_PROGRESS or WAIT_FLUSH then
if record.version < version + 1 then

Copy record.live to record.stable;
record.version = version + 1;

else
Unlock all lockedRecords;
Abort txn;

Execute txn using live values;
Add txn to thread-local staged transactions;
Unlock all lockedRecords;

Algorithm 1: Pseudo-code for Execution Threads

some version v. A CPR commit corresponds to shifting the database
version from v to (v + 1) and capturing its state as of version v.
To simplify explanation, we assume a one-to-one mapping between
threads and clients: each clientC has a dedicated threadTC to handle
all its transactions serially in the order it was issued as shown in Alg. 1.
A CPR commit is coordinated using the epoch framework (Sec. 3) as
shown in Alg. 2 and its global state machine is shown in Fig. 3.
A CPR Commit is lazily coordinated using the epoch framework

over three phases: Prepare, In-Progress andWait-Flush. The protocol
state is maintained using two shared global variables, Global.phase
and Global.version. They denote the current phase and version of
the database respectively. Threads have a thread-local view of these
variables that are updated only during Refresh. Avoiding frequent
atomic synchronization over these variables is key to the scalability of
CPR-based systems and is only possible due to the epoch framework.
Rest Phase. A commit request is issued when the database is in v,

Rest. When in Rest, transactions execute normally using strict 2PL
with No-Wait policy, the default high-performance phase. The al-
gorithm is triggered by invoking the Commit function (Alg. 2). This
updates the global state to Prepare and adds an epoch trigger action
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Function Commit()
Atomically set Global.phase = PREPARE;
BumpEpoch(all threads in PREPARE, PrepareToInProg);

Procedure PrepareToInProg()
Atomically set Global.phase = IN_PROGRESS;
BumpEpoch(all threads in IN_PROGRESS,
InProgToWaitFlush);

Procedure InProgToWaitFlush()
Atomically set Global.phase = WAIT_FLUSH;
foreach record in database do

if record.version == Global.version + 1 then
Capture record.stable;

else
Capture record.live;

Atomically set Global.phase, Global.version = REST,
Global.version + 1;

Commit all staged transactions;
Algorithm 2: Epoch-based State Machine

PrepareToInProg, which is triggered automatically after all threads
have entered Prepare. Execution threads update their local view of the
phase during subsequent epoch synchronization and enter Prepare.

Prepare Phase. The Prepare phase ‘prepares’ threads for a CPR
Commit. A transaction is executed in Prepare only if all its instruc-
tions can be executed on version v of the database. Such transactions
are part of the commit and can be recovered on failure. To ensure
CPR consistency, they must not read the effects of transactions that
are not part of the commit. Upon encountering any record with ver-
sion greater thanv, the transaction immediately aborts, and the thread
refreshes its thread-local view of system phase and version. At most
one transaction per thread is aborted this way for every commit, since
the thread advances to the next phase immediately.

In-Progress Phase. PrepareToInProg action is executed automati-
cally after all threads enter Prepare. It updates the system phase to In-
Progress and adds another trigger action, InProgToWaitFlush. When
a thread refreshes its thread-local state now, it enters In-Progress. An
In-Progress thread executes transactions in database version (v+1);
it updates the version of records it reads/writes to (v + 1) when it
is≤ v. This prevents any transaction belonging to the commit from
reading the effects of those that are not. To process (v + 1) transac-
tions without blocking, and at the same time capture the record’s final
value at version v, we copy the live value to the stable value.

Wait-Flush Phase. Once all threads enter In-Progress, the epoch
framework executes trigger action InProgToWaitFlush. First, it sets
the global phase toWait-Flush, then it captures version v: if a record’s
version is (v + 1), then its stable value is captured, else its live value
is captured as part of the commit. Meanwhile, incoming transactions
in Wait-Flush are processed similar to those in In-Progress. After all
records are captured and persisted, the global phase and version are
updated to Rest and (v + 1) respectively.

This concludes the CPR commit of version v of the database, re-
sulting in the following theorem (proof sketch in [12]).

Theorem 1 (Correctness). Algorithms 1 and 2 together produce a
transactionally consistent snapshot:
• For every thread T , the snapshot reflects all transactions committed be-

fore a time tT , and none after.
• The snapshot is conflict-equivalent to a point-in-time snapshot.

Recovery. Recovery in a CPR-based database is straightforward:
we simply load the database back intomemory from the latest commit.
Unlike traditional WAL-based recovery, there is no need for UNDO
processing since the value of each record captured in Alg. 2 is trans-
actionally consistent, and it is the final value after all v transactions
have been executed. So, this corresponds to a database state when all

Time Database State (Before) Thread 1 Thread 2
1 A : 〈1, 3,−〉, B : 〈1, 2,−〉 A = 5 B = 3
2 1,Rest→ 1,Prepare
3 A : 〈1, 5,−〉, B : 〈1, 3,−〉 B = 2 ⊗
4 A : 〈1, 5,−〉, B : 〈1, 2,−〉 ⊗ B = 1
5 1,Prepare→ 1,In-Progress
6 A : 〈1, 3,−〉, B : 〈1, 1,−〉 A = 5 ⊗
7 A : 〈1, 5,−〉, B : 〈1, 1,−〉 B = 7 A = 9
8 A : 〈2, 9, 5〉, B : 〈1, 7,−〉 ���A = 3 =⇒ ⊗ B = 5
9 1,In-Progress→ 1,Wait-Flush
10 A : 〈2, 9, 5〉, B : 〈2, 5, 7〉 ⊗ A = 3
11 A : 〈2, 3, 5〉, B : 〈2, 5, 7〉 A = 9 ⊗
12 1,Wait-Flush→ 2,Rest
13 A : 〈2, 9, 5〉, B : 〈2, 5, 7〉 ⊗ A = 1
14 A : 〈2, 1, 5〉, B : 〈2, 5, 7〉 B = 4 ⊗
15 A : 〈2, 1, 5〉, B : 〈2, 4, 7〉

Rest Prepare In-Progress
Wait-Flush ⊗ Epoch-Refresh key: 〈version, live, stable〉

Figure 4: Sample Execution of CPR Algorithm

transactions issued before time tT for every thread T have been com-
mitted. Transactions issued after tT by thread T are lost, as per the
definition of CPR-consistency.

4.2 CPR By Example
As an example, we illustrate CPR on two threads for a database that

has two records, A and B, see Fig. 4. Each row denotes a time step
in which threads execute a 1-key write transaction: for instanceA =
5 is a transaction that updates A’s value to 5. A thread updates its
thread-local state during epoch refresh (denoted using ⊗). Initially,
both threads are in Rest, processing transactions by updating the live
values. We receive a commit request at t = 2, which updates the
global phase to Prepare. Threads 1 and 2 enter Prepare at t = 4 and
t = 3 respectively. Prepare threads also check if record version >
current database version (i.e. 1), before executing the transactions.
Since all threads have entered Prepare, the system advances to the

In-Progress phase at t = 5. Thread 2 enters In-Progress by refresh-
ing its epoch at t = 6. This transition from Prepare to In-Progress
demarcates its CPR-point. When a record version is 1, In-Progress
threads copy its live value to stable value and update the version be-
fore processing the transaction. At t = 7, thread 2 copies 5, the live
value of A, to stable value, updates version to 2 and writes 9 to live
value. Thread 1, which is still in Prepare, tries to updateA at t = 8 but
aborts since its version is greater than 1 and immediately refreshes its
epoch. Thread 1 enters In-Progress now, marking its CPR-point. As
all threads are in In-Progress, the system enters theWait-Flush phase.
We capture the stable values, A = 5 and B = 7, in the background
while threads execute transactions belonging to version 2 on the live
values. For other records with version≤ 1, the live value is captured
as part of the commit. Once the captured values are safely persisted
on disk, the system transits to Rest with version 2. This ends the CPR
commit of version1of the databasewithCPR-points t = 8 and t = 6.

5. CPR IN FASTER
We next show how CPR-based durability is added to FASTER [5],

our recent open-source concurrent latch-free hash key-value store. It
supports reads, blind upserts, and read-modify-write (RMW) opera-
tions over larger-than-memory data. In the FASTER paper, we report
a scalable in-memory throughput of more than 150Mops/sec for the
working set in memory, making it a good candidate to apply CPR.
FASTER has twomain components, a hash index and a log-structured

record store calledHybridLog. HybridLogdefines a logical address space
that spans secondary storage andmainmemory. Each record contains
somemetadata, a key, and a value. Records corresponding to keys that
share the same slot in the hash index are organized as a reverse linked
list: each record’s metadata contains the logical address of the previ-
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Figure 5: HybridLogOrganization in FASTER

ous record mapped to that slot. The hash index points to the logical
address of the latest (tail) record in this linked list.

The HybridLog address space (Fig. 5) is divided into an immutable
stable region (on disk), an immutable read-only region (in memory),
and a mutable region (also in memory). The head offset tracks the
smallest logical address available in memory. The read-only offset di-
vides the in-memory portion of the log into immutable andmutable re-
gions. The tail offset points to the next free address at the tail of the log.
FASTER threads perform in-place updates in the hot mutable region
for high in-memory performance. Updates to the immutable region
use read-copy-update, where a newmutable copy of the record is cre-
ated at the end of tail to update it. FASTER uses epoch protection to
control access to shared memory in a latch-free manner.

5.1 Towards Adding Durability
By default, the index and in-memory portion of HybridLog is lost

on failure. We added the ability to periodically commit in-flight op-
erations in the mutable region using CPR, by adding a session-based
persistence API to FASTER. Clients can start and end a session, iden-
tified by a unique Guid, using StartSession and StopSession. Ev-
ery operation such as Upsert onFASTER occurswithin a session, and
carries a monotonic session-local serial number. On failure, a client
can re-establish a session by invoking ContinueSessionwith its ses-
sion Guid as parameter. This call returns the last serial number (CPR
point) that FASTER has recovered on that session. As described ear-
lier, CPR commits are session-local, and FASTER recovers to a spe-
cific CPR point for every session. The client can also register a call-
back to be notified of new CPR points whenever FASTER commits.
FASTER provides threads unrestricted access to records in themu-

table region of HybridLog, letting user code control concurrency. As
CPR enforces a strict only and all policy, it is challenging to obtain
a CPR-consistent checkpoint without compromising on fast concur-
rent memory access.

5.2 Asynchronous I/O and CPR
FASTER supports disk-resident data using an asynchronousmodel:

an I/O request is issued in the background,while the requesting thread
processes future requests. The user-request is executed later once the
record is retrieved from disk. FASTER supports two CPR modes. In
the strict mode, pending operations logically occur at the point they
were originally issued. We also support a relaxed mode, where pend-
ing operations are re-ordered to logically occur at the time of contin-
uation after I/O completion.
Asynchronous I/O complicates strict CPR in a fundamental way

since some requests before a CPR point may be pending. Recall that
inCPR, a request r1 not belonging to the commitmust not be executed
before a request r2, potentially from a different session, belonging to
the commit. This requirement can lead to quiescing when handled
naively; we assume strict CPR and address the issue in our solution.

5.3 HybridLog Checkpoint
We augmented the per-record header in HybridLog to include a

version number v for a record. During normal processing, FASTER
is in the Rest phase and at a particular version v. HybridLog check-
pointing involves (1) shifting the version fromv to (v+1); and (2) cap-
turing modifications made during version v. We leverage our epoch
framework (Sec. 3) to loosely coordinate a global state machine (see
Fig. 6a) for CPR checkpointing without affecting user-space perfor-
mance. It consists of5 states: Rest, Prepare, In-Progress,Wait-Pending,
andWait-Flush; state transitions are realized byFASTER threads lazily,
when they refresh their epochs. A sample execution with 4 threads is
shown in Fig. 6b. Following is a brief overview of each phase:
• Rest: Normal processing on FASTER version v, with identical per-

formance to unmodified FASTER.
• Prepare: Requests accepted before and during the Prepare phase

for every thread are part of v commit.
• In-Progress: Transition from Prepare to In-Progress demarcates a

CPR point for a thread: requests accepted in In-Progress (or later)
phases do not belong to v commit.
• Wait-Pending: Complete pending v requests (in strict CPR only).
• Wait-Flush: Unflushedv records arewritten to disk asynchronously.
• Rest: Normal processing on FASTER version (v + 1).

A CPR commit request (from user or triggered periodically) first
records the current tail offset of HybridLog, say Lh

s , and updates the
global state from Rest to Prepare. Threads enter Prepare during their
subsequent epoch refresh.
Prepare. A Prepare thread T processes an incoming user-request

under a shared latch on the key’s bucket. When the shared-latch acqui-
sition fails or when the record version is> v, T detects that the CPR
shift has begun and refreshes its epoch immediately, entering the In-
Progress phase. If it never encounters such a scenario, the CPR shift
happens during a subsequent epoch refresh. Additionally, in strict
CPR, all pending requests are associated with a held shared latch.
In-Progress. After all threads enter the Prepare phase, the state

machine advances to In-Progress. A thread demarcates its CPR point
at its transition from Prepare to In-Progress. It now processes re-
quests as belonging to version (v+1). Accessed records in the muta-
ble region are handled carefully. If the record version is (v + 1), the
thread modifies it in-place as usual. If the record has version ≤ v, it
acquires an exclusive latch on the key’s bucket, performs a read-copy-
update, creating an updated (v + 1) record at the tail, and releases
the latch. If exclusive-latch acquisition fails, the request is added to a
thread-local pending list corresponding to version (v + 1).
Wait-Pending. When all threads enter In-Progress, FASTER en-

ters Wait-Pending in strict CPR, where pending I/Os in version v get
completed by all threads, releasing shared latches.
Wait-Flush. Once all v requests have been completed, we record

the tail offset of HybridLog, say Lh
e , and shift the read-only offset to

Lh
e , which asynchronously flushes HybridLog untilLh

e to disk. Once
the asynchronouswrite to disk is complete, systemmoves back toRest
with version (v + 1). This concludes the HybridLog checkpoint.

5.4 Index Checkpoint
In addition to the HybridLog checkpoint, we obtain a fuzzy check-

point of the hash index that maps key-hash to logical addresses on
HybridLog. The main reason for checkpointing the index is to re-
duce recovery time by replaying a smaller suffix of the HybridLog
during recovery (similar to database checkpoints forWAL truncation).
Hence, it can be done much less frequently, particularly with slower
log growth due to in-place updates in HybridLog. Since hash bucket
entries are updatedonly using atomic compare-and-swap instructions,
the index is always physically consistent. To obtain a fuzzy check-
point, we write the hash index pages to storage using asynchronous
I/O. We also record the tail offset of HybridLog before starting (Li

s)
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Figure 6: Overview of CPR for FASTER

and after completion (Li
e) of the fuzzy checkpoint. We use these off-

sets during recovery, which is described next.

5.5 Recovery
FASTER recovers to a CPR-consistent state using a combination

of a fuzzy hash index and HybridLog checkpoint (say of version v).
During recovery, we scan through records in a section of HybridLog,
from logical address S = min(Li

s, L
h
s ) to E = max(Li

e, L
h
e ), up-

dating the hash index appropriately. The recovered index must point
to the latest record with version ≤ v for each slot. Due to the fuzzy
nature of our index checkpoint, it could point to (v + 1) records or
records that are not the latest.

For records in the section of HybridLog between S and E: If the
version is≤ v, we update the index slot to point to the record’s logical
address, LR. When the version is> v, we mark the record invalid as
it does not belong to v commit of FASTER. Additionally, when the ad-
dress in the slot is≥ LR, we update the index to point to the previous
address stored in the record header. This fix-up may be considered
the UNDO phase of our recovery in FASTER. As noted earlier, each
slot in the hash index points to a reverse linked-list of records stored
in the HybridLog. The copy-on-update scheme in FASTER ensures
that records in this list have decreasing logical addresses, while the
HybridLog checkpoint design ensures that (v+1) records occur only
before all v records in the list. Together, these two invariants result in
a consistent FASTER hash index after recovery.

6. EVALUATION
We evaluate CPR in two ways. First, we compare CPR with two

state-of-the-art asynchronous durability solutions for amain-memory
database: CALC [13] and WAL [11]. Next, we evaluate CPR on our
key-value store, FASTER. We present only the key results here and
refer the reader to our full paper [12] for a detailed evaluation.

Implementation. For the first part, we implemented a stand-alone
main-memorydatabase, that supports three recovery techniques (CPR,
CALC, and traditional WAL). Both CALC and CPR implementations
have two values, stable and live, for each record, while WAL only has a
single value. An optimal implementation of CPR does not require two
values for each record; we do this for a head-to-head comparisonwith
CALC [13]. The entire database iswritten to disk asynchronously dur-
ing a CPR/CALC checkpoint. We do not obtain fuzzy checkpoints for
WAL but periodically flush the log to disk. All three versions use the
main-memory version of FASTER [5] as the data store and implement
two-phase locking with NO-WAIT deadlock avoidance policy.
We added CPR to FASTER and that constitutes the second part of

our evaluation. Threads first load the key-value store with data, and
then issue a sequence of operations. Commit requests are issued pe-
riodically. We report system throughput and latency every two sec-
onds. We point FASTER to our SSD, and employ the default expira-
tion based garbage collection scheme (not triggered in these exper-
iments). The total in-memory region of HybridLog is set at 32GB,

large enough that reads never hit storage for our workloads, with the
mutable region set to 90%ofmemory at the start. By default, FASTER
hash index has #keys/2 hash-bucket entries. We do not directly com-
pare with existing solutions since prior work [5] has shown that other
persistent key-value stores such as RocksDB achieve an order of mag-
nitude lower performance (< 1Mops/sec) evenwhenWAL is disabled.

Setup. The first set of experiments are conducted on a StandardD64s
v3 machine on Microsoft Azure. The machine has 2 sockets and 16
cores (32 hyperthreads) per socket, 256GB memory and runs Win-
dows Server 2018. Experiments on CPR with FASTER are carried
out on a local Dell PowerEdge R730machinewith 2.3GHz Intel Xeon
Gold 6140 CPUs, running Windows Server 2016. The machine has
2 sockets and 18 cores (36 hyperthreads) per socket, 512GBmemory
and a3.2TBFusionIONVMeSSDdrive. The two-socket experiments
shard threads across sockets. We preload input datasets into memory.

Workloads. For our stand-alone database, we use a mix of transac-
tions based on the Yahoo! Cloud Serving Benchmark (YCSB). Trans-
actions are executed against a single tablewith 250million 8 byte keys
and 8 byte values. Each transaction is a sequence of read/write re-
quests on these keys, which are drawn from a Zipfian distribution. A
request is classified as read or write randomly based on a read-write
ratio written asW:R; a read copies the existing value, and a write re-
places the value in the database with a provided value. We mainly fo-
cus on a low contention (θ = 0.1) workload here since it incurs the
most performance penalty due to logging or tail contention.
For FASTER with CPR, we use an extended version of the YCSB-A

workload, with 250 million distinct 8 byte keys, and value sizes of 8
and 100 bytes. After pre-loading, records occupy 6GB of HybridLog
space and the index is 8GB. Workloads are described asR:BU for the
fraction of reads and blind updates. We add read-modify-write (RMW)
updates in addition to the blind updates supported by YCSB. Such up-
dates are denoted as 0:100 RMW in experiments (we only experi-
ment with 100%RMWupdates for brevity). RMWupdates increment
a value by a number from a user-provided input array with 8 entries,
tomodel a per-key “sum” operation. We use the standardUniform and
Zipfian (θ = 0.99) distributions in our workloads.

6.1 Evaluation on Transactional Database
We first plot average throughput (Figs. 7a, 7b) and latency (Figs.

7c, 7d) of the three systems against a varying number of threads for
a mixed read-write (50 : 50) workload – for 1- and 10-key transac-
tions. We also profiled the experiment; the breakdown for 1 and 64
threads are shown in Fig. 7e. "Exec" refers to the cost of in-memory
transaction processing including acquiring and releasing locks, "Tail-
Contention" is the overhead of LSN allocation (in WAL) and append-
ing to the commit log (in CALC), while "Log Write" denotes the cost
of writing WAL records on the log.

Scalability. CPR scales linearly up to 90M txns/sec on 64 threads
for 1-key transactions, whereas CALC andWAL reach a maximum of
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Figure 8: Throughput during Checkpoint

10M txns/sec and 25M txns/sec respectively. The breakdown anal-
ysis reveals that tail contention in WAL and in CALC’s atomic com-
mit log are a scalability bottleneck. WAL performs better than CALC
here since every transaction is appended to the commit log, while 50%
read-only 1-key transactions do not generate any WAL records. In
case of 10-key transactions, CPR again scales linearly up to 10M txn-
s/secs, while WAL and CALC scale only up to 3.5 and 6.2M txns/sec.
Tail contention is still a bottleneck (about 30− 40%) for both CALC
and WAL, while WAL incurs an additional 20% overhead for writ-
ing log records. Unlike the 1-key case, CALC outperformsWAL since
most transactions contain at least onewrite resulting in aWAL record.

Latency. 1-key transactions (Fig 7c) in CPR are executed in approx-
imately 700 nanoseconds and the latency almost remains constant
as we increase the number of threads. This is due to the highly ef-
ficient design of the underlying FASTER hash index [5]. Due to tail
contention, latency in CALC and WAL increases as we scale. CALC
results in a latency of 6µs on 64 threads, while WAL incurs an aver-
age latency of only 2µs due to 50% read-only transactions. In CPR,
10-key transactions (Fig 7c) incur a cost of 7µs, which is 10x that of
a 1-key transaction. CALC latency, even though higher than CPR due
to tail contention in the atomic commit log, remains almost constant
because the cost of execution is higher in 10-key transactions. Since
most 10-key transactions result in aWAL record, the effect of tail con-
tention and writing log records is evident from the increasing trend.

Throughput vs. Time. We now plot average throughput during the
lifetime of a run for CPR, CALC andWAL on 64 threads, with check-
points at 30, 60 and 90 secs both for mixed (50 : 50) and write-only
(100 : 0)workloads; Fig. 8a and Fig. 8b correspond to 1- and 10-key
transactions respectively. In all three systems, there is no observable
drop in throughput during checkpointing. This is due to the asyn-
chronous nature of the solutions. Even for 10-key transactions, the
effect of copying over records from live to stable values is minimal
as they are already available in upper levels of the cache. CPR de-
sign scales better overall and does not involve any serial bottlenecks,
yielding a checkpoint throughput of 90M txns/sec. As noted earlier,
WAL is better than CALC in 50 : 50 1-key transactions due to 50%
read-only transactions. Theminor difference betweenwrite-only and
mixed workloads is because writes are more expensive than reads.

6.2 Evaluation of FASTER with CPR

Throughput and Log Size. We plot throughput vs. wall-clock time
during the lifetime of a FASTER run. We perform two “full” (index
and log) commits during the run, at the 10 sec and 40 secmark respec-
tively, and plot results for two key distributions (Uniform and Zipf).
We evaluate both our commit techniques – fold-over and snapshot to
separate file – in these experiments.
Fig. 9a shows the result for a 90:10workload (i.e., with 90% reads).

Overall, Zipf outperforms Uniform due to better locality of keys in
Zipf, reaching up to 180M ops/sec. After commit, both snapshot and
fold-over slightly degrade in throughput because of read-copy-updates.
It takes 6 secs to write 14GB of index and log, close to the sequential
bandwidth of our SSD. After the second commit, the Zipf through-
put of fold-over returns to normal faster than snapshot because of
its incremental nature. With a 50:50 workload, in Fig. 9b, fold-over
drops in throughput after commit, because of the overhead of read-
copy-update of records to the tail of HybridLog. Performance in-
creases as the working set migrates to the mutable region, with Zipf
increasing faster than Uniform as expected. For this workload, snap-
shot does better than fold-over as it is able to dump the unflushed log
to a snapshot file and quickly re-open HybridLog for in-place up-
dates. A 0:100 workload with only blind updates demonstrates simi-
lar effects, as shown in Fig. 9c. We also profiled execution for the time
taken in each CPR phase: each phase lasted for around 5ms, except for
Wait-Flush, which took around 6 secs as described above.
Fig. 9d depicts the size of HybridLog vs. time, for a 0:100 work-

load. We note that (1) HybridLog size grows slowly with snapshot,
as the snapshots are written to a separate file; and (2) HybridLog for
Uniform grows faster than for Zipf, because more records need to be
copied to the tail after a commit for Uniform.
We also experimented with checkpointing only the log, with more

frequent commits, since the index is usually checkpointed infrequently.
The results are in [12]; briefly, we found CPR commits to have much
lower overhead as expected, with a similar trend overall.

Varying number of threads. We plot throughput vs. time for vary-
ing number of threads from 4 to 64, for a 50:50workload. We depicts
the results for Zipf and Uniform distributions in Figs. 10a and 10b
respectively, with full fold-over commits taken at the 10 sec and 40
sec mark. Both figures show linear throughput improvement with in-
creasing number of threads, indicating that CPR does not affect scal-
ability. In fact, normal (Rest phase) performance is unaffected by the
introduction of CPR. At lower levels of scale, the effect of CPR com-
mits is minimal due to lower Rest phase performance. Further, per-
formance recovery after a commit is faster with more threads, since
hot data migrates to mutable region faster.

End-to-End Experiment We evaluate an end-to-end scenario with
36 client threads feeding a 50:50 YCSB workload to FASTER. Each
client has a buffer of in-flight (uncommitted) requests. When a buffer
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reaches 80% capacity, we issue a log-only fold-over commit request,
which allows clients to trim their buffers based onCPRpoints. Clients
block if their buffers are full. Each entry in the buffer takes up 16 bytes
(for the 8 byte key and value). Fig. 11 shows the results for Zipf and
Uniform workloads, as we vary the per-client buffer size. Above each
bar is the corresponding average checkpoint interval, or the latency
of CPR commit, observed for the given buffer size. We take one full
checkpoint, and report average throughput over the next 30 secs.

Increasing the buffer size allows more in-flight operations, which
improves throughput for both workloads. Even a small buffer is seen
to provide high throughput. For small buffer sizes, commits are is-
sued more frequently (e.g., every 0.5 secs for a 30KB buffer) as ex-
pected. The Zipf workload reaches a higher maximum throughput
with a larger buffer because the smaller working set reaches themuta-
ble region faster between commits. With the smallest buffer, Uniform
outperforms Zipf due to the higher contention faced in Zipf when
moving items to the mutable region after every (frequent) commit.

7. CONCLUSION
Modern databases and key-value stores have pushed the limits of

multi-core performance to hundreds ofmillions of operations per sec-
ond, leading to durability becoming the central bottleneck. Tradi-
tional durability solutions have scalability issues that prevent systems
from reaching very high performance. We propose a new recovery
model based on group commit, called concurrent prefix recovery (CPR),
which is semantically equivalent to a point-in-time commit, but al-
lows a scalable implementation. We present CPR commit protocols
for a custom in-memory transactional database andFASTER, our key-
value store that supports larger-than-memory data. A detailed evalu-
ation of both systems shows that CPR supports highly concurrent and
scalable performance, while providing durability. FASTER with CPR
is available as open-source software [1].
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The challenge of extracting structured information from
text, or sequential data in general, is prevalent across a mul-
titude of data-science domains. This challenge, known as In-
formation Extraction (IE), instantiates to core components
in text analytics, and a plethora of IE paradigms have been
developed over the past decades. Rules and rule systems
have consistently been key components in such paradigms,
yet their roles have varied and evolved over time. Analytics
engines such as IBM’s SystemT use IE rules for material-
izing relations inside relational query languages. Machine-
learning classifiers and probabilistic graphical models (e.g.,
Conditional Random Fields) use rules for feature generation.
They also serve as weak constraints in Markov Logic Net-
works (and extensions such as DeepDive), and generators of
noisy training data in the state-of-the-art Snorkel system.

Originally introduced as the theoretical basis underlying
SystemT [5], the framework of document spanners provides
an abstraction for IE rules [2]. A document spanner states
how a document is translated into a relation over its spans.
More formally, a document is a string d over a finite alpha-
bet, a span of d represents a substring of d by its start and
end positions, and a document spanner is a function that
maps every document d into a relation over the spans of
d. The most studied class of document spanners is that of
the regular spanners—the closure of regular expressions with
capture variables under the operators of the Relational Al-
gebra (RA): projection, natural join, union, and difference.
Equivalently, the regular spanners are the ones expressible as
Variable-set Automata (VAs)—nondeterministic finite-state
automata that can open and close capture variables.

Past research on document spanners has focused on two
main facets: expressiveness—which queries can be answered
by combining basic text matchers with relational operators?
and complexity—what is the computational gain of the holis-
tic treatment of the combination, as opposed to the direct
way of evaluating relational queries over materialized match-
ings? The paper “Constant-Delay Enumeration for Nonde-
terministic Document Spanners” by Amarilli, Bourhis, Men-
gel and Niewerth [1] makes a substantial leap in our under-
standing of the second facet.

Prior studies analyzed the complexity of regular spanners
under two yardsticks of efficiency. Freydenberger, Kimelfeld,

Permission to make digital or hard copies of all or part of this work for
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permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

and Peterfreund [4] showed how to compile queries into VAs,
and how to evaluate VAs with polynomial delay in combined
complexity, where both the query and the document are con-
sidered input. Florenzano et al. [3] gave algorithms for eval-
uating VAs in constant delay in data complexity, following a
linear-time preprocessing phase; this means that, fixing the
VA, the evaluation time is (asymptotically) what it takes
just to read the document and print the answers one by
one. Interestingly, in the first case [4] the delay is inherently
dependent on the document size, and in the second case [3]
the delay is inherently exponential in the VA size.

While one could suggest that we need to choose between
the two yardsticks of efficiency, Amarilli et al. [1] present
an algorithm that, surprisingly, delivers both guarantees at
the same time: in data complexity, their algorithm enumer-
ates with a constant delay following linear-time preprocess-
ing, and in addition, all time intervals are polynomial in the
size of the VA. The algorithm is nontrivial, yet quite ele-
gant. In constant-delay algorithms, the crux is typically in
the data structure constructed in the preprocessing phase.
Here, this data structure is the mapping DAG that provides
a decision-diagram-like compact representation of the space
of answers. In this work, however, a considerable part of the
sophistication comes from way that this structure is used at
the (constant-delay) enumeration phase. The general idea
seems to be useful well beyond the scope of the paper. Im-
portantly, the algorithm has also been implemented and re-
leased as open-source in Rust.1
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ABSTRACT
One of the classical tasks in information extraction is to
extract subparts of texts through regular expressions. In
the database theory literature, this approach has been
generalized and formalized as document spanners. In
this model, extraction is performed by evaluating a par-
ticular kind of automata, called a sequential variable-set
automaton (VA). The efficiency of this task is then mea-
sured in the context of enumeration algorithms: we first
run a preprocessing phase computing a compact represen-
tation of the answers, and second we produce the results
one after the other with a short time between consecutive
answers, called the delay of the enumeration. Our goal
is to have an algorithm that is tractable in combined
complexity, i.e., in the sizes of the input document and
the VA, while ensuring the best possible data complexity
bounds in the input document size, i.e., a constant delay
that does not depend on the document. We present
such an algorithm for a variant of VAs called extended
sequential VAs and give an experimental evaluation of
this algorithm.

This article is a shortened version of the conference
article [4] published at ICDT’19, incorporating exper-
imental results from the journal version [6] currently
under review.

1. INTRODUCTION
Information extraction from text documents is an im-

portant task in data management. One of the classical
approaches is to use regular expressions (regexes) with
variables to extract subwords satisfying a pattern. For
example, to extract the emails addresses in a text, we
could extract substrings that contain an @ character,

The original version of this paper is entitled “Constant-
Delay Enumeration for Nondeterministic Document
Spanners” and was published in (22nd International
Conference on Database Theory 2019, 2019, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik). The au-
thors have been partially supported by the ANR project
EQUUS ANR-19-CE48-0019. Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) – 431183758.

contain no blank character, but are preceded and fol-
lowed by a blank character. A more general, declarative
way to define this task is the framework of document
spanners, which was first implemented by IBM in their
tool SystemT [16], and whose core semantics have then
been formalized in [8]. The spanner approach uses vari-
ants of regular expressions (namely, regex formulas with
variables) to extract substrings, and a relational query
over these extraction results to combine them. To per-
form evaluation, the first step is to evaluate the regular
expressions, which is done by compiling them to variants
of finite automata, the so-called variable-set automata,
or VAs for short. Second, we compute a plan for the
relational query, using relational algebra operators like
joins, unions and projections. Last, we evaluate this plan
over the results of the extraction. The formalization of
the spanner framework in [8] has led to a thorough in-
vestigation of its properties by the theoretical database
community, see [10, 12, 19, 11, 9, 22].

This paper focuses on the first task of efficiently com-
puting the results of the extraction, i.e., computing with-
out duplicates all tuples of ranges of the input document
(called mappings) that satisfy the conditions described
by a VA. As many algebraic operations can in fact be
compiled directly into VAs [12], this task actually covers
the whole data extraction problem for so-called regular
spanners [8]. While the extraction task is intractable for
general VAs [10], it is known to be tractable if we impose
that the VA is sequential [12, 9], i.e., if we impose that all
accepting runs actually describe a well-formed mapping;
we make this assumption throughout our work. Even
with this restriction, however, it may still be unreason-
able in practice to materialize all mappings: if there are
k variables to extract, then mappings are k-tuples and
there can be Θ(n2k) mappings on an input document of
size n, which is unreasonable if n is large. For this rea-
son, recent works [19, 9, 12] have studied the extraction
task in the setting of enumeration algorithms: instead
of materializing all mappings, we enumerate them one
by one while ensuring that the time spent between two
consecutive results, called delay, is always small. Specif-
ically, [12, Theorem 3.3] has shown how to enumerate
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the mappings with delay linear in the input document
and quadratic in the VA, i.e., given a document d and
a functional VA A (a subclass of sequential VAs), the
delay is O(|A|2 × |d|).

Although this result ensures tractability in both the
size of the input document and the automaton, the delay
may still be as long as |d|, which is generally very large.
By contrast, enumeration algorithms for other database
tasks often enforce stronger tractability guarantees in
data complexity [23, 26], in particular linear preprocess-
ing and constant delay (when measuring complexity in
the RAM model with uniform cost measure [1]). Such
algorithms consist of two phases: a preprocessing phase,
which precomputes an index data structure in linear data
complexity, and an enumeration phase, which produces
all results such that the delay between any two consec-
utive results is always constant, i.e., independent from
the input data. It was recently shown in [9] that this
strong guarantee could be achieved when enumerating
the mappings of VAs if we only focus on data complexity,
i.e., for any fixed VA, we can enumerate its mappings
with linear preprocessing and constant delay in the input
document. However, the preprocessing and delay in [9]
are exponential in the VA because they first determinize
it [9, Propositions 4.1 and 4.3]. This is problematic be-
cause the VAs constructed from regex formulas [8] are
generally nondeterministic and determinization can blow
up the size of the automaton exponentially.

Thus, to efficiently enumerate the results of the ex-
traction, we would ideally want to have the best of both
worlds: ensure that the combined complexity (in the size
of the sequential VA and the document) remains poly-
nomial, while ensuring that the data complexity (in the
document size only) is as small as possible, i.e., linear
time for the preprocessing phase and constant time for
the delay of the enumeration phase. However, up to
now, there was no known algorithm that satisfies both
these requirements while working on nondeterministic
sequential VAs. Further, it was conjectured that such
an algorithm is unlikely to exist [9] because the related
task of counting the number of mappings is SpanL-hard
and thus intractable for such VAs.

The question of nondeterminism is also unsolved for
the related problem of enumerating the results of monadic
second-order (MSO) queries on words and trees: there
are several approaches for this task where the query is
given as an automaton, but they require the automaton
to be deterministic [7, 2] or their delay is not constant
in the input document [18].

Contributions. We show that nondeterminism is in fact
not an obstacle to enumerating the results of document
spanners efficiently: we present an algorithm that enu-
merates the mappings of a nondeterministic sequential
VA in polynomial combined complexity while ensuring
linear preprocessing and constant delay in the input doc-
ument size. This answers the open question of [9], and
improves on the bounds of [12].

The existence of such an algorithm is surprising but
in hindsight not entirely unexpected: remember that, in
formal language theory, when we are given a word and a
nondeterministic finite automaton, then we can evaluate

the automaton on the word with tractable combined
complexity by determinizing the automaton “on the fly”,
i.e., computing at each position of the word the set
of states where the automaton can be. Our algorithm
generalizes this intuition, and extends it to the task
of enumerating mappings without duplicates. Here, we
present it for so-called extended sequential VAs, a variant
of sequential VAs introduced in [9]. Note that, despite
the name, extended VAs are actually more restrictive
than VAs: they can be converted in PTIME to VAs,
but the converse is not true as there are VAs for which
the smallest equivalent extended VA has exponential
size [9]. This being said, our approach also generalizes
from sequential extended VAs to sequential VAs: we do
not include this extension in this paper for lack of space,
but the result can be found in the original paper [4].

Our overall approach is to construct a kind of product
of the input document with the extended VA, similarly
to [9]. We then use several tricks to ensure the constant
delay bound despite nondeterminism; in particular, we
precompute a jump function that allows us to quickly
skip the parts of the document where no variable can
be assigned. The resulting algorithm is rather simple
and has no large hidden constants. Note that our enu-
meration algorithm does not contradict the counting
hardness results of [9, Theorem 5.2]: while our algorithm
enumerates mappings with constant delay and without
duplicates, we do not see a way to adapt it to count the
mappings efficiently. This is similar to the enumeration
and counting problems for maximal cliques: we can enu-
merate maximal cliques with polynomial delay [24], but
counting them is #P-hard [25].

We have also implemented our algorithm and present a
short experimental evaluation using this implementation.
The implementation can be found at https://github.

com/PoDMR/enum-spanner-rs and is under the BSD 3-
clause license.

Paper structure. In Section 2, we formally define
spanners, VAs, and the enumeration problem that we
want to solve on them. We then describe our main result
in Section 3, and prove it in Sections 4 and 5. Last, we
present the experimental performance of our algorithm
in Section 6 and conclude in Section 7.

2. PRELIMINARIES
Document spanners. A document d = d0 · · · dn−1 is

just a word over Σ. A span of d is a pair [i, j〉 with
0 ≤ i ≤ j ≤ |d|, which represents a substring (contiguous
subsequence) of d starting at position i and ending at
position j − 1. To describe the possible results of an
information extraction task, we use a finite set V of
variables, and define a result as a mapping from these
variables to spans of the input document. Following [9,
19] but in contrast to [8], we do not require mappings to
assign all variables: formally, a mapping of V on d is a
function µ from some domain V ′ ⊆ V to spans of d. We
define a document spanner to be a function assigning
to every input document d a set of mappings, which
denotes the set of results of the extraction task on the
document d.

Extended VAs. Document spanners are often repre-
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sented as variable-set automata (or VAs). We present
our results on a variant of VAs introduced by [9], called
sequential extended VAs. An extended VA on alphabet
Σ and variable set V is an automaton A = (Q, q0, F, δ)
where the transition relation δ consists of letter tran-
sitions of the form (q, a, q′) for q, q′ ∈ Q and a ∈ Σ,
and of extended variable transitions (or ev-transitions)
of the form (q,M, q′) where M is a possibly empty set
of variable markers (x` or ax, x ∈ V). Intuitively, on
ev-transitions, the automaton reads multiple markers at
once. A configuration of an extended VA is a pair (q, i)
where q ∈ Q and i is a position of the input document d
Formally, a run σ of A on d = d0 · · · dn−1 is a sequence of
configurations where letter transitions and ev-transitions
alternate:

(q0, 0)
M0−−→ (q′0, 0)

d0−→ (q1, 1)
M1−−→ (q′1, 1)

d1−→

· · · dn−1−−−→ (qn, n)
Mn−−→ (q′n, n)

where (q′i, di, qi+1) is a letter transition of A for all 0 ≤
i < n, and (qi,Mi, q

′
i) is an ev-transition of A for all

0 ≤ i ≤ n where Mi is the set of variable markers read
at position i.

An extended VAs is called sequential if all its accepting
runs are valid in the following sense: every variable
marker is read at most once, and whenever an open
marker x` is read at a position i then the corresponding
close marker ax is read at a position i′ with i ≤ i′. From
each accepting run of an extended sequential VA, we
can then define a mapping where each variable x ∈ V
is mapped to the span [i, i′〉 such that x` is read at
position i and ax is read at position i′; if these markers
are not read then x is not assigned by the mapping (i.e.,
it is not in the domain V ′). Throughout this work, we
always assume that extended VAs are sequential.

The document spanner of the VAA is then the function
that assigns to every document d the set of mappings
defined by the accepting runs of A on d: note that the
same mapping can be defined by multiple different runs.

The task studied in this paper is the following: given a
sequential extended VA A and a document d, enumerate
without duplicates the mappings that are assigned to d
by the document spanner of A. The enumeration must
write each mapping as a set of pairs (m, i) where m is a
variable marker and i is a position of d.

In the rest of the paper, we further assume that all
extended VAs are trimmed in the sense that for every
state q there is a document d and an accepting run of
the VA where the state q appears. This condition can
be enforced in linear time on any sequential VA: we
do a graph traversal to identify the accessible states
(the ones that are reachable from the initial state), we
do another graph traversal to identify the co-accessible
states (the ones from which we can reach a final state),
and we remove all states that are not accessible or not
co-accessible. We implicitly assume that all sequential
VAs have been trimmed, which implies that they cannot
contain any cycle of variable transitions.

Last, we assume that the states of our extended VAs
are partitioned between ev-states, from which only ev-
transitions originate (i.e., the qi above), and letter-states,
from which only letter transitions originate (i.e., the

q′i above); and we impose that the initial state is an
ev-state and the final states are all letter-states. Note
that transitions reading the empty set move from an
ev-state to a letter-state, like all other ev-transitions.
This requirement can be imposed in linear time on any
input extended VA; because we allow transitions labeled
with the empty set, unlike the definition of [9].

Example 2.1. The top of Figure 1 represents a se-
quential extended VA A0 to extract email addresses. To
keep the example readable, we simply define them as
words (delimited by a space or by the beginning or end of
document), which contain one at-sign “@” preceded and
followed by a non-empty sequence of non-“@” characters.
In the drawing of A0, the initial state q0 is at the left,
and the states q10 and q12 are final. The transitions
labeled by Σ represent a set of transitions for each letter
of Σ, and the same holds for Σ′, which we define as
Σ′ := Σ \ {@, }.

It is easy to see that, on any input document d, there is
one mapping of A0 on d per email address contained in d,
which assigns the markers x` and ax to the beginning
and end of the email address, respectively. In particular,
A0 is sequential, because any accepting run is valid. Note
that A0 happens to have the property that each mapping
is produced by exactly one accepting run, but our results
in this paper do not rely on this property.

Matrix multiplication. The complexity bottleneck for
some of our results is the complexity of multiplying two
Boolean matrices, which is a long-standing open problem,
see e.g. [13] for a recent discussion. When stating our
results, we often denote by 2 ≤ ω ≤ 3 an exponent for
Boolean matrix multiplication: this is a constant such
that the product of two r-by-r Boolean matrices can be
computed in time O(rω). The best known upper bound
is currently ω < 2.3728639, see [14].

3. ENUMERATION RESULT
Our main result is the following.

Theorem 3.1. Let 2 ≤ ω ≤ 3 be an exponent for
Boolean matrix multiplication. Let A be a extended se-
quential VA with variable set V and with state set Q, and
let d be an input document. We can enumerate the map-
pings of A on d with preprocessing time in O((|Q|ω+1 +
|A|)× |d|) and with delay O(|V| × (|Q|2 + |A| × |V|2)),
i.e., linear preprocessing and constant delay in the input
document, and polynomial preprocessing and delay in the
input VA.

This result is extended to sequential VAs in [4]. Our
result implies analogous results for all spanner formalisms
that can be translated to sequential VAs. In particular,
spanners are not usually written as automata by users,
but instead given in a form of regular expressions called
regex-formulas, see [8] for exact definitions. As we can
translate sequential regex-formulas to sequential VAs in
linear time [8, 12, 19], our results imply that we can also
evaluate them.

Another direct application of our result is for so-called
regular spanners, which are unions of conjunctive queries
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(UCQs) posed on regex-formulas, i.e., the closure of
regex-formulas under union, projection and joins. We
again point the reader to [8, 12] for the full definitions.
As such UCQs can in fact be evaluated by VAs, our
result also implies tractability for such representations,
as long as we only perform a bounded number of joins.

4. COMPUTING A MAPPING DAG
To show Theorem 3.1, we reduce the problem of enu-

merating the mappings captured by an extended sequen-
tial VA A to that of enumerating path labels in a special
kind of directed acyclic graph (DAG), called a mapping
DAG. This DAG is intuitively a variant of the prod-
uct of A and of the document d, where we represent
simultaneously the position in the document and the
corresponding state of A. In the mapping DAG, we no
longer care about the labels of letter transitions, so we
erase these labels and call these transitions ε-transitions.
As for the ev-transitions, we extend their labels to in-
dicate the position in the document in addition to the
variable markers. We first give the general definition of
a mapping DAG:

Definition 4.1. A mapping DAG consists of a set
V of vertices, an initial vertex v0 ∈ V , a final vertex
vf ∈ V , and a set of edges E where each edge (s, x, t) has
a source vertex s ∈ V , a target vertex t ∈ V , and a label
x. There are two kinds of edges: ε-edge, whose label x
is ε, and marker edges, whose label x is a finite (possibly
empty) set of pairs (m, i), where m is a variable marker
and i is a position. We require that the graph (V,E) is
acyclic. We say that a mapping DAG is normalized if
every path from the initial vertex to the final vertex starts
with a marker edge, ends with an ε-edge, and alternates
between marker edges and ε-edges.

The mapping µ(π) of a path π in the mapping DAG is
the union of labels of the marker edges of π: we require
of any mapping DAG that, for every path π, this union
is disjoint. Given a set U of vertices of G, we write
M(U) for the set of mappings of paths from a vertex
of U to the final vertex; note that the same mapping
may be captured by multiple different paths. The set of
mappings captured by G is then M(G) :=M({v0}).

Intuitively, the ε-edges correspond to letter transitions
ofA (with the letter being erased, i.e., replaced by ε), and
marker edges correspond to ev-transitions: their labels
are a possibly empty finite set of pairs of a variable
marker and position, describing which variables have
been assigned during the transition. We now explain
how we construct a mapping DAG from A and from a
document d, which we call the product DAG of A and d:

Definition 4.2. Let A = (Q, q0, F, δ) be a sequential
extended VA and let d = d0 · · · dn−1 be an input docu-
ment. The product DAG of A and d is the normalized
mapping DAG whose vertex set is Q× {0, . . . , n} ∪ {vf}.
Its edges are:

• For every letter-transition (q, a, q′) in δ, for every
0 ≤ i < |d| such that di = a, there is an ε-edge
from (q, i) to (q′, i+ 1);

• For every ev-transition (q,M, q′) in δ, for every 0 ≤
i ≤ |d|, there is a marker edge from (q, i) to (q′, i)
labeled with the (possibly empty) set {(m, i) | m ∈
M}.
• For every final state q ∈ F , there is an ε-edge from

(q, n) to vf .

The initial vertex of the product DAG is (q0, 0) and the
final vertex is vf .

Note that, contrary to [9], we do not contract the
ε-edges but keep them throughout our algorithm.

Example 4.3. The mapping DAG for our example
sequential extended VA A0 on the document a a@b b@c
is shown on Figure 1, with the document being written
at the left from top to bottom. The initial vertex of the
mapping DAG is (q0, 0) at the top left and its final vertex
is vf at the bottom. We draw marker edges horizontally,
and ε-edges diagonally. To simplify the example, we only
draw the parts of the mapping DAG that are reachable
from the initial vertex. Edges are dashed when they
cannot be used to reach the final vertex.

It is clear that the notion of product DAG is a map-
ping DAG and captures the mappings that we want to
enumerate.

Example 4.4. The set of mappings captured by the
example product DAG on Figure 1 is

{{(x`, 3), (ax, 5)}, {(x`, 6), (ax, 9)}},
and this is indeed the set of mappings of the example
extended VA A0 on the example document.

Our task is to enumerate M(G) without duplicates,
and this is still non-obvious: because of nondeterminism,
the same mapping in the product DAG may be witnessed
by exponentially many paths, corresponding to exponen-
tially many runs of the nondeterministic extended VA A.
We will present in the next section our algorithm to
perform this task on the product DAG G. To do this,
we need to preprocess G by trimming it, and introduce
the notion of levels to reason about its structure.

First, we present how to trim G. We say that G is
trimmed if every vertex v is both accessible (there is
a path from the initial vertex to v) and co-accessible
(there is a path from v to the final vertex). Given a
mapping DAG, we can clearly trim it in linear time by
two linear-time graph traversals. Hence, we will always
implicitly assume that the mapping DAG is trimmed. If
the mapping DAG is empty once trimmed, then there
are no mappings to enumerate, so our task is trivial.
Hence, we assume in the sequel that the mapping DAG
is non-empty after trimming. Further, if V = ∅ then
the only possible mapping is the empty mapping and we
can produce it at that stage, so in the sequel we assume
that V is non-empty.

Example 4.5. For the mapping DAG of Figure 1,
trimming eliminates the non-accessible vertices (which
are not depicted) and the non-co-accessible vertices (i.e.,
those with incoming dashed edges).
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Figure 1: Example sequential extended VA A0 to extract e-mail addresses (see Example 2.1) and example mapping
DAG on an example document (see Examples 4.3, 4.4, 4.5, and 4.7).

Second, we present an invariant on the structure of G
by introducing the notion of levels:

Definition 4.6. A mapping DAG G is leveled if its
vertices v = (q, i) are pairs whose second component i is
a nonnegative integer called the level of the vertex and
written level(v), and where the following conditions hold:

• For the initial vertex v0 (which has no incoming
edges), the level is 0;

• For every ε-edge from u to v, it holds that level(v) =
level(u) + 1;

• For every marker edge from u to v, it holds that
level(v) = level(u). Furthermore, all pairs (m, i) in
the label of the edge have i = level(v).

The depth D of G is the maximal level. The width W
of G is the maximal number of vertices that have the
same level.

The product DAG of A and d is leveled, W is less
than |Q|, and D is equal to |d|+ 1.

Example 4.7. The example mapping DAG on Fig-
ure 1 is leveled, and the levels are represented as hori-
zontal layers separated by dotted lines: the topmost level
is level 0 and the bottommost level is level 10.

In addition to levels, we need the notion of a level set :

Definition 4.8. A level set Λ is a non-empty set of
vertices in a leveled normalized mapping DAG, that all
have the same level (written level(Λ)) and which are all
the source of some marker edge. The singleton {vf} of
the final vertex is also considered as a level set.

In particular, letting v0 be the initial vertex, the sin-
gleton {v0} is a level set. Further, if we consider a level
set Λ, which is not the final vertex, then we can follow
marker edges from all vertices of Λ (and only such edges)
to get to other vertices, and follow ε-edges from these
vertices (and only such edges) to get to a new level set Λ′

with level(Λ′) = level(Λ) + 1.

SIGMOD Record, March 2020 (Vol. 49, No. 1) 29



5. ENUMERATION ON MAPPING DAGS
In the previous section, we have reduced our enumer-

ation problem for extended VAs on documents to an
enumeration problem on normalized leveled mapping
DAGs. In this section, we describe our main enumera-
tion algorithm on such DAGs and show the following:

Theorem 5.1. Let 2 ≤ ω ≤ 3 be an exponent for
Boolean matrix multiplication. Given a normalized lev-
eled mapping DAG G of depth D and width W , we can
enumerate M(G) (without duplicates) with preprocessing
O(|G|+D×Wω+1) and delay O(W 2 × (r+ 1)) where r
is the size of each produced mapping.

Remember that, as part of our preprocessing, we have
ensured that the leveled normalized mapping DAG G
has been trimmed. We also preprocess G to ensure that,
given any vertex, we can access its adjacency list (i.e.,
the list of its outgoing edges) in some sorted order on the
labels, where we assume that ∅-edges come last. This
sorting can be done in linear time on the RAM model
[15, Theorem 3.1], so the preprocessing is in O(|G|).

Our general enumeration algorithm is presented as
Algorithm 1. We explain the missing pieces next. The
function Enum is initially called with Λ = {v0}, the level
set containing only the initial vertex, and with mapping
being the empty set.

Algorithm 1 Main enumeration algorithm

1: procedure enum(G,Λ,mapping)
2: Λ′ := Jump(Λ)
3: if Λ′ is the singleton {vf} of the final vertex then
4: Output(mapping)
5: else
6: for (locmark,Λ′′) in NextLevel(Λ′) do
7: enum(G,Λ′′, locmark ∪mapping)

For simplicity, let us assume for now that the Jump
function is just the identity, i.e., Λ′ := Λ. As for the
call NextLevel(Λ′), it returns the pairs (locmark,Λ′′)
where:

• The label set locmark is an edge label such that
there is a marker edge labeled with locmark that
starts at some vertex of Λ′

• The level set Λ′′ is formed of all the vertices w at
level level(Λ′)+1 that can be reached from such an
edge followed by an ε-edge. Formally, a vertex w is
in Λ′′ if and only if there is an edge labeled locmark
from some vertex v ∈ Λ to some vertex v′, and
there is an ε-edge from v′ to w.

Remember that, as the mapping DAG is normalized, we
know that all edges starting at vertices of the level set Λ′

are marker edges (several of which may have the same
label); and for any target v′ of these edges, all edges
that leave v′ are ε-edges whose targets w are at the level
level(Λ′) + 1.

It is easy to see that the NextLevel function can be
computed efficiently:

Proposition 5.2. Given a leveled trimmed normal-
ized mapping DAG G with width W , and given a level
set Λ′, we can enumerate without duplicates all the pairs
(locmark,Λ′′) ∈ NextLevel(Λ′) with delay O(W 2 ×
|locmark|) in an order such that locmark = ∅ comes last
if it is returned.

The design of Algorithm 1 is justified by the fact that,
for any level set Λ′, the set M(Λ′) can be partitioned
based on the value of locmark.

It can easily be proven by induction that Algorithm 1
correctly enumerates M(G) when Jump is the identity
function. However, the algorithm then does not achieve
the desired delay bounds: indeed, it may be the case that
NextLevel(Λ′) only contains locmark = ∅, and then
the recursive call to Enum would not make progress
in constructing the mapping, so the delay would not
generally be linear in the size of the mapping. To avoid
this issue, we use the Jump function to directly“jump” to
a place in the mapping DAG where we can read a label
different from ∅. Let us first give the relevant definitions:

Definition 5.3. Given a level set Λ in a leveled map-
ping DAG G, the jump level JL(Λ) of Λ is the first level
j ≥ level(Λ) containing a vertex v′ such that some v ∈ Λ
has a path to v′ and such that v′ is either the final vertex
or has an outgoing edge with a label which is 6= ε and
6= ∅. In particular, we have JL(Λ) = level(Λ) if some
vertex in Λ already has an outgoing edge with such a
label, or if Λ is the singleton set containing only the final
vertex.

The jump set of Λ is then Jump(Λ) := Λ if JL(Λ) =
level(Λ), and otherwise Jump(Λ) is formed of all vertices
at level JL(Λ), to which some v ∈ Λ have a directed path
whose last edge is labeled ε. This ensures that Jump(Λ)
is always a level set.

The definition of Jump ensures that we can jump from
Λ to Jump(Λ) when enumerating mappings, and it will
not change the result because we only jump over ε-edges
and ∅-edges.

What is more, Algorithm 1 now achieves the desired
delay bounds, as we will show. Of course, this relies
on the fact that the Jump function can be efficiently
precomputed and evaluated. We only state this fact here,
and give the proof and more details in [4]. Intuitively,
the jump function relies on the multiplication of matrices
of size W ×W , hence the time bound.

Proposition 5.4. Given a leveled mapping DAG G
with width W , we can preprocess G in time O(D×Wω+1)
such that, given any level set Λ of G, we can compute
the jump set Jump(Λ) of Λ in time O(W 2).

We can now conclude the proof of Theorem 5.1 by
showing that the preprocessing and delay bounds are
as claimed. For the preprocessing, this is clear: we do
the preprocessing in O(|G|) presented at the beginning
of the section (i.e., trimming, and computing the sorted
adjacency lists), followed by that of Proposition 5.4.
For the delay, we can show that Algorithm 1 has delay
O(W 2×(r+1)), where r is the size of the mapping of each
produced path. In particular, the delay is independent
of the size of G.
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Figure 2: Preprocessing time and index structure size
for the query TTAC.{0,1000}CACC on inputs of different
lengths.

6. EXPERIMENTS
In this section, we present a very short experimental

evaluation of our implementation of the enumeration
algorithm. More results can be found in [6]. Our im-
plementation enumerates the mappings assigned to a
document by a nondeterministic sequential VA.

The tests were run in a virtual machine that had
exclusive access to two Xeon E5-2630 CPU cores. The
algorithm is single-threaded, but the additional core was
added to minimize the effects of background activity of
the operating system.

Measuring the delays between outputs of the algorithm
is challenging, because the timescale for these delays is
so tiny that unavoidable hardware interrupts can make a
big difference. To eliminate outliers resulting from such
interrupts, we exploited the fact that our enumeration
algorithm is fully deterministic. We ran the algorithm
twenty times and recorded all delays. Afterwards, for
each produced result, we took the median of the twenty
delays that we collected. All delay measurements use
this approach, e.g., if we compute the maximum delay for
a query, it is actually the maximum over these medians.

We benchmarked our implementation on a genetic
dataset: the first chromosome of the human genome
reference sequence GRCh38, available at https://www.

ncbi.nlm.nih.gov/genome/guide/human/. It contains
roughly 250 million base pairs, where each base pair is
encoded as a single character. We also use prefixes of this
data in the experiments, when we need to benchmark
against input documents of various sizes.

We consider the query extracting factors defined by
the regex TTAC.{0,100}CACC to illustrate the data com-
plexity of our algorithm, and consider the set of queries
extracting all substrings up to a given length k (i.e., the
regex .{0,k}) to illustrate its combined complexity.

For the first query, we give in Figure 2 the preprocess-
ing time and size of the index structure divided by the
input length, and give in Figure 3 the delay. We see that
the preprocessing speed is roughly 3 megabytes per sec-
ond and the index structure is twice as large as the input
document. The average delay is constant (around five
microseconds, amounting to 200,000 results per second),
while the maximum delay is roughly four times larger.

For the queries of the form .{0,k}, we used as input
the first 100,000 characters of the genomic data from the
previous experiment. This query does not look interest-
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Figure 3: Enumeration delay for the query
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Figure 4: Preprocessing time for the query .{0,k} on
an input document of 100 kB, as a function of k.

ing and indeed, all resulting mappings can be computed
trivially given the length of the string. However, this
query triggers the worst case behavior of our algorithm,
as almost all levels have width k + 1. We give the pre-
processing time in Figure 4. As our implementation
uses the naive O(n3) matrix multiplication algorithm,
its running time is supposed to be Θ(k4) in this case.
This is consistent with what we observe experimentally.
The jumps in preprocessing time that can be seen in the
figure result from the fact that our implementation pads
the matrix widths to a multiple of 64.

7. CONCLUSION
We have shown that we can efficiently enumerate the

mappings of sequential variable-set automata on input
documents, achieving linear-time preprocessing and con-
stant delay in data complexity, while ensuring that pre-
processing and delay are polynomial in the input VA
even if it is not deterministic. This result was previously
considered as unlikely by [9], and it improves on the
algorithms in [12]: with our algorithm, the delay be-
tween outputs does not depend on the input document,
whereas it had a linear dependency on the size of the
input document in [12].

Since the publication of our original paper [4], we
have extended our results in several ways. First, our
algorithm has been implemented and we have evaluated
its performance experimentally; we summarized these
results in Section 6, with the full results being given
in [6]. Secondly, we have studied the problem of efficient
enumeration on dynamic documents, i.e., maintaining
the index structures that we use for enumeration when
the input document is updated. Our results in this
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direction are presented in [5], in the more general setting
of enumerating queries over trees. Specifically, relative
to [4], we study enumeration for nondeterministic tree
automata (rather than word automata), and achieve the
same theoretical complexity bounds. Moreover, we can
update our index structure in logarithmic time in the size
of the tree when performing atomic updates on the input
tree, i.e., relabeling a node, deleting or adding a leaf.
Our results in [5] thus achieve the same data complexity
bounds as the previously proposed algorithms for efficient
enumeration of such queries on trees, e.g., those of [3, 18,
17, 20, 21], while supporting a more expressive update
language, and while additionally ensuring tractability in
the nondeterministic tree automaton.

One remaining open problem for efficient enumeration
on dynamic data is to have an efficient support for more
general updates. Specifically, in the context of words,
our update language from [5] only allows single letter
changes in the input documents. We do not know how
to deal efficiently with more complex update operators,
e.g., bulk update operations that modify large parts
of the text at once like cutting and pasting parts of
the text, splitting or joining strings, etc. We also do
not know how to handle the complexity of updates to
avoid the logarithmic dependency in the input document:
while we show a lower bound in [5] on the update time,
it may be possible to achieve constant-time updates
for the case of strings for specific updates, e.g., at the
beginning or end of the word, as in the case of rotating
a log file, or for more restricted queries than the class
of regular spanners. Last, an interesting open question
is whether our methods allow for efficient support for
other operations, e.g., testing if an input mapping is an
answer to the query: such testing queries are efficiently
supported in [17] (which has no support for updates), and
we do not know if we can handle such queries with our
methods (and especially in combination with updates).
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Technical Perspective: Database Repair Meets Algorithmic
Fairness

Lise Getoor
UC Santa Cruz, USA

There has been an explosion of interest in fairness in ma-
chine learning. In large part, this has been motivated by
societal issues highlighted in a string of well publicized cases
such as gender biased job recommendation and racially bi-
ased criminal risk prediction algorithms. Both the recogni-
tion of the potential disparate impacts of machine learning
due to historical bias in the data and the realization of how
algorithmic decision making can exaggerate existing struc-
tural inequities has become increasingly well known.

This has spawned a growing body of work that examines
fairness in ML [1]. From a theoretical perspective, it has
opened a pandora’s box of new fairness measures, impossi-
bility results, and optimization strategies. However, this line
of work has faced criticism. First, the notion that there is
any one correct societal fairness definition, and the framing
of ML fairness as a simple optimization problem, is suspect.
Second, on technical grounds, unless one takes into account
the underlying causal structure in the domain, there is no
way to untangle, simply from data, whether the data is bi-
ased (and hence an algorithm trained on it is fair or not).

The paper “Database Repair Meets Algorithmic Fairness”
by Babak Salimi, Bill Howe and Dan Suciu addresses this
second criticism directly, and, I would argue, by general-
izing the problem setting, they also address the first crit-
icism. Furthermore, they introduce a refreshing database
perspective on the problem. The lovely thing about this pa-
per is that it tackles an important real-world issue, offers
deep technical contributions, and includes convincing em-
pirical results. Few papers are able to achieve all this, and
none that I can think of do it as nicely and concisely.

First, it’s useful to review Simpson’s paradox, the well-
known statistical phenomena that statistical correlations
may reverse themselves depending on how data is ag-
gregated. Within the fairness setting, we are interested
in whether there is a dependence between a sensitive or
(legally) protected attribute (such as gender, race or reli-
gion), and a decision outcome (such as admissions, hiring,
credit or parole). If that dependence can reverse itself when
we condition on another variable, such as age, then mak-
ing conclusions about fairness will be difficult! Luckily if
we have additional information about the underlying causal
structure in the domain to reason about confounders we can
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republish, to post on servers or to redistribute to lists, requires prior specific
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unpack the correlations between protected attributes and
outcomes. Pearl, in a long line of foundational work has
developed a calculus of causation that enables one to trans-
late between statistical statements and causal statements in
a principled manner [2, 3]. With these tools in hand, when
the full causal model is available, it allows us to determine
whether there is an inappropriate dependency between a
sensitive attribute and a decision.

However, this is a strong requirement. Salimi et al. use
Pearl’s causal framework as the foundation for a general and
flexible construction for introducing admissible and inadmis-
sible attributes while relaxing the requirement of having the
full causal model available. Next, the authors draw an ele-
gant connection between causal modeling and database the-
ory to transform the problem of removing bias in data into
a database repair problem. They show how to map causal
interventions from statistical conditional independence con-
straints into multi-valued dependencies that should hold in
the data. To ensure the statistical independencies required
for fairness hold, they generate samples matching the empir-
ical distribution as closely as possible and apply techniques
from database repair to modify the data such that indepen-
dences are satisfied. (Interestingly, this result can be used
in any setting where one wishes to mix desired interventions
and distributional constraints with empirical information.)
The authors suggest that the repaired training data “can be
seen as a sample from a hypothetical fair world”.

To do this, they introduce a notion of justifiable fairness
and prove that for a classifier to be justifiably fair, it is suf-
ficient that the outcome variable is conditionally indepen-
dent of the inadmissible attributes given the admissible at-
tributes. Next, they show how to transform this requirement
on a classifier into an integrity constraint on the training
data! The paper’s contributions include correctly setting up
the theoretical machinery to make this translation between
probability distributions and databases. While the high level
intuition is simple, the details are quite non-trivial.

All in all, this is an important paper, and has some-
thing for everyone—real-world impact, theoretical results
that bridge causal modeling and database theory, all in an
elegant and well-written package.
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Database Repair Meets Algorithmic Fairness

Babak Salimi, Bill Howe, Dan Suciu
University of Washington

ABSTRACT
Fairness is increasingly recognized as a critical component
of machine learning systems. However, it is the underlying
data on which these systems are trained that often reflect
discrimination, suggesting a database repair problem. Ex-
isting treatments of fairness rely on statistical correlations
that can be fooled by anomalies, such as Simpson’s para-
dox. Proposals for causality-based definitions of fairness can
correctly model some of these situations, but they rely on
background knowledge of the underlying causal models. In
this paper, we formalize the situation as a database repair
problem, proving sufficient conditions for fair classifiers in
terms of admissible variables as opposed to a complete causal
model. We show that these conditions correctly capture sub-
tle fairness violations. We then use these conditions as the
basis for database repair algorithms that provide provable
fairness guarantees about classifiers trained on their train-
ing labels. We demonstrate the effectiveness of our proposed
techniques with experimental results.

1. INTRODUCTION
Fairness is increasingly recognized as a critical component

of machine learning (ML) systems. These systems are now
routinely used to make decisions that affect people’s lives [7],
with the aim of reducing costs, reducing errors, and improv-
ing objectivity. While this is a positive trend, there is also
enormous potential for harm. The functionality of ML sys-
tems are defined by their parameters as dictated by the data
used for training them. More often than not, the available
data reflects societal inequities and historical biases, and, as
a consequence, the models trained on such data will there-
fore reinforce and legitimize discrimination and opacity.

There has been a steady stream of reports of discrimina-
tory ML systems, due to biased data, across many different
domains. In 2014, a team of machine learning experts from
Amazon Inc. began work on an automated system to review
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job applicants’ resumes. According to a recent Reuters arti-
cle [8], the experimental system gave job candidates scores
ranging from one to five and was trained on 10 years of re-
cruiting data from Amazon. However, by 2015 the team
realized that the system showed a significant gender bias
towards male candidates over females due to historical dis-
crimination in the training data. Amazon edited the system
to make it gender agnostic, but there was no guarantee that
discrimination did not occur through other means, and the
project was totally abandoned in 2017.

In another example, in 2016, a team of journalists from
ProPublica analysed COMPAS, one of the many widely used
commercial risk assessment algorithms for predicting recidi-
vism, and revealed that it overpredicts recidivism for African-
Americans and underpredicts it for Caucasians [20]. In the
context of predicting recidivism (which is itself a question-
able application!), fairness issue arise because these systems
are trained using data on arrested individuals, as opposed to
data on individuals who commit crime. Because of historical
racial biases in arrest data, probabilities produced by these
systems are racially biased as well.

Mitigating Bias. These examples underpin the importance
of understanding and accounting for historical bias in data.
A näıve (and ineffective) approach sometimes used in prac-
tice is to simply omit the protected attribute (say, race or
gender) when training the classifier. However, since the pro-
tected attribute is frequently represented implicitly by some
combination of proxy variables, the classifier still learns the
discrimination present in training data. For example, zip
code tends to predict race due to a history of segregation [13,
34]; answers to personality tests identify people with disabil-
ities [37]; and keywords can reveal gender on a resume [8].
As a result, a classifier trained without regard to the pro-
tected attribute not only fails to remove discrimination, but
it can complicate the detection and mitigation of discrimi-
nation downstream via existing techniques [29, 6, 5, 18, 17,
24, 36], such as those we describe next.

The two main approaches to reduce or eliminate sources of
discrimination are summarized in Fig. 1. The most popular
is in-processing, where the ML algorithm itself is modified to
account for fairness during the training time; this approach
must be reimplemented for every ML application. The alter-
native is to process either the training data (pre-processing)
or the output of the classifier itself (post-processing). We
advocate for the pre-processing strategy, which can be de-
signed to be agnostic to the choice of ML algorithm and
instead interprets the problem as a database repair task.
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Fairness Definitions. One needs a quantitative measure
of discrimination in order to remove it. A large number of
fairness definitions have been proposed, which we broadly
categorize in Fig. 1. The best-known measures are based on
statistical (i.e., associative) relationships between the pro-
tected attribute and the outcome. For example, demo-
graphic parity requires that, for all groups of the protected
attribute, the overall probability of a positive prediction of
an outcome should be the same. However, it has been shown
that associative definitions of fairness can be mutually ex-
clusive [5] and fail to distinguish between discriminatory,
non-discriminatory, and spurious association between a pro-
tected attribute and the outcome of an algorithm [17, 24, 9].
The following example highlights the pitfalls of associative
fairness:

Example 1.1. In 1973, UC Berkeley was sued for dis-
crimination against females in graduate school admissions
when it was found that 34.6% of females were admitted in
1973 as opposed to 44.3% of males, hence demographic par-
ity was violated. However, analysis revealed that the effect
occurred because females tended to apply to departments with
lower overall acceptance rates [30]. When broken down by
department, a slight bias toward female applicants was ob-
served, a result that did not constitute evidence for gender-
based discrimination.

Such situations have recently motivated a search for a more
principled measure of fairness and discrimination based on
causality [17, 24, 18, 29, 31]. These approaches assume ac-
cess to background knowledge on the underlying causal mod-
els that usually visualised as directed graphs, consisting of
nodes (representing variables) and directed edges between
the nodes (representing potential causal relations). These
approaches, then, measure discrimination as the causal in-
fluence of the protected attribute on the outcome of an al-
gorithm, through certain causal paths that deemed to be
socially unacceptable. For instance, in Example 1.1, the
direct causal influence of gender on admission decisions as
well as its indirect effect through applicants’ hobbies might
be considered as discriminatory. In terms of causal models,
the former is expressed by prohibiting the directed edge from
gender to admission decision, and the latter is expressed by
prohibiting any directed path from gender to hiring deci-
sion that is intercepted by applicant’s hobbies. However,
causal approaches to fairness assume access to a complete
causal model, and no existing proposals describe compre-
hensive systems for pre-processing data to mitigate causal
discrimination.

Fairness via Database Repair. This paper describes a
new approach to removing discrimination by repairing the
training data. Our proposal is based on the following key
observations: 1) In causal models, a missing arrow between
two variables X and Y encodes the assumption that there
exists a set of variables Z such that X and Y are statisti-
cally independent given Z; denoted as the conditional in-
dependence statement (X⊥⊥Y | Z). Consequently, causal
fairness constraints (expressed as requirements about the
absence of certain causal paths from protected attributes to
an outcome) can be compiled into conditional independence
statements. Therefore, to enforce causal fairness, we can
intervene on the data and enforce the corresponding con-
ditional independence statements instead of intervening on
the causal models over which we have no control. 2) There is

Statistical Causal
In-processing [15, 41, 3, 24, 17] [24, 17, 29]

(Modify Algorithm)
Pre/post-processing [10, 4, 12, 39] Capuchin

(Modify input/output Data) (this paper)

Figure 1: Fairness metrics and enforcement methods.

a clear connection between conditional independence state-
ments and well-studied integrity constraints in data manage-
ment such as Multivalued Dependencies (MVDs) [1]. Our
paper leverages these connections to frame algorithmic fair-
ness as a database repair problem for Multivalued Depen-
dencies. The problem of database repair has been studied
for various types of constraints, for example the complex-
ity of repairing for functional dependencies (FD) has been
completely solved in [21]. However, the problem of database
repairs for MVDs has received less attention and is still open.
Recently, the problem of mining MVDs from data is studied
in [16].

Capuchin. Our system, Capuchin, accepts a dataset con-
sisting of a protected attribute (e.g., gender, race, etc.), an
outcome attribute (e.g., college admissions, loan application,
or hiring decisions), and a set of admissible variables through
which it is permissible for the protected attribute to influ-
ence the outcome. For instance, the applicant’s choice of
department in Example 1.1 may be considered as admissi-
ble despite being correlated with gender. The system re-
pairs the input data by inserting or removing tuples to re-
move the influence of the protected attribute on the outcome
through any directed causal paths that includes inadmissible
attributes, by means of enforcing the corresponding MVDs.
That is, the repaired training data can be seen as a sample
from a counterfactual fair world.

Unlike previous measures of fairness based on causality [24,
17, 29], which require the presence of the underlying causal
model, our definition is based solely on the notion of inter-
vention [25] and can be guaranteed even in the absence of
causal models. The user needs only distinguish admissible
and inadmissible attributes; we prove that this information
is sufficient to mitigate discrimination.

We use this interventional approach to derive in Sec. 3.1
a new fairness definition, called justifiable fairness. Justi-
fiable fairness subsumes and improves on several previous
definitions and can correctly distinguish fairness violations
and non-violations that would otherwise be hidden by sta-
tistical coincidences, such as Simpson’s paradox. We prove
next, in Sec. 3.2, that, if the training data satisfies a sim-
ple saturated conditional independence, then any reasonable
algorithm trained on it will be fair.

Our core technical contribution consists of a new approach
to repair training data in order to enforce the saturated con-
ditional independence that guarantees fairness. In Sec. 4 we
first define the problem formally and then present a new
technique to reduce it to a multivalued functional depen-
dency MVD [1]. Then, we introduce new techniques to re-
pair a dataset for an MVD. In Sec. 5 we evaluate our algo-
rithms on real data and show that they meet our goals.

2. PRELIMINARIES
This section reviewers the basic background on database

repair, algorithmic fairness and causal inference, the build-
ing blocks of our paper.

We denote variables (i.e., dataset attributes) by upper-
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case letters, X,Y, Z, V ; their values with lowercase letters,
x, y, z, v; and denote sets of variables or values using boldface
(X or x). The domain of a variable X is Dom(X), and the
domain of a set of variables is Dom(X) =

∏
Y ∈XDom(Y ).

In this paper, all domains are discrete and finite; contin-
uous domains are assumed to be binned, as is typical. A
database instance D is a relation whose attributes we de-
note as V. We assume set semantics (i.e., no duplicates)
unless otherwise stated, and we denote the cardinality of D
as n = |D|. Given a partition X ∪Y ∪ Z = V, we say that
D satisfies the multivalued dependency (MVD) Z � X if
D = ΠXZ(D) 1 ΠZY(D).

Typically, training data for ML is a bag B. We convert
it into a set D (by eliminating duplicates) and a probability
distribution Pr, which accounts for multiplicities; We call D
the support of Pr. We say that Pr is uniform if all tuples
have the same probability. We say X and Y are condition-
ally independent (CI) given Z, written (X⊥⊥PrY|Z), or just
(X⊥⊥Y|Z), if Pr(x|y, z) = Pr(x|z) whenever Pr(y, z) > 0.
When V = XYZ, then the CI is said to be saturated. A
uniform Pr satisfies a saturated CI iff its support D satis-
fies the MVD Z � X. Training data usually does not have
a uniform Pr, and in such cases the equivalence between
the CI and MVD fails [38]. This issue can be addressed by
converting a bag to a corresponding set; see [32] for details.

The database repair problem is the following: we are given
a set of constraints Γ and a database instance D, and we
need to perform a minimal set of updates on D such that
the new database D′ satisfies Γ [2].

2.1 Background on Algorithmic Fairness
Algorithmic fairness considers a protected attribute S, a re-

sponse variable Y , and a prediction algorithmA : Dom(X)→
Dom(O), where X ⊆ V, and the prediction of A is denoted

O (some references denote it Ỹ ) and called outcome. For
simplicity, we assume S classifies the population into pro-
tected S = 1 and privileged S = 0, for example, female and
male. Fairness definitions can be classified as statistical or
causal.

Statistical Fairness. This family of fairness definitions is
based on statistical measures on the variables of interest;
a summary is shown in Fig. 2. Demographic Parity (DP)
[3, 14, 42, 35, 9], requires an algorithm to classify both the
protected and the privileged group with the same proba-
bility. As we saw in Example 1.1, the lack of statistical
parity cannot be considered as evidence for gender-based
discrimination; this has motivated the introduction of Con-
ditional Statistical Parity (CSP) [6], which controls for a set
of admissible factors A. Another popular measure used for
predictive classification algorithms is Equalized Odds (EO),
which requires that both protected and privileged groups to
have the same false positive (FP) rate, and the same false
negative (FN) rate. Finally, Predictive Parity (PP) requires
that both protected and unprotected groups have the same
predicted positive value (PPV) It has been shown that these
measures are inconsistent [5].

Causal Fairness. Causal notions of fairness were moti-
vated by the need to address difficulties generated by statis-
tical fairness and assumes an underlying causal model [18,
17, 24, 29, 11]. We first discuss causal DAGs before review-
ing causal fairness.

Fairness Metric Description
Demographic Parity (DP) [9, 35] S⊥⊥O
Conditional Statistical parity [6] S⊥⊥O|A
Equalized Odds (EO) [12, 40] S⊥⊥O|Y
Predictive Parity (PP)[5, 35, 5, 12] S⊥⊥Y |O

Figure 2: Common statistical definitions of fairness.

2.2 Background on Causal DAGs
Causal DAG. A causal DAG G over set of variables V
is a directed acyclic graph that models the functional in-
teraction between variables in V. Each node X represents
a variable in V that is functionally determined by: (a) its
parents Pa(X) in the DAG, and (b) some set of exogenous
factors that need not appear in the DAG, as long as they are
mutually independent. This functional interpretation leads
to the same decomposition of the joint probability distribu-
tion of V that characterizes Bayesian networks [25]:

Pr(V) =
∏

X∈V

Pr(X|Pa(X)) (1)

d-Separation and Faithfulness. A common inference ques-
tion in a causal DAG is how to determine whether a CI
(X⊥⊥Y|Z) holds. A sufficient criterion is given by the no-
tion of d-separation, a syntactic condition (X⊥⊥Y|dZ) that
can be checked directly on the graph. Pr and G are called
Markov compatible if (X⊥⊥Y|dZ) implies (X⊥⊥PrY|Z); if the
converse implication holds, then we say that Pr is faithful
to G. If G is a causal DAG and Pr is given by Eq.(1), then
they are Markov compatible [26].

Counterfactuals and do Operator. A counterfactual is
an intervention where we actively modify the state of a set
of variables X in the real world to some value X = x and
observe the effect on some output Y . Pearl [25] described the
do operator that allows this effect to be computed on a causal
DAG, denoted Pr(Y |do(X = x)). To compute this value, we
assume that X is determined by a constant function X =
x instead of a function provided by the causal DAG. This
assumption corresponds to a modified graph with all edges
into X removed, and values of X are set to x. The Bayesian
rule Eq.(1) for the modified graph defines Pr(Y |do(X = x));
the exact expression is in [25, Theorem 3.2.2]. We proved
and illustrated the following in [32]:

Theorem 2.1. Given a causal DAG G and a set of vari-
ables X ⊆ V, suppose X = {X0, X1 . . . , Xm} are ordered
such that Xi is a non-descendant of Xi+1 in G. The effect
of a set of interventions do(X = x) is given by the following
extended adjustment formula:

Pr(y|do(X = x)) =

∑

z∈Dom(Z)

Pr(y|x, z)




m∏

i=0

Pr


pa(Xi)

∣∣∣∣
i−1⋃

j=0

pa(Xj),

i−1⋃

j=0

xj







(2)

where Z =
⋃

X∈X Pa(X) and j ≥ 0.

2.3 Causal Fairness
Counterfactual Fairness. Kusner et al. [18, 19] (see also
the discussion in [22]) define a classifier as counterfactu-
ally fair if the protected attribute of an individual is not a
cause of the outcome of the classifier for that individual, i.e.,
had the protected attributes of the individual been different,
and other things being equal, the outcome of the predictor
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would have remained the same. However, it is known that
individual-level counterfactuals can not be estimated from
data in general [26].

Proxy Fairness. To avoid individual-level counterfactuals,
a common approach is to study population-level counterfac-
tuals or interventional distributions that capture the effect
of interventions at the population level rather than an indi-
vidual level [26, 27, 28]. Kilbertus et. al. [17] defined proxy
fairness as follows:

P (Ỹ = 1|do(P = p)) = P (Ỹ = 1|do(P = p′)) (3)

for any p,p′ ∈ Dom(P), where P consists of proxies to
a sensitive variable S (and might include S). Intuitively, a
classifier satisfies proxy fairness in Eq 3, if the distribution of
Ỹ under two interventional regimes in which P set to p and
p′ is the same. Thus, proxy fairness is not an individual-
level notion. The next example shows that proxy fairness
fails to capture group-level discrimination in general.

Example 2.2. To illustrate the difference between coun-
terfactual and proxy fairness, consider the following college
admission example. Both departments make decisions based
on students’ gender and qualifications, O = f(G,D,Q),
where, O stands for admission decision and G, D and Q
are binary variables that respectively stands for applicants’
gender, their choice of department and qualifications. The
causal DAG is G → O,D → O,Q → O. Let D = UD and
Q = UQ, where UD and UQ are exogenous factors that are
independent and that are uniformly distributed, e.g., P (UQ =
1) = P (UQ = 0) = 1

2
. Further suppose f(G, ’A’, Q) = G∧Q

and f(G, ’B’, Q) = (1−G)∧Q, i.e., dep. A admits only qual-
ified males and dep. B admits only qualified females. This
admission process is proxy-fair, because P (O = 1|do(G =
1)) = P (O = 1|do(G = 0)) = 1

2
. On the other hand, it

is clearly individually-unfair, in fact it is group-level unfair
(for all applicants to the same department).

Path-Specific Fairness. These definitions are based on
graph properties of the causal graph, e.g., prohibiting spe-
cific paths from the sensitive attribute to the outcome [24,
22]; however, identifying path-specific causality from data
requires very strong assumptions and is often impractical.

3. DEFINING AND ENFORCING FAIRNESS
In this section we introduce a new definition of fairness,

which, unlike proxy fairness [17], correctly captures group-
level fairness, and unlike counterfactual fairness [18, 19] is
based on the standard notion of intervention and hence is
testable from the data. In the next section we will describe
how to repair an unfair training dataset to enforce fairness.

3.1 Interventional Fairness
In this section we assume that the causal graph is given.

The algorithm computes an output variable O from input
variables X (Sec. 2.1). We begin with a definition describing
when an outcome O is causally independent of the protected
attribute S for any possible configuration of a given set of
variables K.

Definition 3.1 (K-fair). Fix a set of attributes K ⊆
V− {S,O}. We say an algorithm A : Dom(X)→ Dom(O)
is K-fair w.r.t. a protected attribute S if, for any context
K = k and every outcome O = o, the following holds:

Here D is not a proxy to G, because D⊥⊥G by assumption.

Pr(O = o|do(S = 0), do(K = k)) = Pr(O = o|do(S = 1), do(K = k)) (4)

We call an algorithm interventionally fair if it is K-fair
for every set K. Unlike proxy fairness, this notion correctly
captures group-level fairness, because it ensures that S does
not affect O in any configuration of the system obtained by
fixing other variables at some arbitrary values. Unlike coun-
terfactual fairness, it does not attempt to capture fairness at
the individual level, and therefore it uses the standard def-
inition of intervention (the do-operator). In fact, we argue
that interventional fairness is the strongest notion of fairness
that is testable from data, yet correctly captures group-level
fairness. We illustrate with an example (see also Ex 3.6).

Example 3.2. In contrast to proxy fairness, interventional
fairness correctly identifies the admission process in Ex. 2.2
as unfair at department-level. This is because the admission
process fails to satisfy {D}-fairness since, P (O = 1|do(G =
0), do(D = ’A’)) = 0 but P (O = 1|do(G = 1), do(D =
’A’)) = 1

2
. Therefore, interventional fairness is a more

fine-grained notion than proxy fairness. We note however
that, interventional fairness does not guarantee individual
fairness in general. To see this suppose the admission de-
cisions in both departments are based on student’s gender
and an unobserved exogenous factor UO that is uniformly
distributed, i.e., O = f(G,UO), such that f(G, 0) = G and
f(G, 1) = 1 − G. Hence, the causal DAG is G → O. Then
the admission process is ∅-fair because, P (O = 1|do(G =
1)) = P (O = 1|do(G = 0)) = 1

2
. Therefore, it is interven-

tionally fair (since V − {O,G} = ∅). However, it is clearly
unfair at individual level. If the variable Uo were endogenous
(i.e. known to the algorithm), then the admission process is
no longer interventionally fair, because it is not {Uo}-fair:
P (O = 1|do(G = 1), do(Uo = 1)) = P (O = 1|G = 1, Uo =
1) = 0, while P (O = 1|do(G = 1), do(Uo = 1)) = P (O =
1|G = 0, Uo = 1) = 1.

In practice, interventional fairness is too restrictive, as we
show below. To make it practical, we allow the user to clas-
sify variables into admissible and inadmissible. The former
variables through which it is permissible for the protected
attribute to influence the outcome. In Example 1.1, the user
would label department as admissible since it is considered
a fair use in admissions decisions, and would (implicitly) la-
bel all other variables such as hobby as inadmissible. Only
users can identify this classification, and therefore admissi-
ble variables are part of the problem definition:

Definition 3.3 (Fairness application). A fairness ap-
plication over a domain V is a tuple (A, S,A, I), where
A : Dom(X) → Dom(O) is an algorithm mapping input
variables X ⊆ V to an outcome O ∈ V, S ∈ V is the pro-
tected attribute, and A∪I = V−{S,O} is a partition of the
variables into admissible and inadmissible.

We can now introduce our definition of fairness:

Definition 3.4 (Justifiable fairness). A fairness ap-
plication (A, S,A, I) is justifiably fair if it is K-fair w.r.t.
all supersets K ⊇ A.

Notice that interventional fairness corresponds to the case
where no variable is admissible, i.e., A = ∅.

We give next a characterization of justifiable fairness in
terms of the structure of the causal DAG:
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College I
Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 16 20 16 80 32 100
Female 16 80 16 20 32 100

College II
Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 10 10 40 90 50 100
Female 40 50 10 50 50 100

Figure 3: Admission process representation in two colleges
where the associational notions of fairness fail (see Ex.3.6).

Theorem 3.5. If all directed paths from S to O go through
an admissible attribute in A, then the algorithm is justifiably
fair. If the probability distribution is faithful to the causal
DAG, then the converse also holds.

To ensure interventional fairness, a sufficient condition is
that there exists no path from S to O in the causal graph
(because A = ∅). Hence, under faithfulness, interventional
fairness implies fairness at individual-level, i.e., intervening
on the sensitive attribute does not change the counterfactual
outcome of individuals. Since this is too strong in most
scenarios, we adopt justifiable fairness instead. We illustrate
with an example.

Example 3.6. Fig 3 shows how fair or unfair situations
may be hidden by coincidences but exposed through causal
analysis. In both examples, the protected attribute is gen-
der G, and the admissible attribute is department D. Sup-
pose both departments in College I are admitting only on
the basis of their applicants’ hobbies. Clearly, the admis-
sion process is discriminatory in this college because de-
partment A admits 80% of its male applicants and 20% of
the female applicants, while department B admits 20% of
male and 80% of female applicants. On the other hand,
the admission rate for the entire college is the same 32%
for both male and female applicants, falsely suggesting that
the college is fair. Suppose H is a proxy to G such that
H = G (G and H are the same), then proxy fairness classi-
fies this example as fair: indeed, since Gender has no par-
ents in the causal graph, intervention is the same as condi-
tioning, hence Pr(O = 1|do(G = i)) = Pr(O = 1|G = i)
for i = 0, 1. Of the previous methods, only conditional
statistical parity correctly indicates discrimination. We il-
lustrate how our definition correctly classifies this examples
as unfair. Assuming the user labels the department D as
admissible, {D}-fairness fails because, by Eq.(2), Pr(O =
1|do(G = 1), do(D = ’A’)) =

∑
h Pr(O = 1|G = 1, D =

’A’, h)Pr(h|G = 1) = Pr(O = 1|G = 1, D = ’A’) = 0.8,
and, similarly Pr(O = 1|do(G = 0), do(D = ’A’)) = 0.2.
Therefore, the admission process is not justifiably fair.

Now, consider the second table for College II, where both
departments A and B admit only on the basis of student
qualifications Q. A superficial examination of the data sug-
gests that the admission is unfair: department A admits 80%
of all females, and 100% of all male applicants; department
B admits 20% and 44.4% respectively. Upon deeper exam-
ination of the causal DAG, we can see that the admission

process is justifiably fair because the only path from Gender
to the Outcome goes through department, which is an ad-
missible attribute. To understand how the data could have
resulted from this causal graph, suppose 50% of each gender
have high qualifications and are admitted, while others are
rejected, and that 50% of females apply to each department
but more qualified females apply to department A than to B
(80% v.s. 20%). Further, suppose fewer males apply to de-
partment A, but all of them are qualified. The algorithm sat-
isfies demographic parity and proxy fairness but fails to sat-
isfy conditional statistical parity since Pr(A = 1|G = 1, D =
’A’) = 0.8 but Pr(A = 1|G = 0, D = ’A’) = 0.2). Thus, con-
ditioning on D falsely indicates discrimination in College II.
One can check that the algorithm is justifiably fair, and thus
our definition also correctly classifies this example; for ex-
ample, {D}-fairness follows from Eq.(2): Pr(O = 1|do(G =
i), do(D = d)) =

∑
q Pr(O = 1|G = i, d, q))Pr(q|G = i) = 1

2
.

To summarize, unlike previous definitions of fairness, justi-
fiable fairness correctly identifies College I as discriminatory
and College II as fair.

3.2 Testing Fairness on the Training Data
In this section we introduce a sufficient condition for test-

ing justifiable fairness, which uses only the training data
D,Pr (Sec. 2) and does not require access to the causal graph
G. We assume only that G and Pr are Markov compatible
(Sec. 2.2). The training data has an additional response
variable Y . As before, we assume a fairness application (A,
S,A, I) is given and that the algorithm is a good prediction
of the response variable, i.e. Pr(Y = 1|X = x) ≈ Pr(O =
1|X = x); we call the algorithm a reasonable classifier to
indicate that it satisfies this condition. Note that this is
a typical assumption in pre-processing approaches such as
[4] and is needed to decouple the the issues of model accu-
racy and fairness. If the distributions of Pr(Y = 1|X = x)
and Pr(O = 1|X = x) could be arbitrarily far apart, no
fairness claims can be made about a classifier that, for ex-
ample, imposes a pre-determined distribution on the out-
come predictions rather than learning an approximation of
Pr(Y = 1|X = x) from the training data.

We first establish a technical condition for fairness based
on the Markov boundary, and then simplify it. Recall that
given a probability distribution Pr, the Markov boundary of a
variable Y ∈ V, denoted MB(Y ), is a minimal subset of V−
{Y } that satisfies the saturated conditional independence
(Y⊥⊥PrV − (MB(Y ) ∪ {Y })|MB(Y )). Intuitively, MB(Y )
shields Y from the influence of other variables. We prove:

Theorem 3.7. A sufficient condition for a fairness ap-
plication (A, S,A, I) to be justifiably fair is MB(O) ⊆ A.

The condition in Theorem 3.7 can be checked without know-
ing the causal DAG, but requires the computation of the
Markov boundary; moreover, it is expressed in terms of the
outcome O of the algorithm. We derive from here a suffi-
cient condition that refers only to the response variable Y
present in the training data.

Colollary 3.8. Fix a training data D,Pr, where Y ∈ V
is the training label, and A, I are admissible and inadmissible
attributes. Then any reasonable classifier trained on a set of
variables X ⊆ V is justifiably fair w.r.t. a protected attribute
S, if either: (a) Pr satisfies the CI (Y⊥⊥X ∩ I|X ∩A), or
(b) X ⊇ A and Pr satisfies the saturated CI (Y⊥⊥I|A).

While condition (a) is the weaker assumption, condition (b)
has the advantage that the CI is saturated. Our method
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D: X Y Z Pr
t1 a a c 3/8
t2 a b c 2/8
t3 b a c 2/8
t4 b b d 1/8

D1 : X Y Z
t1 a a c
t2 a b c
t3 b a c
t4 b b c
t5 b b d

D2 : X Y Z
t1 a a c
t2 a b c
t4 b b d

Figure 4: A simple database repair: D does not satisfy the MVD
Z � X. In D1, we inserted the tuple (b, b, c) to satisfy the MVD,
and in D2 we deleted the tuple (b, a, c) to satisfy the MVD.

for building a fair classifier is to repair the training data in
order to enforce (b).

3.3 Building Fair Classifiers
A naive way to satisfy Corollary 3.8(a) is to set X = A,

in other words to train the classifier only on admissible at-
tributes This method guarantees fairness, but it is imprac-
tical and can negatively affect the accuracy of the classifier
[32]. Instead, our approach is to repair the training data to
enforce the condition in Corollary 3.8(b). We consider the
saturated CI (Y⊥⊥I|A) as an integrity constraint that should
always hold in training data D,Pr. Capuchin performs a
sequence of database updates (insertions and deletions of
tuples) to obtain another training database D′ to satisfy
(Y⊥⊥I|A). We describe this repair problem in Sec. 4. In
terms of the causal DAG, this approach can be seen as mod-
ifying the underlying causal model to enforce the fairness
constraint. However, instead of intervening on the causal
DAG, over which we have no control, we intervene on the
data to ensure fairness. Note that minimal repairs are cru-
cial for preserving the utility of data.

4. DATA REPAIR TO ENSURE FAIRNESS
We have shown in Corollary 3.8 that, if the training data

D satisfies a certain saturated conditional independence (CI),
then a classification algorithm trained on D,Pr is justifiably
fair. We show here how to modify (repair) the training data
to enforce the CI and thus ensure that any reasonable clas-
sifier trained on it will be justifiably fair.

4.1 Minimal Repair for MVD and CI
We first consider repairing an MVD. Fix an MVD Z � X

and a database D that does not satisfy it. The minimal
database repair problem is this: find another database D′

that satisfies the MVD such that the distance between D
and D′ is minimized. In this section, we restrict the distance
function to the symmetric difference, i.e, |∆(D,D′)|.

Example 4.1. Consider the database D in Fig. 4 (ignor-
ing the probabilities for the moment), and the MVD Z � X.
D does not satisfy the MVD. The figure shows two minimal
repairs, D1, D2, one obtained by inserting a tuple, and the
other by deleting a tuple.

However, our problem is to repair for a saturated CI, not
an MVD, since that is what is required in Corollary 3.8. The
repair problem for a database constraint is well-studied in
the literature, but here we need to repair to satisfy a CI,
which is not a database constraint. We first formally define
the repair problem for a CI and then show how to reduce
it to the repair for an MVD. More precisely, our input is a
database D and a probability distribution Pr, and the goal
is to define a “repair”D′,Pr′ that satisfies the given CI.

We assume that all probabilities are rational numbers. Let
the bag associated to D,Pr be the smallest bag B such that
Pr is the empirical distribution on B. In other words, B is

B: X Y Z
a a c
a a c
a a c
a b c
a b c
b a c
b a c
b b d

DB : K X Y Z
1 a a c
2 a a c
3 a a c
1 a b c
2 a b c
1 b a c
2 b a c
1 b b d

D′B : K X Y Z

1 a a c
2 a a c
1 a b c
2 a b c
1 b a c
1 b b c
1 b b d

D′ : X Y Z Pr′
a a c 2/7
a b c 2/7
b a c 1/7
b b c 1/7
b b d 1/7

Figure 5: Repairing a conditional independence (CI).

obtained by replicating each tuple t ∈ D a number of times
proportional to Pr(t). If Pr is uniform, then B = D.

Definition 4.2. The minimal repair of D,Pr for a sat-
urated CI (X; Y|Z) is a pair D′,Pr′ such that Pr′ satisfies
the CI and |∆(B,B′)| is minimized, where B and B′ are the
bags associated with D,Pr and D′,Pr′, respectively.

Recall that V denotes the set of attributes of D. Let Pr
be any probability distribution on the variables {K} ∪ V,
where K is a fresh variable not in V.

Lemma 4.3. If Pr satisfies (KX; Y|Z), then it also sat-
isfies (X; Y|Z).

We now describe our method for computing a minimal
repair of D,Pr for some saturated CI. First, we compute the
bag B associated to D,Pr. Next, we add the new attribute
K to the tuples in B and assign distinct values to t.K to
all duplicate tuples t, thus converting B into a set DB with
attributes K∪V. Importantly, we use as few distinct values
for K as possible, i.e., we enumerate the instances of each
unique tuple. More precisely, we define:

DB =
{

(i, t) | t ∈ B, i = 1, . . . , |tB |
}

(5)

were |tB | denotes the number of occurrences (or multiplicity)
of a tuple t in the bag B. Then, we repair DB w.r.t. to
the MVD Z � KX, obtaining a repaired database D′

B .
Finally, we construct a new training set D′ = ΠV(D′

B),
with the probability distribution obtained by marginalizing
the empirical distribution on D′

B to the variables V.

Example 4.4. Fig 4 shows two repairs D1 and D2 of the
database D, in Example 4.1, w.r.t the MVD Z � X. Con-
sider now the probability distribution, Pr shown in the figure.
Suppose we want to repair it for the CI (X;Y |Z). Clearly,
both D1 and D2, when endowed with the empirical distri-
bution do satisfy this CI, but they are very poor repairs be-
cause they completely ignore the probabilities in the original
training data, which are important signals for learning. Our
definition captures this by insisting that the repaired bag B′

be close to the bag B associated to D,Pr (see B in Fig. 5),
but the sets D1 and D2 are rather far from B. Instead,
our method first converts B into a set DB by adding a new
attribute K (see Fig. 5) then, it repairs DB for the MVD
Z � KX, obtaining D′

B. The final repair D′,Pr′ consists
of the empirical distribution on D′

B, but with the attribute
K and duplicates removed.

The problem of computing minimal repairs for MVDs and
CIs, as introduced in this section, is essentially an optimiza-
tion problem. A suit of techniques for addressing these prob-
lems has been introduced in [33, 32] that exploit reduction
to the MaxSAT and Matrix Factorization.
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5. EXPERIMENTAL RESULTS
This section presents experiments that evaluate the fea-

sibility and efficacy of Capuchin. We aim to evaluate the
end-to-end performance of Capuchin in terms of utility and
fairness, with respect to our repair method. We refer the
reader to [32] for more experiments.

5.1 Setup
We report the empirical utility of each classifier using Ac-

curacy (ACC) via 5-fold cross-validation. We evaluate using
three classifiers: Linear Regression (LR), Multi-layer Per-
ceptron (MLP), and Random Forest (RF).

To assess the effectiveness of the proposed approaches,
we used the ratio of observational discrimination (ROD) de-
fined in [32] as follows: Given a fairness application (A,
S,A, I), let Ab = MB(O)− I. We quantify the ratio of ob-
servational discrimination (ROD) of A against S in a con-

text Ab = ab as δ(S;O|ab)
def
= Pr(O=1|S=0,ab)Pr(O=0|S=1,ab)

Pr(O=0|S=0,ab)Pr(O=1|S=1,ab)
.

Intuitively, ROD calculates the effect of membership in a
protected group on the odds of the positive outcome of A
for subjects that are similar on Ab = ab (Ab consists of
admissible attributes in the Markov boundary of the out-
come). ROD is sensitive to the choice of a context Ab = ab

by design. The overall ROD denoted by δ(S,O|Ab) can be
computed by averaging δ(S,O|ab) for all ab ∈ Ab.

5.2 End-To-End Results
In the following experiments, a fairness constraint was en-

forced on training data using Capuchin repair algorithms
(cf. Sec 4). Specifically, each dataset was split into five
training and test datasets. All training data were repaired
separately using Matrix Factorization (MF), Independent
Coupling (IC) and two versions of the MaxSAT approach
(see [32] for details of MF and IC methods): MS(Hard),
which feeds all clauses of the lineage of a CI into MaxSAT,
and MS(Soft), which only feeds small fraction of the clauses.
We tuned MaxSAT to enforce CIs approximately. We then
measured the utility and discrimination metrics for each re-
pair method as explained in Sec 5.1. For all datasets, the
chosen training variables included the Markov boundary of
the outcome variables, which were learned from data using
the Grow-Shrink algorithm [23] and permutation test [30].

Figure 6: Performance of Capuchin on Adult data.

Adult data. This data reflects historical income inequal-
ity that can be reinforced by ML algorithms. We used Ca-
puchin to remove the mentioned sources of discrimination
from Adult data. Specifically, we categorized the attributes
in the Adult dataset as follows: (S) sensitive attributes:
gender (male, female); (A) admissible attributes: hours per

week, occupation, age, education, etc.; (N) inadmissible at-
tributes: marital status; (Y ) binary outcome: high income.
As is common in the literature, we assumed that the po-
tential influence of gender on income through some or all of
the admissible variables was fair; However, the direct influ-
ence of gender on income, as well as its indirect influence on
income through marital status, were assumed to be discrimi-
natory. To remove the bias, we enforced the CI (Y⊥⊥S,N|D)
on training datasets using the Capuchin repair algorithms.
Then, we trained the classifiers on both original and repaired
training datasets using the set of variables A ∪N ∪ S. We
also trained the classifiers on original data using only A, i.e.,
we dropped the sensitive and inadmissible variables.

Fig. 6 compares the utility and bias of Capuchin repair
methods on Adult data. As shown, our repair methods de-
livered surprisingly good results: when partially repairing
data using the MaxSAT approach, i.e, using MS(Soft), al-
most 50% of the bias was removed while accuracy decreased
by only 1%.

Figure 7: Performance of Capuchin on COMPAS data.

COMPAS. For the second experiment, we used the ProP-
ublica COMPAS dataset [20]. This dataset contains records
for all offenders in Broward County, Florida in 2013 and
2014. We categorized the attributes in COMPAS data as
follows: (S) protected attributes: race (African American,
Caucasian); (A) admissible attributes: number of prior con-
victions, severity of charge degree, age; (Y) binary outcome:
a binary indicator of whether the individual is a recidivist.
As is common in the literature, we assumed that it was fair
to use the admissible attributes to predict recidivism even
though they can potentially be influenced by race, and our
only goal in this experiment was to address the direct in-
fluence of race. We pursued the same steps as explained in
the first experiment. Fig. 7 compares the bias and utility
of Capuchin repair methods to original data. As shown,
all repair methods successfully reduced the ROD. However,
we observed that MF and IC performed better than MS on
COMPAS data (as opposed to Adult data).

6. CONCLUSIONS
We considered a causal approach for fair ML, reducing

it to a database repair problem. We showed that conven-
tional associational and causal fairness metrics can over-
and under-report discrimination. We defined a new notion
of fairness, called justifiable fairness, that addresses short-
comings of the previous definitions and argued that it is the
strongest notion of fairness that is testable from data. We
then proved sufficient properties for justifiable fairness and
use these results to translate the properties into saturated
conditional independence that we can be seen as multivalued
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dependencies with which to repair the data. We then pro-
posed multiple algorithms for implementing these repairs.
Our experimental results show that our algorithms success-
fully mitigate discrimination due to biased training data, are
robust to unseen test data.
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From a historical perspective, relational database man-
agement systems (RDBMSs) have integrated many spe-
cialized systems and data models back into the RDBMS
over time. New workloads motivated specialized systems for
performance, but over time, general-purpose RDBMSs ab-
sorbed this functionality to avoid boundary crossing. We al-
ready witnessed this process for object-relational functional-
ity, XML and JSON data types, OLAP/HTAP systems, and
RDF/graph processing, while for natural language process-
ing (NLP), time series, and machine learning (ML), the out-
comes remain unclear. Interestingly, graph processing, NLP,
and time series are largely ML workloads too. For this rea-
son, integrating data management and ML is of high practi-
cal relevance and has been addressed by (1) integrating ML
into RDBMSs, and (2) specialized ML systems. The paper
“Declarative Recursive Computation on an RDBMS” [3] by
Jankov et al. makes a very valuable contribution by reconcil-
ing these two areas and showing the potential of recursive
computations on an RDBMS, as the backend—not necessar-
ily frontend—for large-scale machine learning.

ML in RDBMSs: Integrating ML primitives for model
training and prediction into RDBMSs has been a major fo-
cus area in research and practice for over a decade. Com-
pelling key arguments are to bring analysis close to the
data, declarative specification, support for mixed ML and
query workloads, scalability, and reuse of existing technol-
ogy. Existing work includes SQL- and UDF-based systems,
factorized learning over joins, deep system integration ap-
proaches (e.g., for time series forecasting), tailor-made array
databases, efficient and zero-copy data transfers, as well as
extended data models and operations. Another long stand-
ing question is the effective combination of relational and
linear algebra, which recently has been addressed from both
systems and theory perspectives as well.

DM in ML Systems: A second major avenue of com-
bining data management (DM) and ML systems is the
integration and use of DM techniques—such as rewrites,
physical operators, size propagation, query compilation, dis-
tributed and federated query processing, caching, incremen-
tal maintenance, partitioning, indexing, and compression—
into modern ML systems. While such ML systems also lever-
age data flow graphs at their core, they offer more special-
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ized, stateless domain-specific languages and operators, and
directly process files or in-memory matrices or tensors.
Paper Context: The paper by Jankov et al. follows a

line of influential work on large-scale statistical computation
with SimSQL [1], a distributed RDBMS on Hadoop MapRe-
duce. In this context, the paper reuses the authors’ previous
work on (1) a chunked matrix representation of blocks with
fixed logical size (e.g., 1K×1K, whose guaranteed alignment
simplifies join processing), integrated as matrix and vector
data types [4], as well as (2) ideas on recursive computa-
tion of variable dependencies in BUDS [2]. This foundation
is interesting because it closely resembles distributed ma-
trix representations of specialized ML systems on distributed
computing frameworks like Spark, where lazy evaluation can
similarly “unroll” loops into recursive computations.
Paper Contributions: A major problem, however, is the

mapping of mini-batch ML training to such recursive com-
putations. The paper by Jankov et al. addresses this problem
by two central contributions. First, a succinct SQL exten-
sion allows accessing recursive versions of tables via array
indexes in a declarative, data–independent manner that fa-
cilitates optimization. Such a query is then compiled into
a single DAG of relational algebra operations. Second, the
operator DAG is partitioned into—independent and thus,
manageable—frames by minimizing materialization points,
subject to a maximum number of operators per frame. Ex-
periments with large mini-batches and models show very
promising scalability results compared to TensorFlow. Over-
all, this paper has potential for high impact in multiple ar-
eas: (1) inspiring improved handling of recursion, DAGs, and
large plans in RDBMSs, (2) inspiring frame-based execution
in systems with lazy evaluation, and (3) reconciling the di-
verging areas of In-RDBMS ML and specialized ML systems.
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ABSTRACT
We explore the close relationship between the tensor-based compu-
tations performed during modern machine learning, and relational
database computations. We consider how to make a very small set
of changes to a modern RDBMS to make it suitable for distributed
learning computations. Changes include adding better support for
recursion, and optimization and execution of very large compute
plans. We also show that there are key advantages to using an
RDBMS as a machine learning platform. In particular, DBMS-
based learning allows for trivial scaling to large data sets and espe-
cially large models, where different computational units operate on
different parts of a model that may be too large to fit into RAM.

1. INTRODUCTION
Modern machine learning (ML) platforms such as TensorFlow

[6] have primarily been designed to support data parallelism, where
a set of almost-identical computations (such as the computation of a
gradient) are executed in parallel over a set of computational units.
The only difference among the computations is that each operates
over different training data (known as “batches”). After each com-
putation has finished, the local gradients are either loaded to a pa-
rameter server (in the case of asynchronous data parallelism [17])
or are globally aggregated and used to update the model (in the case
of synchronous data parallelism [10]).

Unfortunately, data parallelism has its limits. For example, data
parallelism implicitly assumes that the model being learned (as well
as intermediate data produced when a batch is used to update the
model) can fit in the RAM of a computational unit (which may be
a server machine or a GPU). This is not always a reasonable as-
sumption, however. For example, a state-of-the-art NVIDIA Tesla
V100 Tensor Core GPU (a $10,000 data center GPU) has 32GB of
RAM. 32GB of RAM cannot store the matrix required for a fully-
connected layer to encode a vector containing entries from 200,000
categories into a vector of 50,000 neurons. Depending upon the
application, 50,000 neurons may not be a lot [19].

The original version of this paper is entitled “Declarative recursive
computation on an RDBMS: or, why you should use a database for
distributed machine learning" and was published in (Proceedings
of the VLDB Endowment, 2019, VLDB Endowment.)
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Handling such a model requires model parallelism—where the
statistical model being learned is not simply replicated at different
computational units, but is instead partitioned and operated over in
parallel, in a series of bulk-synchronous operations. As discussed
in the related work section, systems for distributed ML offer limited
support for model parallelism.

Re-purposing relational technology for ML. We argue that if re-
lational technology is used, distinctions such as model vs. data
parallelism become unimportant. Relational database management
systems (RDBMSs) provide a declarative programming interface,
which means that the programmer (or automated algorithm genera-
tor, if a ML algorithm is automatically generated via automatic dif-
ferentiation) only needs to specify what he/she/it wants, but does
not need to write out how to compute it. The computations will
be automatically generated by the system, and then be optimized
and executed to match the data size, layout, and the compute hard-
ware. The code is the same whether the computation is run on a
local machine or in a distributed environment, over a small or large
model. In contrast, systems such as TensorFlow provide relatively
weak forms of declarativity, as each logical operation in a com-
pute graph (such as a matrix multiply) must be executed on some
physical compute unit, like a GPU.

Our Contributions. We explore the close relationship between the
tensor-based computations performed during modern ML, and re-
lational database computations. We argue that it is easy to express
such computations relationally, and detail some of the changes that
need to be made to relational systems to support such computations.
We show that a lightly-modified (and low-performance) research-
prototype relational system can support declarative codes that scale
to large model sizes, past those that a platform such as TensorFlow
can easily support, and sometimes even outperform TensorFlow on
those computations. As larger and larger models and data sets be-
come more prevalent in deep learning (consider the current empha-
sis on learning huge transformer models [21]), this suggests that
tomorrow’s high-performance deep learning systems might ideally
be based upon relational technology.

2. DEEP LEARNING ON AN RDBMS

2.1 Imperative Programming is Problematic
Imperative programming has been the dominant programming

paradigm since the 1950’s. In imperative programming, a program-
mer gives a sequence of commands that incrementally update the
state of the program’s data. In contrast, since the 1980’s relational
database codes are almost always written declaratively, in SQL.
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Figure 1: Structure of a feed-forward neural network.

That is, the programmer describes the desired result, ignoring pro-
gram state, data movement and access, and control flow. Declara-
tive programming is particularly important in databases because if
computations are executed suboptimally—if the wrong join order
is chosen, for example—they have the potential to produce huge
intermediate results that can result in long runtimes or system fail-
ure. Before declarative database programming became common-
place, programmers writing imperative database codes proved un-
able to consistently write programs that would choose the correct
data access path. And, even if they wrote the perfect code, the data,
storage, or hardware would change, and the code would quickly
become obsolete.

Crucially, the tensor-based ML computations performed in deep
learning are similar to database computations, in that the same
computation can be executed in different ways, and those differ-
ent execution choices can result in radically different costs. In fact,
relations are closely related to tensors—a relation can be viewed
as a possible implementation of a tensor—and it is easy to trans-
late computations expressed in standard tensor calculus, such as
the Einstein notation [22], into relational joins and aggregations.
The key benefit of expressing such computations relationally is that
then, in theory, the same code can be executed using a relational op-
timization and execution engine, regardless of model and data sizes
or hardware.

In the remainder of this section, we describe via an example how
a simple deep learner can be expressed relationally, and use this
example to illustrate the danger of asking a programmer to provide
control flow.

2.2 A Simple Deep Learner
A deep neural network is a differentiable, non-linear function,

typically conceptualized as a directed graph. Each node in the
graph (often called a “neuron”) computes a continuous activation
function over its inputs (sigmoid, ReLU, etc.).

One of the simplest and most commonly used artificial neural
networks is a so-called feed-forward neural network [11]. Neurons
are organized into layers. Neurons in one layer are connected only
to neurons in the next layer, hence the name “feed-forward". Con-
sider the feed-forward network in Figure 1. To compute a func-
tion over an input (such as a text document or an image), the in-
put vector is fed into the first layer, and the output from that layer
is fed through one or more hidden layers, until the output layer
is reached. If the output of layer l − 1 (or “activation”) is repre-
sented as a vector al−1, then the output of layer l is computed as
al = σ (al−1Wl + bl) Here, bl and Wl are the the bias vector and
the weight matrix associated with the layer l, respectively, and σ(·)
is the activation function.

Learning. Learning is the process of customizing the weights for a
particular data set and task. Since learning is by far the most com-
putationally intensive part of using a deep network, and because the
various data structures (such as the Wl matrix) can be huge, this is

the part we would typically like to distribute across machines.
Two-pass mini-batch gradient descent is the most common learn-

ing method used with such networks. Each iteration takes as input
the current set of weight matrices {W(i)

1 ,W(i)
2 , ...} and bias vec-

tors {b(i)
1 , b(i)

2 , ...} and then outputs the next set of weight matrices
{W(i+1)

1 ,W(i+1)
2 , ...} and bias vectors {b(i+1)

1 , b(i+1)
2 , ...}. This

process is repeated until convergence.
In one iteration of the gradient descent, each batch of inputs is

used to power two passes: the forward pass and the backward pass.

The forward pass. In the forward pass, at iteration i, a small subset
of the training data are randomly selected and stored in the matrix
X(i). The activation matrix for each of these data points, A1, is
computed as A(i)

1 = σ
(

X(i)W(i)
1 + B(i)

1

)
(here, let the bias ma-

trix B(i)
1 be the matrix formed by replicating the bias vector b(i)

1

n times, where n is the size of the mini-batch). Then, this activa-
tion is pushed through the network by repeatedly performing the
computation A(i)

l = σ
(

A(i)
l−1W(i)

l + B(i)
l

)
.

The backward pass. At the end of the forward pass, a loss (or
error function) comparing the predicted set of values to the actual
labels from the training data are computed. To update the weights
and biases using gradient descent, the errors are fed back through
the network, using the chain rule. Specifically, the errors back-
propagated from hidden layer l + 1 to layer l in the i-th backward
pass is computed as

E(i)
l =

(
E(i)

l+1

(
W(i)

l+1

)T)
� σ′

(
A(i)

l

)
,

where σ′(·) is the derivative of the activation function. After we
have obtained the errors (that serve as the gradients) for each layer,
we update the weights and biases:

W(i)
l = W(i−1)

l − α · A(i−1)
l−1 E(i−1)

l ,

b(i)
l = b(i−1)

l − α ·
∑

n

e(i−1)
l ,

where α is the learning rate, and el is the row vector of El.

2.3 A Mixed Imperative/Declarative Approach
Perhaps surprisingly, a model parallel computation of this algo-

rithm is possible on top of an RDBMS. We begin by assuming an
RDBMS that has been lightly augmented to handle matrix and
vector data types as described in [16], and assume that the var-
ious matrices and vectors have been “chunked”. The following
database table that stores the chunk of W(ITER)

LAYER at the given row
and column:

W (ITER, LAYER, ROW, COL, MAT)

MAT is of type matrix (1000, 1000) and stores one “chunk”
of W(ITER)

LAYER . A 105 × 105 matrix chunked in this way would have
104 entries in the W table, with one sub-matrix for each of the
100 = 105/103 possible ROW values combined with each of the
100 = 105/103 possible COL values.

Also, the activations A(ITER)
LAYER are stored chunked as matrices hav-

ing 1000 columns in the following table:

A (ITER, LAYER, COL, ACT)

A final table AEW stores the values needed to compete W(ITER+1)
LAYER :

A(ITER-1)
LAYER-1 (as ACT), E(ITER-1)

LAYER (as ERR), and W(ITER-1)
LAYER (as MAT):

AEW (LAYER, ROW, COL, ACT, ERR, MAT)
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--First, issue a query that computes the errors
--being backpropagated from the top layer in
--the network.
SELECT 9, W.ROW, W.COL, A.ACT, E.ERR, W.MAT
BULK COLLECT INTO AEW
FROM A, W,
--Note: we are using cross-entropy loss
(SELECT A.COL,

crossentropyderiv(A.ACT, DO.VAL) AS ERR
FROM A, DATA_OUTPUT AS DO
WHERE A.LAYER=9) AS E

WHERE A.COL=W.ROW AND W.COL=E.COL
AND A.LAYER=8 AND W.LAYER=9
AND A.ITER=i AND W.ITER=i;

--Now, loop back through the layers in the network
for l = 9, ..., 2:
--Use the errors to compute the new weights
--connecting layer l to layer l + 1; add to
--result for learning iteration i + 1
SELECT i+1, l, ROW, COL,

MAT - matmul(t(ACT), ERR) * 0.00000001
BULK COLLECT INTO W
FROM AEW WHERE LAYER=l;

--Issue a new query that uses the errors from the
--previous layer to compute the errors in this
--layer. reluderiv takes the derivative of the
--activation.
SELECT l-1, W.ROW, W.COL, A.ACT, E.ERR, W.MAT
BULK COLLECT INTO AEW FROM A, W,
(SELECT ROW AS COL,

SUM(matmul(ERR, t(MAT))
* reluderiv(ACT)) AS ERR

FROM AEW WHERE LAYER=l
GROUP BY ROW) AS E

WHERE A.COL=W.ROW AND W.COL=E.COL
AND A.LAYER=l-2 AND W.LAYER=l-1;
AND A.ITER=i AND W.ITER=i;

end for

--Update the first set of weights (on the inputs)
SELECT i+1, 1, ROW, COL,

MAT - matmul(t(ACT), ERR) * 0.00000001
BULK COLLECT INTO W
FROM AEW WHERE LAYER=1;

Figure 2: SQL code to implement the backward pass for itera-
tion i of a feed-forward deep network with eight hidden layers.

ROW and COL again identify a particular matrix chunk. Given this,
a fully model parallel implementation of the backward pass can be
implemented using the SQL code in Figure 2.
crossentropyderiv() and reluderiv() are user-de-

fined functions implementing the derivatives of cross-entropy and
ReLU activation, respectively. The entire model parallel backward-
pass code is around twenty lines long and could be generated by an
auto-differentiation tool.

2.4 So, What’s the Catch?
This code illustrates both the promise of expressing such tensor-

based computations relationally, but also the pitfalls of asking the
user to provide control flow. While the core computation is declara-
tive, an imperative loop has been used to loop backward through the
layers. The SQL programmer used a database table to pass state be-
tween iterations. In our example, this is done by utilizing the AEW
table, which stores the error being back-propagated through each of
the connections from layer l + 1 to layer l in the network, for each
of the data points in the current learning batch. If there are 100,000
neurons in two adjacent layers in a fully-connected network and
1,000 data points in a batch, then there are (100,000)2 such con-

nections for each of the 1,000 data points, or 1013 values stored in
all. Using single-precision floating point value, a debilitating 40TB
of data must be materialized.

Storing the set of per-connection errors is a very intuitive choice
as a way to communicate among loops iterations, especially since
the per-connection errors are subsequently aggregated in two ways
(one to compute the new weights at a layer, and one to compute
the new set of per-connection errors passed to the next layer). But
forcing the system to materialize this table can result in a very
inefficient computation. This could be implemented by pipelin-
ing the computation creating the new data for the AEW table di-
rectly into the two subsequent aggregations, but this possibility has
been lost when the programmer asked that the new data be BULK
COLLECTed into AEW.

Note that this is not merely a case of a poor choice on the part
of the programmer. In order to write a loop, state has to be passed
from one iteration to another, and it is this state that made it impos-
sible for the system to realize an ideal implementation.

3. EXTENSIONS TO SQL
In this section, we consider a couple of extensions to SQL that

make it possible for a programmer (either a human or a deep-learning
toolchain) to declaratively specify recursive computations such as
back-propagation, without control flow.

3.1 The Extensions
We introduce these SQL extensions in the context of a classic in-

troductory programming problem: implementing Pascal’s triangle,
which recursively defines binomial coefficients. Specifically, the
goal is to build a matrix such that the entry in row i and column j
is
(
i
j

)
(or i choose j). The triangle is defined recursively so that for

any integers i ≥ 0 and j ∈ [1, i− 1],
(
i
j

)
=
(
i−1
j−1

)
+
(
i−1
j

)
:

i
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

0 1 2 3 4
j

Our extended SQL allows for multiple versions of a database table;
versions are accessed via array-style indices. For example, we can
define a database table storing the binomial coefficient

(
0
0

)
as:

CREATE TABLE pascalsTri[0][0] (val) AS
SELECT val FROM VALUES (1);

The table pascalsTri[0][0] can now be queried like any other
database table, and various versions of the tables can be defined re-
cursively. For example, we can define all of the cases where j = i
(the diagonal of the triangle) as:

CREATE TABLE pascalsTri[i:1...][i] (val) AS
SELECT * FROM pascalsTri[i-1][i-1]

And all of the cases where j = 0 as:

CREATE TABLE pascalsTri[i:1...][0] (val) AS
SELECT * FROM pascalsTri[i-1][0]

Finally, we can fill in the rest of the cells in the triangle via one
more recursive relationship:

CREATE TABLE pascalsTri[i:2...][j:1...i-1](val) AS
SELECT pt1.val + pt2.val AS val
FROM pascalsTri[i-1][j-1] AS pt1,

pascalsTri[i-1][j] AS pt2;
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Note that this differs quite a bit from classical, recursive SQL,
where the goal is typically to compute a fix-point of a set. Here,
there is no fix-point computation. In fact, this particular recurrence
defines an infinite number of versions of the pascalsTri table.
Since there can be an infinite number of such tables, those tables
are materialized on-demand. A programmer can issue the query:

SELECT * FROM pascalsTri[56][23]

In which case the system will unwind the recursion, writing the
required computation as a single relational algebra statement. A
programmer may ask questions about multiple versions of a table
at the same time (without having each one be computed separately):

EXECUTE (
FOR j IN 0...50:

SELECT * FROM pascalsTri[50][j])

By definition, all of the queries/statements within an EXECUTE
command are executed as part of the same query plan. Thus, this
would be compiled into a single relational algebra statement that
produces all 51 of the requested tables, under the constraint that
each of those 51 tables must be materialized (without such a con-
straint, the resulting physical execution plan may pipeline one or
more of those tables, so that they exist only ephemerally and can-
not be returned as a query result). If a programmer wished to ma-
terialize all of these tables so that they could be used subsequently
without re-computation, s/he could use:

EXECUTE (
FOR j IN 0...50:
MATERIALIZE pascalsTri[50][j])

which materializes the tables for later use. Finally, we introduce
a multi-table UNION operator that merges multiple, recursively-
defined tables. This makes it possible to define recursive relation-
ships that span multiple tables. For example, a series of tables stor-
ing the various Fibonacci numbers (where Fib(i) = Fib(i− 1) +
Fib(i− 2) and Fib(1) = Fib(2) = 1) can be defined as:

CREATE TABLE Fibonacci[i:0...1] (val) AS
SELECT * FROM VALUES (1)

CREATE TABLE Fibonacci[i:2...] (val) AS
SELECT SUM (VAL) FROM UNION Fibonacci[i-2...i-1]

In general, UNION can be used to combine various subsets of re-
cursively defined tables. For example, one could refer to UNION
pascalsTri[i:0...50][0...i]which would flatten the first
51 rows of Pascal’s triangle into a single multiset.

3.2 Learning Using Recursive SQL
With our SQL extensions, we can rewrite the aforementioned

forward-backward passes to eliminate imperative control flow by
declaratively expressing the various dependencies among the acti-
vations, weights, and errors.

Forward pass. The forward pass is concerned with computing the
level of activation of the neurons at each layer. The activations
of all neurons in layer j at learning iteration i are given in the ta-
ble A[i][j]. Activations are computed using the weighted sum
of the outputs of all of the neurons at the last level; the weighted
sums input into layer j at learning iteration i is given in the table
WI[i][j]. The corresponding SQL code is as follows. The for-
ward pass begins by loading the first layer of activations with the
input data:

CREATE TABLE A[i:0...][j:0](COL, ACT) AS
SELECT DI.COL, DI.VAL
FROM DATA_INPUT AS DI;

We then send the activation across the links in the network:

CREATE TABLE WI[i:0...][j:1...9](COL, VAL) AS
SELECT W.COL, SUM(matmul(A.ACT, W.MAT))
FROM W[i][j] AS w, A[i][j-1] AS A
WHERE W.ROW = A.COL
GROUP BY W.COL;

Those links are then used to compute activations:

CREATE TABLE A[i:0...][j:1...8](COL, ACT) AS
SELECT WI.COL, relu(WI.VAL + B.VEC)
FROM WI[i][j] AS WI, B[i][j] AS B
WHERE WI.COL = B.COL;

And finally, at the top layer, the softmax function is used to per-
form the prediction:

CREATE TABLE A[i:0...][j:9](COL, ACT) AS
SELECT WI.COL, softmax(WI.VAL + B.VEC)
FROM WI[i][j] AS WI, B[i][j] AS B
WHERE WI.COL = B.COL;

Backward pass. In the backward pass, the errors are pushed back-
ward through the network. The error being pushed through layer j
in learning iteration i are stored in the table E[i][j]. These er-
rors are used to update all of the network’s weights (the weights di-
rectly affecting layer j in learning iteration i are stored in W[i][j])
as well as biases (stored in B[i][j])).

We begin the SQL code for the backward pass with the initial-
ization of the error:
CREATE TABLE E[i:0...][j:9](COL, ERR) AS
SELECT A.COL, crossentropyderiv(A.ACT, DO.VAL)
FROM A[i][j] AS A, DATA_OUTPUT AS DO;

At subsequent layers, the error is:

CREATE TABLE E[i:0...][j:1...8](COL, ERR) AS
SELECT W.ROW, SUM(matmul(E.ERR, t(W.MAT))

* reluderiv(A.ACT))
FROM A[i][j] AS A, E[i][j+1] AS E,

W[i][j+1] AS W
WHERE A.COL = W.ROW AND W.COL = E.COL
GROUP BY W.ROW;

Now we use the error to update the weights:

CREATE TABLE W[i:1...][j:1...9](ROW, COL, MAT) AS
SELECT W.ROW, W.COL,

W.MAT - matmul(t(A.ACT), E.ERR) * 0.00000001
FROM W[i-1][j] AS W, E[i-1][j] AS E,

A[i-1][j-1] AS A
WHERE A.COL = W.ROW AND W.COL = E.COL;

And the biases:
CREATE TABLE B[i:1...][j:1...9](COL, VEC) AS
SELECT B.COL,

B.VEC - reducebyrow(E.ERR) * 0.00000001
FROM B[i-1][j] AS B, E[i-1][j] AS E
WHERE B.COL = E.COL;

We now have a fully declarative implementation of neural net-
work learning.

4. EXECUTING RECURSIVE PLANS
The recursive specifications of the last section address the prob-

lem of how to succinctly and declaratively specify complicated re-
cursive computations. Yet the question remains: How can the very
large and complex computations associated with such specifica-
tions be compiled and executed by an RDBMS without significant
modification to the system?

4.1 Frame-Based Execution
Our possibility for compiling and executing computations writ-

ten recursively in this fashion is to first compile the recursive com-
putation into a single monolithic relational algebra computation,
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and then partition the computation into frames, or sub-plans. Those
frames are then optimized and executed independently, with inter-
mediate tables materialized to facilitate communication between
frames.

Frame-based computation is attractive because if each frame is
small enough that an existing query optimizer and execution en-
gine can handle the frame, the RDBMS optimizer and engine need
not be modified in any way. Further, this iterative execution results
in an engine that resembles engines that perform re-optimization
during runtime [12], in the sense that frames are optimized and exe-
cuted only once all of their inputs have been materialized. Accurate
statistics can be collected on those inputs—specifically, the number
of distinct attribute values can be collected using an algorithm like
Alon-Matias-Szegedy [1]—meaning that problems associated with
errors propagating through a query plan can be avoided.

4.2 Heuristic vs. Full Unrolling
One could imagine two alternatives for implementing a frame-

based strategy. The first is to rely on a heuristic, such as choosing
the outer-most loop index, breaking the computation into frames
using that index. However, there are several problems with this ap-
proach. First off, we are back to the problem described in Section
3.3, where we are choosing to materialize tables in an ad-hoc and
potentially dangerous way (we may materialize a multi-terabyte ta-
ble). Second, we cannot control the size of the frame. Too many
operations can mean that the system is unable to optimize and ex-
ecute the frame, while too few can mean a poor physical plan with
too much materialized data. Third, if we allow the recursion to go
up as well as down, or skip index values, this will not work.

Instead, we opt for an approach that performs a full unrolling
of the recursive computation into a single, monolithic computa-
tion, which may in practice consist of hundreds of thousands of
relational operations, and then define an optimization problem that
attempts to split the computation into frames so as to minimize the
likelihood of materializing a large number of tables.

4.3 Optimization Problem: Intuition
The cost incurred when utilizing frames is twofold. First, the use

of frames restricts the ability of the system’s logical and physical
optimizer to find optimization opportunities. For example, if the
logical plan ((R 1 S) 1 T ) is optimal but the input plan ((R 1

T ) 1 S) is cut into frames f1 = (R 1 T ) and f2 = (f1 1 S) it
is impossible to realize this optimal plan. In practice, we address
this by placing a minimum size on frames as larger frames make it
more likely that high-quality join orderings will still be present in
the frame.

More significant is the requirement that the contents of already-
executed frames be saved, so that later frames may utilize them.
This can introduce significant I/O cost compared to a monolithic
execution. Thus we we may attempt to cut into frames to mini-
mize the number of bytes traveling over cut edges. Unfortunately,
this is unreasonable as it is well-understood that estimation errors
propagate through a plan; in the upper reaches of a huge plan, it
is going to be impossible to estimate the number of bytes traveling
over edges.

Instead, we find that spitting the plan into frames so as to reduce
the number of pipeline breakers induced is a reasonable goal. A
pipeline breaker occurs when the output of one operator must be
materialized to disk or transferred over the network, as opposed to
being directly communicated from operator to operator via CPU
cache, or, in the worst case, via RAM. An induced pipeline breaker
is one that would not have been present an optimal physical plan,
but was forced by the cut.

4.4 Quadratic Assignment Formulation
Given a query plan, it is unclear whether a cut that separates two

operators into different frames will induce a pipeline breaker. We
model this uncertainty using probability, and seek to minimize the
expected number of pipeline breakers induced by the set of chosen
frames.

This is “probability” in the Bayesian rather than frequentist sense,
in that it represents a level or certainty or belief in the pipelineabil-
ity of various operators. For the ith and jth operators in the query
plan, let Nij be a random variable that takes the value 1 if operator
i is pipelined into operator j were the entire plan optimized and
executed as a unit, and 0 otherwise.

Let the query plan to be cut into frames be represented as a di-
rected graph having n vertices, represented as a binary matrix E,
where eij is one (that is, there is an edge from vertex i to vertex j)
if the output of operator i is directly consumed by operator j. eij
is zero otherwise. We would like to split the graph into m frames.
We define the split of a query plan to be a matrix X = (xij)n×n,
where each row would be one frame so that xij = 1 if operator i
is in a different frame from operator j (that is, they have been cut
apart) and 0 otherwise. Given this, the goal is to minimize:

cost(X) = E




n∑

i=1

n∑

j=1

eijxijNij


 =

n∑

i=1

n∑

j=1

eijxijE [Nij ]

This computes the expected number of pipeline breakers induced,
as for us to induce a new pipeline breaker via the cut, (a) operator
j must consume the output from operator i, (b) operator i and j
must be separated by the cut, and (c) operator i should have been
pipelined into operator j in the optimal execution.

We can re-write the objective function by instead letting the ma-
trix X = (xij)n×m be an assignment matrix, where

∑
i xij = 1,

and each xij is either one ore zero. Then, xij is one if operator i is
put into frame j and we have:

cost(X) =




n∑

i=1

n∑

j=1

m∑

a=1

m∑

b=1

eijxiaxjbE [Nij ]


−




n∑

i=1

n∑

j=1

m∑

a=1

eijxiaxjaE [Nij ]




Letting cijab = eijE [Nij ]−δabeijE [Nij ] = eijE [Nij ] (1−δab)
where δab is the Kronecker delta function, we then have:

cost(X) =

n∑

i=1

n∑

j=1

m∑

a=1

m∑

b=1

cijabxiaxjb

The trivial solution to choosing X to minimize this cost function is
to put all or most operators in the same frame, but that would result
in a query plan that is not split in a meaningful way. Therefore we
need to add a constraint on the upper bound of operators in each
frame: min ≤∑j xij ≤ max for some maximum frame size.

The resulting optimization problem is not novel: it is an instance
of the problem popularly known as the generalized quadratic as-
signment problem, or GQAP [14], where the goal is to map tasks
or machinery (in this case, the various operations we are executing)
into locations or facilities (in this case, the various frames). GQAP
generalizes the classical quadratic assignment problem by allow-
ing multiple tasks or pieces of machinery to be mapped into the
same location or facility (in the classical formulation, only one task
is allowed per facility). Unfortunately, both GQAP and classical
quadratic assignment are NP-hard, and inapproximable.
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In our instance of the problem, we actually have one additional
constraint that is not expressible within the standard GQAP frame-
work. A simple minimization of the objective function could result
in a sequence of frames that may not be executable because they
contain circular dependencies. In order to ensure that we have no
circular dependencies, we have to make the intermediate value that
a frame uses available before it is executed. To do this, we take the
natural ordering of the frames to be meaningful, in the sense that
frame a is executed before frame b when a < b, and for each edge
eij in the computational graph, we introduce the constraint that for
a, b where xia = 1 and xjb = 1, it must be the case that a ≤ b.

4.5 Cost Model
So far, we have not discussed the precise nature of the vari-

ous Nij variables that control whether the output of operator i is
pipelined into operator j in a single, uncut, optimized and executed
version of the computation. Specifically, we need to compute the
value of E [Nij ] required by our GQAP instance. Since each Nij

is a binary variable, E [Nij ] is simply the probability thatNij eval-
uates to one. Let pij denote this probability. In keeping with our
view, we define the various pij values as follows:

(1) If the output of operator i has one single consumer (operator
j) and operator j is a selection or an aggregation, then pij is 1.
The reason for this is that in the system we are building on (Sim-
SQL [2]), it is always possible to pipeline into a selection or an
aggregation. Selections are always pipelineable, and in SimSQL, if
operator j is an aggregation, then a corresponding pre-aggregation
will be added to the end of the pipeline executing operation j. This
pre-aggregation maintains a hash table for each group encountered
in the aggregation, and as new data are encountered, statistics for
each data object are added to the corresponding group. As long
as the number of groups is small and the summary statistics com-
pact, this can radically reduce the amount of data that needs to be
shuffled to implement the aggregation.

(2) If the output of operator i has one single consumer (operator
j) but operator j is not a selection or an aggregation, then pij is
estimated using past workloads. That is, based off of workload
history, we compute the fraction of the time that operator i’s type
of operation is pipelined into the type of operator j’s operation, and
use that for pij .

(3) In SimSQL, if operator i has multiple consumers, then the out-
put of operator i can be pipelined into only one of them (the output
will be saved to disk and then the other operators will be executed
subsequently, reading the saved output). Hence, if there are k con-
sumers of operator i, and operator j is a selection or an aggregation,
then pij = 1

k
. Otherwise, if, according to workload history, the

traction of the time that operator i’s type of operation is pipelined
into the type of operator j’s operation is f , then pij = f

k
.

5. EXPERIMENTS

5.1 Overview
In this section, we detail a set of experiments aimed at answering

the following questions:

Can the ideas described in this paper be used to re-purpose an
RDBMS so that it can be used to implement scalable, performant,
model parallel ML computations?

We implement the ideas in this paper on top of SimSQL, a research-
prototype, distributed database system [2]. SimSQL has a cost-
based optimizer, an assortment of implementations of the standard

relational operations, the ability to pipeline those operations and
make use of “interesting” physical data organizations. It also has
native matrix and vector support [16].

Scope of Evaluation. We stress that this is not a “which system
is faster?” comparison. SimSQL is implemented in Java and runs
on top of Hadoop MapReduce, with the high latency that implies.
Hence a platform such as SimSQL is likely to be considerably
faster than SimSQL, at least for learning smaller models (when
SimSQL’s high fixed costs will dominate).

Rather than determining which system is faster, the specific goal
is to study whether an RDBMS-based, model-parallel learner is a
viable alternative to a system such as TensorFlow, and whether it
has any obvious advantages.

Experimental Details. In all of our experiments, all implementa-
tions run the same algorithms over the same data. Thus, a configu-
ration that runs each iteration 50% faster than another configuration
will reach a given target loss value (or log-likelihood) 50% faster.
Hence, rather than reporting loss values (or log-likelihoods) we re-
port per-iteration running times.

All implementations are fully synchronous, for an apples-to-ap-
ples comparison. We choose synchronous learning as there is strong
evidence that synchronous learning for large, dense problems is the
most efficient choice [3, 9].

In the first set of FFNN experiments, EC2 r5d.2xlarge CPU
machines with 8 cores and 64GB of RAM were used. In the second
set, at various cost levels, we chose sets of machines to achieve the
best performance. For TensorFlow, this was achieved using GPU
machines; for SimSQL, both CPU and GPU machines achieved
around the same performance.

We use the data parallel, synchronous, feed-forward network im-
plementation that ships with TensorFlow as a comparison with the
FFNN implementation described in this paper. We use a Wikipedia
dump of 4.86 million documents as the input to the feed-forward
learner. The goal is to learn how to predict the year of the last edit
to the article. There are 17 labels in total. We process the Wikipedia
dump, representing each document as a 60,000-dimensional feature
vector. In most experiments, we use a size 10,000 batch.

5.2 Results
To examine the necessity of actually using a frame-based execu-

tion, we use ten machines to perform FFNN learning on a relatively
small learning task (10,000 hidden neurons, batch size 100). We
unroll 60 iterations of the learning, and compare the per-iteration
running time using the full cutting algorithm along with the cost
model of Section 6.3 with a monolithic execution of the entire, un-
rolled plan. The resulting graph has 12,888 relational operators.
The monolithic execution failed during the second iteration. The
per-iteration running time of the frame-based execution is com-
pared with monolithic execution in Figure 3.

We evaluate both the RDBMS and TensorFlow with a variety
of cluster sizes (five, ten, and twenty machines) and a wide vari-
ety of hidden layer sizes—up to 160,000 neurons. onnecting two
such layers requires a matrix with 26 billion entries (102 GB). Per-
iteration execution times are given in Figure 4. “Fail” means that
the system crashed.

In addition, we ran a set of experiments where we attempted to
achieve the best performance at a $3-per-hour, $7-per-hour, and
$15-per-hour price point using Amazon AWS. For TensorFlow, at
$3, this was one p3.2xlargeGPU machine and a r5.4xlarge
CPU machine; at $7, it was two p3.2xlarge GPU machines
and two r5.4xlarge CPU machines, and at $15, it was four
p3.2xlarge GPU machines and four r5.4xlarge CPU ma-
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Graph Type FFNN per-iteration time
Whole Graph 05:53:29
Frame-Based 00:12:53

Figure 3: Frame-based vs. monolithic execution.

FFNN
Hidden Layer Neurons RDBMS TensorFlow

Cluster with 5 workers
10000 05:39 01:36
20000 05:46 03:38
40000 08:30 09:02
80000 24:52 Fail

160000 Fail Fail
Cluster with 10 workers

10000 04:53 00:54
20000 05:32 02:00
40000 07:41 04:59
80000 17:46 Fail

160000 44:21 Fail
Cluster with 20 workers

10000 04:08 00:32
20000 05:40 01:12
40000 06:13 02:56
80000 12:55 Fail

160000 25:00 Fail

Figure 4: Average iteration time for FFNN learning, using var-
ious CPU cluster and hidden layer sizes.

chines. SimSQL did about the same using one, two or four c5d.18
xlarge CPU machines (at $3, $7, and $15, respectively) as it
did using two, five or ten c5d.18xlarge GPU machines. Per-
iteration execution times are given in Figure 5.

5.3 Discussion
SimSQL was unable to handle the 12,888 operators in the FFNN

plan, resulting in a running time that was around 100× longer than
frame-based execution (see Figure 3).

On the CPU clusters (Figure 4), the RDBMS was slower than
TensorFlow in most cases, but it scaled well, whereas TensorFlow
crashed (due to memory problems) on a problem size of larger than
40,000 hidden neurons.

Micro-benchmarks showed that for the 40,000 hidden neuron
problem, all of the required matrix operations required for an it-
eration of FFNN learning took 6 minutes, 17 seconds on a single
machine. Assuming a perfect speedup, on five machines, learn-
ing should take just 1:15 per iteration. However, the RDBMS took
8:30, and TensorFlow took 9:30. This shows that both systems
incur significant overhead, at least at such a large model size. Sim-
SQL, in particular, requires a total of 61 seconds per FFNN iter-
ation just starting up and tearing down Hadoop jobs. As the sys-
tem uses Hadoop, each intermediate result that cannot be pipelined
must be written to disk, causing a significant amount of I/O. A
faster database could likely lower this overhead significantly.

On a GPU (Figure 5) TensorFlow was very fast, but could not
scale past 10,000 neurons. The problem is that when using a GPU,
all data in the compute graph must fit on the GPU; TensorFlow
is not designed to use CPU RAM as a buffer for GPU memory.
The result is that past 10,000 neurons (where one weight matrix is
4.8GB in size) GPU memory is inadequate and the system fails.

Our GPU support in SimSQL did not provide much benefit, for
a few reasons. First, the AWS GPU machines do not have attached

FFNN
Hidden Layer RDBMS RDBMS TensorFlow

Size (CPU) (GPU) (GPU)
$3 per hour budget

10000 04:50 06:25 00:24
20000 07:07 07:12 Fail
40000 11:52 11:48 Fail
80000 16:30 Fail Fail

160000 Fail Fail Fail
$7 per hour budget

10000 04:53 04:58 00:15
20000 05:54 06:08 Fail
40000 09:32 08:26 Fail
80000 12:03 17:50 Fail

160000 Fail Fail Fail
$15 per hour budget

10000 05:12 5:00 00:12
20000 05:36 06:30 Fail
40000 09:08 08:39 Fail
80000 12:24 12:20 Fail

160000 39:40 Fail Fail

Figure 5: Average iteration time for FFNN learning, maximiz-
ing performance at a specific dollar cost.

storage, which means that moving to GPU machines meant that
all of the disk read/writes incurred by Hadoop had to happen over
network attached storage (compare with the CPU hardware, which
had a fast, attached solid-state drive). Second, as discussed above,
SimSQL’s overhead above and beyond pure CPU time for matrix
operations is high enough that reducing the matrix time further us-
ing a GPU was ineffective.

6. BACKGROUND AND RELATED WORK
During learning, we are given a data set T with elements tj . The

goal is to learn a d-dimensional vector (d ≥ 1) of model parameters
Θ = (Θ(1), Θ(2), . . . ,Θ(d)) that minimize a loss function of the
form

∑
j L(tj |Θ). To this end, learning algorithms such as gradi-

ent descent perform a simple update repeatedly until convergence:

Θi+1 ← Θi − F (Θi,T)

If it is possible to store Θi in the RAM of each machine, decom-
posable learning algorithms can be made data parallel. One can
broadcast Θi to each site, and then compute F (Θi, tj) for data tj
stored locally. All of these values are then aggregated using stan-
dard, distributed aggregation techniques.

However, data parallelism of this form is often ineffective. Let
Ti be a small sample of T selected during epoch i. Since for de-
composable algorithms, F (Θi,T) ≈ |T|

|Ti|F (Θi,Ti), in practice
only a small subsample of the data are used during each epoch (for
example, in the case of gradient descent, mini-batch gradient de-
scent [18] is typically used). Adding more machines can either
distribute this sample so that each machine gets a tiny amount of
data (which is typically not helpful because for very small data
sizes, the fixed costs associated with broadcasting Θi dominate) or
else use a larger sample. This is also not helpful because the esti-
mate to F (Θi,T) with a relatively small sample is already accurate
enough. The largest batches advocated in the literature consist of
around 10,000 samples [9].

One idea to overcome this is to use asynchronous data paral-
lelism [17], where recursion of the form Θi+1 ← Θi − F (Θi,T)
is no longer used. Rather, each site j is given a small sample
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Tj of T; it requests the value Θcur , computes Θnew ← Θcur −
F (Θcur,Tj) and registers Θnew at a parameter server. All requests
for Θcur happen to obtain whatever the last value written was, lead-
ing to stochastic behavior. The problem is that data parallelism of
this form can be ineffective for large computations as most of the
computation is done using stale data [3]. An alternative is model
parallelism. In model parallelism, the idea is to stage F (Θi,T)
(or F (Θi,Ti)) as a distributed computation without assuming that
each site has access to (or stores) all of Θi (or Ti).

The parameter server architecture [20, 15] was proposed to pro-
vide scalable, parallel training for machine learning models. It
is favored by most existing Big Data ML systems (such as Ten-
sorFlow [6, 7] and Petuum [23]). A parameter server consists of
two components: a parameter server (or key-value store) and a set
of workers who repeatedly access and update the model parame-
ters. Model parallelism is enabled in TensorFlow by distributing
the nodes of a neural network across different machines. Although
it provides some functions (e.g., tf.nn.embedding_lookup)
that allow parallel model updates, support for more complex par-
allel model updates is limited. Petuum [23] considers to speed up
distributed training, using ideas such as sending weights as soon
as they are updated during backpropagation. MXNet [4] is anther
system that employs a parameter server to train neural networks.
MXNet claims to support model parallelism. However, its model
parallelism support is similar to TensorFlow. Complex, model-
parallel computations require using low-level APIs and manual man-
agement of the computations and communications.

There are several other systems providing model parallelism [13].
AMPNet [8] adds control flow to the execution graph, and supports
dynamic control flow by introducing a well-defined intermediate
representation. This framework proves to be efficacy for asyn-
chronous model-parallel training by the experiments. Coates et al.
[5] built a distributed system on a cluster of GPUs based on the
COTS HPC technology. This system achieved model parallelism
by carefully assigning the partial computations of the whole model
to each GPU, and utilized MPI for the communication.

7. CONCLUSIONS
We have argued that a parallel/distributed RDBMS has promise

as a backend for implementing and executing large scale ML com-
putations. We have considered unrolling recursive computations
into a monolithic compute plan, which is broken into frames that
are optimized and executed independently. We have expressed the
frame partitioning problem as an instance of the GQAP. When im-
plemented on top of an RDBMS, these ideas result in ML com-
putations that are model parallel—that is, able to handle large and
complex models that need to be distributed across compute units.
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Technical Perspective: Efficient Logspace Classes for
Enumeration, Counting, and Uniform Generation

Reinhard Pichler
TU Wien, Austria

Traditionally, by query answering we mean the problem
of finding all answers to a given query over a given database.
But what happens if the number of answers is prohibitively
big – which may easily occur in a Big Data context? In such
situations, it seems preferable to have a mechanism that pro-
duces one answer after the other with certain guarantees on
the time between any two outputs and to let the user decide
when to stop. This leads us to the enumeration problem,
which has received a lot of interest recently [1]. However, in
order for the user to get a “realistic” picture of the entirety
of answers, two crucial questions arise: first, how big is the
portion of output answers compared with the total number
of answers? And second, do the output answers reflect the
variety of the complete set of answers? The first question
refers to the counting problem, where we are interested in
the total number of answers. The second question leads
us to the problem of uniform generation, where we request
that the answers be uniformly generated and thus form an
unbiased sample of the complete set of answers.

Decades of research have been devoted to the analysis of
the complexity of query answering of all kinds of query lan-
guages and, in particular, to the identification of scenarios
(by imposing restrictions on the queries and/or databases)
which allow for efficient query answering. Such complexity
analyses usually consider a suitable decision problem such
as checking if a given candidate is indeed an answer to a
given query over the given database. As we shift our focus
to the triad of enumeration, counting, and uniform genera-
tion, the notions of complexity and of efficiency have to be
reconsidered. Moreover, in order to get an understanding of
the complexity of a concrete query language for a concrete
type of databases, it seems unavoidable to analyse the three
problems separately . . .

. . . unless we have a general (and, ideally, simple) frame-
work that allows us to detect at once if all three problems
are efficiently solvable. Establishing such a framework is the
very goal of the paper Efficient Logspace Classes for Enu-
meration, Counting, and Uniform Generation by Marcelo
Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and
Cristian Riveros. The resulting framework is very general
and by no means restricted to query answering. It follows
the classical formalism of [2], which represents a problem as
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a binary relation R consisting of pairs (x, y), where x is (an
encoding of) the input and y is (an encoding of) a solu-
tion. In our case of query answering, the input consists of a
database and a query and each answer corresponds to a so-
lution. The authors define classes of such binary relations by
means of Turing machines. As a good compromise between
expressive power (i.e., capturing an interesting class of re-
lations) and efficiency (i.e., making sure that enumeration,
counting, and uniform generation all have acceptable com-
plexity), only non-deterministic log-space Turing machines
M are considered, i.e., when run on some input x, machine
M produces as output in its accepting computations pre-
cisely the solutions y with (x, y) ∈ R. The resulting class
of relations is referred to as RelationNL. This compromise
between expressive power and efficiency can be shifted a bit
more towards efficiency (at the expense of less expressive
power) by requiring the Turing machine to be unambigu-
ous, i.e., any two different runs of M on input x ending in
an accepting state produce distinct outputs. The resulting
class of relations is referred to as RelationUL.

The main technical results of the paper are upper bounds
on the complexity of enumeration, counting, and uniform
generation if a relation is in RelationNL or in RelationUL,
respectively. For instance, if R is in RelationUL, then
the enumeration problem can be solved with constant de-
lay (i.e., after a polynomial-time preprocessing phase, the
time between any two successive outputs is independent of
the size of the input), the counting problem is polynomial-
time solvable and, finally, uniform generation is feasible by
a polynomial-time randomized algorithm. Slightly less fa-
vorable upper bounds hold for relations in RelationNL. The
paper also shows that several interesting problems from var-
ious domains (including information extraction and graph
databases) indeed fall in one of these two relation-classes.

The paper represents an important first step that opens
up many research opportunities such as proving the mem-
bership of various problems in RelationNL or RelationUL,
searching for further optimizations of the enumeration,
counting and uniform generation algorithms for problems in
these classes, and also searching for interesting extensions
and restrictions of these classes.

1. REFERENCES
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ABSTRACT
We study two simple yet general complexity classes, which
provide a unifying framework for efficient query evaluation
in areas like graph databases and information extraction,
among others. We investigate the complexity of three funda-
mental algorithmic problems for these classes: enumeration,
counting and uniform generation of solutions, and show that
they have several desirable properties in this respect.

Both complexity classes are defined in terms of non de-
terministic logarithmic-space transducers (NL transducers).
For the first class, we consider the case of unambiguous NL
transducers, and we prove constant delay enumeration, and
both counting and uniform generation of solutions in polyno-
mial time. For the second class, we consider unrestricted NL
transducers, and we obtain polynomial delay enumeration,
approximate counting in polynomial time, and polynomial-
time randomized algorithms for uniform generation. More
specifically, we show that each problem in this second class
admits a fully polynomial-time randomized approximation
scheme (FPRAS) and a polynomial-time Las Vegas algo-
rithm (with preprocessing) for uniform generation. Remark-
ably, the key idea to prove these results is to show that
the fundamental problem #NFA admits an FPRAS, where
#NFA is the problem of counting the number of strings of
length n (given in unary) accepted by a non-deterministic
finite automaton (NFA). While this problem is known to be
#P-complete and, more precisely, SpanL-complete, it was
open whether this problem admits an FPRAS. In this work,
we solve this open problem, and obtain as a welcome corol-
lary that every function in SpanL admits an FPRAS.

1. INTRODUCTION
Arguably, query answering is the most fundamental prob-

lem in databases. In this respect, developing efficient query
answering algorithms, as well as understanding when this
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cannot be done, is of paramount importance in the field.
In the most classical view of this problem, one is interested
in computing all the answers, or solutions, to a query. To
present such a view, consider a running example from the
area of graph databases [8].

Leah Nora

Zara

friend friend

JackPaul

friend

friend

knows

John

friend friend

friend

knows

Nora

John

friend

Zara

friend

Jack

friend

Leah

John

friend

Zara

friend

Jack

friend

Gpeople
π1 π2

Figure 1: A graph database Gpeople, and two paths
π1, π2 of friends in Gpeople from Zara to Jack.

Given a set ∆ of labels, one can model a graph database G
as a pair (V,E) where V is a set of vertices and E ⊆ V ×∆×V
is a set of labeled edges. For example, Gpeople in Figure 1 is a
graph database storing information about people and their
relationships; in particular, the set of labels for Gpeople is{friend, knows}, so that a triple (a, friend, b) indicates that
a and b are friends, while a triple (a,knows, b) indicates that
a knows b. Path queries are a fundamental way to retrieve
information from graph databases [8, 18]. In its simplest
form, a path query Q over a graph database G = (V,E) is
a triple (a, r, b), where a, b ∈ V and r is a regular expression
over the set ∆ of edge labels for G. An answer to Q over G is
a path from a to b whose labels conform to r. Formally, such
a path is a sequence π = v0, p1, v1, p2, . . . , pn, vn of vertices
and labels such that (vi, pi+1, vi+1) ∈ E, a = v0 and b = vn.
Moreover, π is said to conform to r if the string p1p2⋯pn
is in the regular language defined by r. For example, Q1 =(Zara, friend∗, Jack) is a path query over the graph database
Gpeople in Figure 1, for which two answers are the paths π1,
π2 shown in this figure. Thus, an answer to Q1 over Gpeople
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is a path of friends from Zara to Jack. The set of answers
of a path query Q over a graph database G is denoted by
Q(G). Clearly, Q(G) can be an infinite set, as paths can
contain cycles, so there can be an infinite number of them
in a graph. For this reason, the length of the paths to be
retrieved must also be specified when posing a path query;
the length of a path π = v0, p1, . . . , pn, vn, denoted by ∣π∣, is
defined as n. Hence, in the most classical view of the query
answering problem in graph databases, the input is a triple(G,Q,n) with G a graph database, Q a path query over
G and n a natural number. The task then is to compute
all paths π such that π ∈ Q(G) and ∣π∣ = n. For example,
assuming that Q1 = (Zara, friend∗, Jack), the paths π1, π2

in Figure 1 belong to Q1(Gpeople) when n = 3.
As the quantity of data becomes enormously large, the

number of answers to a query could also be enormous, so
computing the complete set of solutions can be prohibitively
expensive. In our running example, just think about com-
puting all the paths from a source to a target node over a
large graph, this set of answers can be huge and infeasible
to produce in practice [9, 28]. To overcome this limitation,
the idea of enumerating the answers to a query with a small
delay has recently attracted a lot of attention [33, 29]. More
specifically, the idea is to divide the computation of the an-
swers into two phases. In a preprocessing phase, some data
structures are constructed to accelerate the process of com-
puting answers. Then in an enumeration phase, the answers
are enumerated with a small delay between them. Consider-
ing again Gpeople and path query Q1 = (Zara, friend∗, Jack),
such an algorithm has a preprocessing phase that allows it to
return a first path in Q1(Gpeople) in polynomial time, say π1,
and then to return one by one the answers in Q1(Gpeople)
taking polynomial time between any two consecutive out-
puts, say taking polynomial time to return π2 after π1.
In the case of constant delay enumeration algorithms, the
preprocessing phase should take polynomial time, while the
time between consecutive answers should be constant. Such
algorithms allow users to retrieve a fixed number of answers
very efficiently, which can give them a lot of information
about the solutions to a query. In fact, the same holds if
users need a polynomial number of answers.

Unfortunately, because of the data structures used in the
preprocessing phase, these enumeration algorithms usually
return answers that are similar to each other [12, 33, 17].
In our running example, an enumeration algorithm for the
query Q1 = (Zara, friend∗, Jack) can return as the first two
answers the paths π1 and π2 shown in Figure 1, which are
similar to each other as they only differ on the second node:
Nora and Leah. In this respect, other approaches can be
used to return some solutions efficiently but improving the
variety. For instance, if we are going to generate two answers
to Q1 over Gpeople, instead of producing paths π1 and π2 in
Figure 1, it would be desirable to improve the variety by
producing π1 and the following path:

Leah Paul
friend

Zara
friend

π3 Jack
friend

The possibility of generating an answer uniformly, at ran-
dom, is a desirable condition to improve the variety, if it
can be done efficiently. Notice that the uniform genera-
tion of answers is also important for other query evalua-
tion tasks like approximate query answering, and estimat-
ing aggregates and parameters for query optimization [14,

3, 36]. Moreover, the possibility of returning varied solu-
tions has been identified as an important feature not only in
databases, but also for algorithms that retrieve information
in a broader sense [2, 1].

Efficient algorithms for enumeration or uniform genera-
tion are powerful tools to help in the process of understand-
ing the answers to a query. But how can we know how
long these algorithms should run, and how complete the set
of computed answers is? A third tool that is needed then
is an efficient algorithm for computing, or estimating, the
number of solutions to a query. For example, for the query
Q1 = (Zara, friend∗, Jack) over the graph database Gpeople

in Figure 1, we have that Q1(Gpeople) contains three paths
π such that ∣π∣ = 3. Hence, if we have an efficient algorithm
to compute the number of paths in Q1(Gpeople) of length 3,
then we know that there are no more answers to produce af-
ter generating paths π1 and π2 in Figure 1, and the previous
path π3. Similar than for enumeration and uniform genera-
tion, counting the number of solutions has other applications
in query evaluation like computing the size of intermediate
results, computing histograms, among others [20, 23].

Taken together, enumeration, counting, and uniform gen-
eration techniques form a powerful attacking trident when
confronting to the query answering problem in our running
example and, more generally, in any database system. The
goal of this work is to find efficient algorithms for these prob-
lems but following a principled approach, instead of focusing
on them in isolation and for some specific domains. More
precisely, we follow the guidance of [24], which urges the use
of relations to formalize the notion of solution to a given
input of a problem, so that enumeration, counting, and uni-
form generation appear as particular problems in this for-
malization. In Section 2, we present this framework together
with the formal notions of efficiency that we pursue for these
three problems. The next step then is to provide a sim-
ple way to identify relations that have good properties in
terms of these three tasks. For this, we use the concept
of non-deterministic logspace transducers to provide two
classes of relations, called RelationNL and RelationUL,
and show that the aforementioned three problems admit ef-
ficient algorithms when restricted to these classes of rela-
tions. RelationNL and RelationUL are formally defined
in Section 3, where our main results are also formally stated.
Interestingly, one can show that several problems in data
management are in one of these two classes. More specifi-
cally, by establishing membership in one of these two classes
of relations, we show in Section 4 that problems about in-
formation extraction and binary decision diagrams, as well
as our running example, admit efficient algorithms for enu-
meration, counting, and uniform generation.

It is important to mention that the main technical result
of this work is to prove that each problem in RelationNL
admits a fully polynomial-time randomized approximation
scheme (FPRAS) [24] and a polynomial-time Las Vegas al-
gorithm (with preprocessing) for uniform generation. The
key idea to prove these results is to show that the funda-
mental problem #NFA admits an FPRAS, where #NFA
is the problem of counting the number of strings of length
n accepted by a non-deterministic finite automaton (NFA).
While this problem is known to be #P-complete and, more
precisely, SpanL-complete [5], it was open whether it admits
an FPRAS, and only quasi polynomial time randomized ap-
proximation schemes were known for it [26, 21]. In this work,
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we solve this open problem, and obtain as a welcome corol-
lary that every function in SpanL admits an FPRAS. Thus,
to the best of our knowledge, we obtain the first complexity
class with a simple and robust definition based on Turing
Machines, that contains #P-complete problems and where
each problem admits an FPRAS.

2. A UNIFYING FRAMEWORK
BASED ON RELATIONS

As mentioned in the introduction, we follow a principled
approach to study the problems of enumerating, counting
and uniformly generating the answers to a query. We begin
by following the guidance of [24], which urges the use of
relations to formalize the notion of solution to a given input
of a problem. Formally, if Σ denotes a finite alphabet, then
we represent a problem as a relation R ⊆ Σ∗ ×Σ∗, where, as
usual, Σ∗ denotes the set of all strings over Σ. For every pair(x, y) ∈ R, we interpret x as being the encoding of an input
to the problem, and y as being the encoding of a solution
or witness to that input. For each x ∈ Σ∗, we define the
set WR(x) = {y ∈ Σ∗ ∣ (x, y) ∈ R}, and call it the witness
set for x. Also, if y ∈ WR(x), we call y a witness or a
solution to x. For instance, the query answering problem
from our running example in Figure 1 can be represented as
the following relation:

EVAL-PQ = { ((G,Q,n), π) ∣ G is a graph database,

Q is a path query, n ∈ N, π ∈ Q(G), and ∣π∣ = n}, (†)

that is, the input to the query answering problem is the
triple (G,Q,n), and a solution for (G,Q,n) is a path π such
that π ∈ Q(G) and the length of π is n. Thus, the following
is the set of solutions for (G,Q,n):
WEVAL-PQ((G,Q,n)) = {π ∣ ((G,Q,n), π) ∈ EVAL-PQ}.

This is a very general framework where any relation be-
tween input and solutions can be encoded, so we restrict
to p-relations [24]. Formally, a relation R ⊆ Σ∗ ×Σ∗ is a p-
relation if (1) there exists a polynomial q such that (x, y) ∈ R
implies that ∣y∣ = q(∣x∣) and (2) there exists a deterministic
Turing Machine that receives as input (x, y) ∈ Σ∗ ×Σ∗, runs
in polynomial time and accepts if, and only if, (x, y) ∈ R.
One can easily check that EVAL-PQ is a p-relation, as many
other query answering problems in data management. Thus,
considering p-relations is a natural and reasonable restric-
tion for our framework.

The problems studied in this work can be formalized as
follows in the framework presented:

Problem: ENUM(R)
Input: A word x ∈ Σ∗
Output: Enumerate all y ∈WR(x)

without repetitions

Problem: COUNT(R)
Input: A word x ∈ Σ∗
Output: The size ∣WR(x)∣
Problem: GEN(R)
Input: A word x ∈ Σ∗
Output: Generate uniformly, at random,

a word in WR(x)

Given that ∣y∣ = q(∣x∣) for every (x, y) ∈ R, for a polyno-
mial q, we have that WR(x) is finite and these three prob-
lems are well defined. Notice that in the case of ENUM(R),
we do not assume a specific order on words, so that the
elements of WR(x) can be enumerated in any order (but
without repetitions). Moreover, in the case of COUNT(R),
we assume that ∣WR(x)∣ is encoded in binary and, there-
fore, the size of the output is logarithmic in the size of
WR(x). Finally, in the case of GEN(R), we generate a word
y ∈WR(x) with probability 1∣WR(x)∣ if the set WR(x) is not

empty; otherwise, we return a special symbol � to indicate
that WR(x) = ∅. Hence, in our running example, the prob-
lems of enumerating, counting and uniformly generating the
answers to a path query correspond to ENUM(EVAL-PQ),
COUNT(EVAL-PQ), and GEN(EVAL-PQ), respectively.

In what follows, we present the notions of efficiency that
we pursue for the problems studied in this work.

2.1 Notions of efficiency for enumeration
An enumeration algorithm for ENUM(R) is a procedure

that receives an input x ∈ Σ∗ and, during the computation,
it outputs each word in WR(x), one by one and without
repetitions. The time between two consecutive outputs is
called the delay of the enumeration. In this paper, we con-
sider two restrictions on the delay: polynomial-delay and
constant-delay. Polynomial-delay enumeration is the stan-
dard notion of polynomial time efficiency in enumeration
algorithms [25] and is defined as follows. An enumeration
algorithm is of polynomial delay if there exists a polynomial
p such that for every input x ∈ Σ∗, the time between the
beginning of the algorithm and the initial output, between
any two consecutive outputs, and between the last output
and the end of the algorithm, is bounded by p(∣x∣).

Constant-delay enumeration is another notion of efficiency
for enumeration algorithms that has attracted a lot atten-
tion [11, 15, 33]. This notion has stronger guarantees com-
pared to polynomial delay: after the processing of the input,
the enumeration is done in a second phase taking constant-
time between two consecutive outputs. Several notions of
constant-delay enumeration have been studied, most of them
in database theory where it is important to divide the anal-
ysis between query and data. In this paper, we want a def-
inition of constant-delay that is agnostic of the distinction
between query and data (i.e. combined complexity [35]) and,
for this reason, we use a more general notion of constant-
delay enumeration than the ones in [11, 15, 33].

As it is standard in the literature [33], for constant-delay
enumeration we consider enumeration algorithms on Ran-
dom Access Machines (RAM) with addition and uniform
cost measure [4]. Given a relation R ⊆ Σ∗ ×Σ∗, an enumer-
ation algorithm E for R has constant-delay if E runs in two
phases over the input x.

1. The first phase (precomputation), which does not pro-
duce output.

2. The second phase (enumeration), which occurs im-
mediately after the precomputation phase, where all
words in WR(x) are enumerated without repetitions
and satisfying the following conditions, for a fixed con-
stant c:

(a) the time it takes to generate the first output y is
bounded by c ⋅ ∣y∣;
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(b) the time between two consecutive outputs y and
y′ is bounded by c ⋅ ∣y′∣ and does not depend on
y; and

(c) the time between the final element y that is re-
turned and the end of the enumeration phase is
bounded by c ⋅ ∣y∣,

We say that E is a constant-delay algorithm for R with pre-
computation time f , if E has constant-delay and the precom-
putation phase takes time O(f(∣x∣)). Moreover, we say that
ENUM(R) can be solved with constant-delay if there exists
a constant-delay algorithm for R with precomputation time
p for some polynomial p.

Our notion of constant-delay algorithm differs from the
definitions in [33] in two aspects. First, as was previously
mentioned, we relax the distinction between query and data
in the preprocessing phase, allowing our algorithm to take
polynomial time in the input (that is, we consider the com-
bined complexity of the problem [35]). Second, our defini-
tion of constant-delay is what in [15, 11] is called linear delay
in the size of the output, namely, writing the next output is
linear in its size and does not depend on the size of the input.
This is a natural assumption, since each output must at least
be written down to return it to the user. Notice that, given
an input x and an output y, the notion of polynomial-delay
above means polynomial in ∣x∣ and, instead, the notion of
linear delay from [15, 11] means linear in ∣y∣, i.e., constant
in the size of ∣x∣. Thus, we have decided to call the two-
phase enumeration from above “constant-delay”, as it does
not depend on the size of the input x, and the delay is just
what is needed to write the output (which is the minimum
requirement for such an enumeration algorithm).

2.2 Notions of efficiency for counting and
uniform generation

Given a relation R ⊆ Σ∗×Σ∗, the problem COUNT(R) can
be solved efficiently if there exists a polynomial-time algo-
rithm that, given x ∈ Σ∗, computes ∣WR(x)∣. In other words,
if we think of COUNT(R) as a function that maps x to the
value ∣WR(x)∣, then COUNT(R) can be computed efficiently
if COUNT(R) ∈ FP, the class of functions that can be com-
puted in polynomial time. As such a condition does not
hold for many fundamental problems in data management,
we also consider the possibility of efficiently approximat-
ing the value of the function COUNT(R). More precisely,
COUNT(R) is said to admit a fully polynomial-time ran-
domized approximation scheme (FPRAS) [24] if there exists
a randomized algorithm A ∶ Σ∗ × (0,1) → N and a polyno-
mial q(u, v) such that for every x ∈ Σ∗ and δ ∈ (0,1), it holds
that:

Pr( ∣A(x, δ) − ∣WR(x)∣ ∣ ≤ δ ⋅ ∣WR(x)∣ ) ≥ 3

4

and the number of steps needed to compute A(x, δ) is at
most q(∣x∣,1/δ). Thus, algorithm A(x, δ) approximates the
value ∣WR(x)∣ with a relative error of δ, and it can be com-
puted in polynomial time in the size of x and the value 1/δ.

The problem GEN(R) can be solved efficiently if there
exists a polynomial-time randomized algorithm that, given
x ∈ Σ∗, generates an element of WR(x) with uniform prob-
ability distribution (if WR(x) = ∅, then it returns �). How-
ever, as in the case of COUNT(R), the existence of such
a generator is not guaranteed for many fundamental prob-
lems, so we also consider a relaxed notion of generation that

has a probability of failing in returning a solution. More pre-
cisely, GEN(R) is said to admit a preprocessing polynomial-
time Las Vegas uniform generator (PPLVUG) if there exist
a pair of randomized algorithms P ∶ Σ∗×(0,1) → (Σ∗∪{�}),G ∶ Σ∗ → (Σ∗ ∪ {fail}), a set V ⊆ Σ∗, and a pair of polyno-
mials q(u, v), r(u) such that for every x ∈ Σ∗ and δ ∈ (0,1):

1. The preprocessing algorithm P receives as inputs x
and δ and performs at most q(∣x∣, log(1/δ)) steps. If
WR(x) ≠ ∅, then P(x, δ) returns a string d such that
d ∈ V with probability 1−δ. If WR(x) = ∅, then P(x, δ)
returns �.

2. The generator algorithm G receives as input d and per-
forms at most r(∣d∣) steps. Moreover, if d ∈ V, then:

(a) G(d) returns fail with a probability of at most
1
2
, and

(b) conditioned on not returning fail, G(d) returns
a truly uniform sample y ∈ WR(x), i.e. with a
probability 1/∣WR(x)∣ for each y ∈WR(x).

Otherwise, if d /∈ V, then G(d) outputs a string without
any guarantee.

The set V of strings is called the set of valid strings. In line
with the notion of constant-delay enumeration algorithm,
we allow the previous concept of uniform generator to have
a preprocessing phase. If there is no witness for the input
x (that is, WR(x) = ∅), then the preprocessing algorithm P
returns the symbol �. Otherwise, the invocation P(x, δ) re-
turns a string d in Σ∗, namely, a data structure or “advice”
for the generation procedure G. The output of the invoca-
tion P(x, δ) is used by the generator algorithm G to produce
a witness of x with uniform distribution (that is, with proba-
bility 1/∣WR(x)∣). If the output of P(x, δ) is not valid (which
occurs with probability δ), then we have no guarantees on
the output of the generator algorithm G. Otherwise, we
know that G(d) returns an element of WR(x) with uniform
distribution, or it returns fail. Furthermore, we can repeatG(d) as many times as needed, generating each time a truly
uniform sample y from WR(x) whenever y ≠ fail. It is im-
portant to notice that the definition of PPLVUG does not
guarantee that it can be distinguished in polynomial time
whether d is valid (that is, whether d ∈ V), so G has to use
d only knowing that with probability 1 − δ is a valid string,
in which case d will be useful for generating an element of
WR(x) with uniform distribution.

Notice that by condition (2a), we know that the proba-
bility of failing is smaller than 1

2
, so that by calling G(d)

several times we can make this probability arbitrarily small.
For example, the probability that G(d) returns fail in 1000
consecutive independent invocations is at most ( 1

2
)1000. Fur-

thermore, we have that P(x, δ) can be computed in time
q(∣x∣, log(1/δ)), so we can consider an exponentially small
value of δ such as

1

2∣x∣+1000
and still obtain that P(x, δ) can be computed in time poly-
nomial in ∣x∣. Notice that with such a value of δ, the prob-
ability of producing a valid string d is at least

1 − 1

21000
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which is an extremely high probability. Finally, it is impor-
tant to notice that the size of d is at most q(∣x∣, log(1/δ)),
so that G(d) can be computed in time polynomial in ∣x∣ and
log(1/δ). Therefore, G(d) can be computed in time polyno-
mial in ∣x∣ even if we consider an exponentially small value

for δ such as 1/2∣x∣+1000.
Notice that the notion of preprocessing polynomial-time

Las Vegas uniform generator imposes stronger requirements
than the notion of fully polynomial-time almost uniform gen-
erator introduced in [24]. In particular, the latter not only
has a probability of failing, but also considers the possibil-
ity of generating a solution with a probability distribution
that is almost uniform, that is, an algorithm that gener-
ates a string y ∈ WR(x) with a probability in an interval[1/∣WR(x)∣ − ε,1/∣WR(x)∣ + ε] for a given error ε ∈ (0,1).
3. OUR MAIN CONTRIBUTIONS

The goal of this section is to provide simple yet general
definitions of classes of relations with good properties in
terms of enumeration, counting, and uniform generation.
More precisely, we are first aiming at providing a class C
of relations that has a simple definition in terms of Tur-
ing Machines and such that for every relation R ∈ C, it holds
that ENUM(R) can be solved with constant delay, and both
COUNT(R) and GEN(R) can be solved in polynomial time.
Moreover, as it is well known that such good conditions can-
not always be achieved, we are then aiming at extending the
definition of C to obtain a simple class, also defined in terms
of Turing Machines and with good approximation proper-
ties. It is important to mention that we are not looking
for an exact characterization in terms of Turing Machines
of the class of relations that admit constant delay enumera-
tion algorithms, as this may result in an overly complicated
model. Instead, we are looking for simple yet general classes
of relations with good properties in terms of enumeration,
counting, and uniform generation, and which can serve as a
starting point for the systematic study of these three funda-
mental properties together.

3.1 The general class RelationNL
A key notion that is used in our definitions of classes of

relations is that of a transducer. Given a finite alphabet Σ,
an NL-transducer M is a nondeterministic Turing Machine
with input and output alphabet Σ, a read-only input tape,
a write-only output tape where the head is always moved
to the right once a symbol is written in it (so that the
output cannot be read by M), and a work-tape of which,
on input x, only the first f(∣x∣) cells can be used, where
f(n) ∈ O(log(n)). A string y ∈ Σ∗ is said to be an output
of M on input x, if there exists a run of M on input x that
halts in an accepting state with y as the string in the out-
put tape. The set of all outputs of M on input x is denoted
by M(x) (notice that M(x) can be empty). Finally, the
relation accepted by M , denoted by R(M), is defined as{(x, y) ∈ Σ∗ ×Σ∗ ∣ y ∈M(x)}.

Definition 3.1. A relation R is in RelationNL iff there
exists an NL-transducer M such that R(M) = R.

The class RelationNL should be general enough to con-
tain some natural and well-studied problems. A first such
a problem is the satisfiability of a propositional formula in
DNF. This problem can be naturally represented as follows:

SAT-DNF = {(ϕ,σ) ∣ ϕ is a proposional formula

in DNF, σ is a truth assignment and σ(ϕ) = 1}.
Thus, we have that ENUM(SAT-DNF) corresponds to the
problem of enumerating the truth assignments satisfying a
propositional formula ϕ in DNF, while COUNT(SAT-DNF)
and GEN(SAT-DNF) correspond to the problems of count-
ing and uniformly generating such truth assignments, re-
spectively. It is not difficult to see that SAT-DNF is in
RelationNL. In fact, assume that we are given a propo-
sitional formula ϕ of the form D1 ∨ ⋯ ∨ Dm, where each
Di is a conjunction of literals, that is, a conjunction of
propositional variables and negation of propositional vari-
ables. Moreover, assume that each propositional variable
in ϕ is of the form x k, where k is a binary number, and
that x 1, . . ., x n are the variables occurring in ϕ. Notice
that with such a representation, we have that ϕ is a string
over the alphabet {x, ,0,1,∧,∨,¬}. We define as follows an
NL-transducer M such that M(ϕ) is the set of truth as-
signments satisfying ϕ. On input ϕ, the NL-transducer M
non-deterministically chooses a disjunct Di, which is rep-
resented by two indexes indicating the starting and ending
symbols of Di in the string ϕ. Then it checks whether Di
is satisfiable, that is, whether Di does not contain comple-
mentary literals. Notice that this can be done in logarithmic
space by checking for every j ∈ {1, . . . , n}, whether x j and¬x j are both literals in Di. If Di is not satisfiable, then M
halts in a non-accepting state. Otherwise, M returns a satis-
fying truth assignment of Di as follows. A truth assignment
for ϕ is represented by a string of length n over the alphabet{0,1}, where the j-th symbol of this string is the truth value
assigned to variable x j. Then for every j ∈ {1, . . . , n}, if x j
is a conjunct in Di, then M write the symbol 1 in the out-
put tape, and if ¬x j is a conjunct in Di, then M write the
symbol 0 in the output tape. Finally if neither x j nor ¬x j
is a conjunct in Di, then M non-deterministically chooses a
symbol b ∈ {0,1}, and it writes b in the output tape.

By using NL-transducers, one can easily show that some
query answering problems in data management are also in
RelationNL, in the same way as for the case of SAT-DNF.
For instance, the relation EVAL-PQ defined in (†), which
is used to encode our running example, can be shown to
be in RelationNL. To see this, assume a reasonable en-
coding for an input (G,Q,n) (this time, we omit the string
representation of the input and output for simplicity). In
particular, assume that Q = (a, r, b) is a path query with
a, b vertices in G and r a regular expression. Then our NL-
transducer constructs on-the-fly the product of G with an
NFA A accepting the regular language defined by r, uses
this product to traverse G through a path π such that π
conforms to r and ∣π∣ = n, and outputs π. More precisely,
our NL-transducer keeps a counter c and two indices, called
g and q, pointing to a vertex in G and a state in A, respec-
tively. The transducer starts with c = 0, g = a and q = q0,
assuming that q0 is the initial state of A. Then, at each step
the machine non-deterministically chooses an edge (g, `, g′)
on G and a transition (q, `, q′) on A for some edge-label `,
writes (g, `, g′) in the output tape, and updates c, g, and q
to c + 1, g′, and q′, respectively. If this combination edge-
transition does not exist or c becomes greater than n, then
the machine stops and rejects. Instead, if it holds that g
is equal to b, q is a final state of A, and c = n, then our
NL-transducer stops and accepts. In other words, we have

56 SIGMOD Record, March 2020 (Vol. 49, No. 1)



shown that EVAL-PQ ∈ RelationNL.
The problem COUNT(SAT-DNF) is a paramount exam-

ple of a #P-complete problem. Moreover, it is known that
COUNT(EVAL-PQ) is #P-complete as well [9]. Hence,
we cannot expect COUNT(R) to be solvable in polyno-
mial time for every R ∈ RelationNL. However, the prob-
lem COUNT(SAT-DNF) admits an FPRAS [27], so we can
still hope for COUNT(R) to admit an FPRAS for every
R ∈ RelationNL. In this work, we give a positive answer
to the question of the existence of such an approximation
algorithm for every relation in RelationNL.

Theorem 3.2. If R ∈ RelationNL, then ENUM(R) can be
solved with polynomial delay, COUNT(R) admits an FPRAS,
and GEN(R) admits a PPLVUG.

In particular, given that EVAL-PQ is in RelationNL, the
three problems for graph databases mentioned in Sections 1
and 2 have good algorithmic properties: ENUM(EVAL-PQ)
can be solved with polynomial delay, COUNT(EVAL-PQ)
admits an FPRAS, and GEN(EVAL-PQ) admits a PPLVUG.
Notice that deriving a polynomial-delay enumeration algo-
rithm for EVAL-PQ is straightforward, but the existence of
an FPRAS for COUNT(EVAL-PQ), as well as of a PPLVUG
for GEN(EVAL-PQ), was not known before. This is one of
the main advantages of our approach: by proving member-
ship in RelationNL, we can easily identify query answering
problems that have good algorithmic properties in terms of
enumeration, counting, and uniform generation.

3.1.1 A fundamental consequence of our result
It turns out that proving our main result (Theorem 3.2)

involves providing an FPRAS for a natural problem associ-
ated to path queries and graph databases. More specifically,
#NFA is the problem of counting the number of words of
length k accepted by a non-deterministic finite automaton
(NFA), where k is given in unary (that is, k is given as a
string 0k). It is known that #NFA is #P-complete [5], but
it is open whether it admits an FPRAS; in fact, the best
randomized approximation scheme known for #NFA runs
in time nO(log(n)) [26]. In our notation, this problem is rep-
resented by the following relation:

MEM-NFA = {((A,0k),w) ∣ A is an NFA and

w is a word of length k accepted by A},
that is, #NFA is the same problem as COUNT(MEM-NFA).
To prove Theorem 3.2, we have to provide an FPRAS for
COUNT(MEM-NFA), thus giving a positive answer to the
open question of whether #NFA admits an FPRAS.

It is important to mention a fundamental consequence of
this result in computational complexity. The class of func-
tion SpanL was introduced in [5] to provide a characteri-
zation of some functions that are hard to compute. More
specifically, given a finite alphabet Σ, a function f ∶ Σ∗ → N
is in SpanL if there exists an NL-transducer M with input
alphabet Σ such that f(x) = ∣M(x)∣ for every x ∈ Σ∗. The
complexity class SpanL is contained in #P, and it is a hard
class in the sense that if SpanL ⊆ FP, then P = NP [5],
where FP is the class of functions that can be computed in
polynomial time. In fact, SpanL has been instrumental in
proving that some functions are difficult to compute [5, 22,
9, 28].

It is easy to see that #NFA belongs to SpanL. In fact, it
was shown in [5] that #NFA is SpanL-complete under the

notion of parsimonious reduction. Therefore, given that a
parsimonious reduction preserves the existence of an FPRAS,
we obtain the following corollary from Theorem 3.2 and our
characterization of #NFA as COUNT(MEM-NFA):
Corollary 3.3. Every function in SpanL admits an FPRAS.

Although some classes C containing #P-complete func-
tions and for which every f ∈ C admits an FPRAS have been
identified before [32, 10], to the best of our knowledge this
is the first such a class with a simple and robust definition
based on Turing Machines.

3.2 The more restricted class RelationUL
A natural question at this point is whether a simple syn-

tactic restriction on the definition of RelationNL gives rise
to a class of relations with better properties in terms of enu-
meration, counting, and uniform generation. Fortunately,
the answer to this question comes by imposing a natural and
well-studied restriction on Turing Machines, which allows us
to define a class that contains many natural problems. More
precisely, we consider the notion of UL-transducer, where
the letter “U” stands for “unambiguous”. Formally, M is a
UL-transducer if M is an NL-transducer such that for every
input x and y ∈ M(x), there exists exactly one run of M
on input x that halts in an accepting state with y as the
string in the output tape. Notice that this notion of trans-
ducer is based on well-known classes of decision problems
(e.g. UP [34] and UL [31]) adapted to our case, namely,
adapted to problems defined as relations.

Definition 3.4. A relation R is in RelationUL iff there
exists a UL-transducer M such that R(M) = R.

For the class RelationUL, we obtain the following result.

Theorem 3.5. If R ∈ RelationUL, then ENUM(R) can
be solved with constant delay, there exists a polynomial-time
algorithm for COUNT(R), and there exists a polynomial-
time randomized algorithm for GEN(R).

Hence, given a relation R in RelationUL and an input
x, the solutions for x can be enumerated, counted and uni-
formly generated efficiently. Classes of problems definable
by machine models and that can be enumerated with con-
stant delay have been proposed before. In [6], it is shown
that if a problem is definable by a d-DNNF circuit, then the
solutions of an instance can be listed with linear preprocess-
ing and constant delay enumeration. Still, to the best of our
knowledge, this is the first such a class with a simple and
robust definition based on Turing Machines.

4. OTHER APPLICATIONS OF
THE MAIN RESULTS

By using our machinery, we have already proved that
query evaluation in graph databases has good properties in
terms of enumeration, approximate counting, and uniform
generation. In this section, we show further applications of
our main results in information extraction and binary deci-
sion diagrams.

4.1 Information extraction
In [16], the framework of document spanners was proposed

as a formalization of ruled-based information extraction. In
this framework, the main data objects are documents and
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spans. Formally, given a finite alphabet Σ, a document is
a string d = a1 . . . an and a span is a pair s = [i, j⟩ with
1 ≤ i ≤ j ≤ n + 1. A span represents a continuous region of
the document d, whose content is the substring of d from
positions i to j − 1. Given a finite set of variables X, a
mapping µ is a function from X to the spans of d.

Variable set automata (VA) are one of the main formalisms
to specify sets of mappings over a document. Here, we use
the notion of extended VA (eVA) from [17] to state our main
results. We only recall the main definitions, and we refer the
reader to [17, 16] for more intuition and further details. An
eVA is a tuple A = (Q, q0, F, δ) such that Q is a finite set
of states, q0 is the initial state, and F is the final set of
states. Further, δ is the transition relation consisting of let-
ter transitions (q, a, q′), or variable-set transitions (q, S, q′),
where S ⊆ {x⊢,⊣ x ∣ x ∈ X} and S ≠ ∅. The symbols x⊢
and ⊣ x are called markers, and they are used to denote
that variable x is open or close by A, respectively. A run
ρ over a document d = a1⋯an is a sequence of the form:

q0
X1Ð→ p0

a1Ð→ q1
X2Ð→ p1

a2Ð→ . . . anÐ→ qn
Xn+1Ð→ pn where each Xi

is a (possible empty) set of markers, (pi, ai+1, qi+1) ∈ δ, and(qi,Xi+1, pi) ∈ δ whenever Xi+1 ≠ ∅, and qi = pi otherwise
(that is, when Xi+1 = ∅). We say that a run ρ is valid if
for every x ∈ X there exists exactly one pair [i, j⟩ such that
x ⊢∈ Xi and ⊣ x ∈ Xj . A valid run ρ naturally defines a
mapping µρ that maps x to the only span [i, j⟩ such that
x⊢∈ Xi and ⊣x ∈ Xj . We say that ρ is accepting if pn ∈ F .
Finally, the semantics JAK(d) of A over d is defined as the
set of all mappings µρ where ρ is a valid and accepting run
of A over d.

In [19, 30], it was shown that the decision problem re-
lated to query evaluation, namely, given an eVA A and a
document d deciding whether JAK(d) ≠ ∅, is NP-hard. For
this reason, in [17] a subclass of eVA is considered in order
to recover polynomial-time evaluation. An eVA A is called
functional if every accepting run is valid. Intuitively, a func-
tional eVA does not need to check validity of the run given
that it is already known that every run that reaches a fi-
nal state will be valid. For the query evaluation problem of
functional eVA (i.e. to compute JAK(d)), one can naturally
associate the following relation:

EVAL-eVA = {((A, d), µ) ∣ A is a functional eVA,

d is a document, and µ ∈ JAK(d)}
It is not difficult to show that EVAL-eVA ∈ RelationNL.

Hence, by Theorem 3.2 we get the following results.

Corollary 4.1. ENUM(EVAL-eVA) can be enumerated with
polynomial delay, COUNT(EVAL-eVA) admits an FPRAS,
and GEN(EVAL-eVA) admits a PPLVUG.

In [17], it was shown that every functional RGX or func-
tional VA (not necessarily extended) can be converted in
polynomial time into a functional eVA. Therefore, Corol-
lary 4.1 also holds for these more general classes.

Regarding efficient enumeration and exact counting, an
algorithm for constant-delay enumeration was given in [17]
for the class of deterministic functional eVA. Here, we can
extend these results for a more general class, that we called
unambiguous functional eVA. Formally, we say that an eVA
is unambiguous if for every two valid and accepting runs ρ1
and ρ2, it holds that µρ1 ≠ µρ2 . In other words, each out-
put of an unambiguous eVA is witness by exactly one run.
As in the case of EVAL-eVA, we can define the relation

EVAL-UeVA, by restricting the input to unambiguous func-
tional eVA. By using UL-transducers and Theorem 3.5, we
can then extend the results in [17] for the unambiguous case.

Corollary 4.2. ENUM(EVAL-UeVA) can be solved with
constant delay, there exists a polynomial-time algorithm for
COUNT(EVAL-UeVA), and there exists a polynomial-time
randomized algorithm for GEN(EVAL-UeVA).

4.2 Binary decision diagrams
Binary decision diagrams are an abstract representation

of boolean functions which are widely used in computer sci-
ence and have found many applications in areas like formal
verification [13]. A binary decision diagram (BDD) is a di-
rected acyclic graph D = (V,E) where each node v is labeled
with a variable var(v) and has at most two edges going to
children lo(v) and hi(v). Intuitively, lo(v) and hi(v) rep-
resent the next nodes when var(v) takes values 0 and 1,
respectively. D contains only two terminal, or sink nodes,
labeled by 0 or 1, and one initial node called v0. We assume
that every path from v0 to a terminal node does not repeat
variables. Then given an assignment σ from the variables in
D to {0,1}, we have that σ naturally defines a path from v0
to a terminal node 0 or 1. In this way, D defines a boolean
function that gives a value in {0,1} to each assignment σ;
in particular, D(σ) ∈ {0,1} corresponds to the sink node
reached by starting from v0 and following the values in σ.
For Ordered BDDs (OBDDs), we also have a linear order <
over the variables in D such that, for every v1, v2 ∈ V with v2
a child of v1, it holds that var(v1) < var(v2). Note that not
all variables need to appear in a path from the initial node
v0 to a terminal node 0 or 1. Nevertheless, the promise in
an OBDD is that variables will appear following the order <.

An OBDD D defines the set of assignments σ such that
D(σ) = 1. Then D can be considered as a succinct represen-
tation of the set {σ ∣ D(σ) = 1}, and one would like to enu-
merate, count and uniformly generate assignments given D.
This motivates the use of the relation:

EVAL-OBDD = {(D,σ) ∣D(σ) = 1}.
Given (D,σ) in EVAL-OBDD, there is exactly one path in
D that witnesses D(σ) = 1. Therefore, one can easily show
that EVAL-OBDD is in RelationUL.

Corollary 4.3. ENUM(EVAL-OBDD) can be enumerated
with constant delay, there exists a polynomial-time algorithm
for COUNT(EVAL-OBDD), and there exists a polynomial-
time randomized algorithm for GEN(EVAL-OBDD).

The above results are well known. However, they show
how easy and direct is to use UL-transducers to obtain some
of the good algorithmic properties of OBDDs.

Some non-deterministic variants of BDDs have been stud-
ied [7]. In particular, an nOBDD extends an OBDD with
vertices u without variables (i.e. var(u) = �) and without
labels on its children. Thus, an nOBDD is non-deterministic
in the sense that given an assignment σ, there can be sev-
eral paths that bring σ from the initial node v0 to a terminal
node with labeled 0 or 1. Without lost of generality, nOB-
DDs are assumed to be consistent in the sense that, for each
σ, all paths of σ in D can reach 0 or 1, but not both.

As in the case of OBDDs, we can define EVAL-nOBDD
that pairs an nOBDD D with an assignment σ that evaluate
D to 1 (i.e. D(σ) = 1). Contrary to OBDDs, an nOBDD
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looses the single witness property, and now an assignment σ
can have several paths from the initial node to the 1 terminal
node. Thus, it is not clear whether EVAL-nOBDD is in
RelationUL. Still one can easily show that EVAL-nOBDD
is in RelationNL, from which the following results follow.

Corollary 4.4. ENUM(EVAL-nOBDD) can be solved
with polynomial delay, COUNT(EVAL-nOBDD) admits an
FPRAS, and GEN(EVAL-nOBDD) admits a PPLVUG.

It should be noticed that the existence of an FPRAS and
a PPLVUG for EVAL-nOBDD was not known before, and
one can easily show this by using NL-transducers and then
applying Theorem 3.2.

5. CONCLUDING REMARKS
We consider this work as a first step towards the definition

of classes of problems in data management with good prop-
erties in terms of enumeration, counting, and uniform gener-
ation of solutions. Given the relevance of these problems for
query answering, identifying good complexity classes, like
RelationNL and RelationUL, should be the cornerstone
to better understand the complexity of query evaluation.
In this sense, there is plenty of room for extensions and
improvements. In particular, one could be more ambitious
and ask for more conditions to these relations, like having
good properties in terms of ranked enumeration [33] (i.e.
enumeration of the solutions following some specific order)
or random generation with respect to a user-defined distri-
bution. Moreover, we believe that other classes with good
algorithmic properties can be identified, which could serve
to unify enumeration, counting, and uniform generation in
data management.
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Machine learning (ML) is increasingly used to automate decision
making in various domains. In recent years, ML has not only been
applied to tasks that use structured input data, but also, tasks that
operate on data with less strictly defined structure such as speech,
images and videos. Prominent examples are speech recognition for
personal assistants or face recognition for boarding airplanes.
Responsible data management. There exists a variety of chal-
lenges with respect to the fairness, accountability and transparency
of the resulting automating decision-making systems, whose data
specific aspects are addressed by research under the umbrella of
“responsible data management” [2]. A particular challenge in this
area is the explainability of the predictions of an ML model. Com-
mon approaches derive local explanations for a model’s predictions
by perturbing the features of a single example and calculating how
much these perturbations affect the prediction outcome as a mea-
sure of the explanatory power of the perturbed feature [7].
Data management for machine learning. ML poses additional
challenges apart from responsibility. ML models are part of larger
end-to-end ML pipelines, which include the integration, validation,
and cleaning of data, as well as the training, deployment and analy-
sis of models. The definition, maintenance and efficient execution
of such pipelines pose various data management challenges [4, 6, 8].

Unfortunately, it is often very difficult to apply established data
management techniques, such as query optimization or provenance
tracking, as they rely on an abstract algebraic specification of the
computation, which is typically lacking for end-to-endML pipelines.
These pipelines comprise of the previously mentioned heteroge-
neous stages, for which different systems are often “glued” together
in the real world. This results in tedious work, complex environ-
ments, and a loss of potential for optimisation. It is an ongoing
research challenge to find well working abstractions for ML com-
putations that incorporate data and operations from both relational
algebra and linear algebra [5].
Convolutional neural networks. Deep neural networks are the
current state-of-the-art in machine learning, and heavily influence
adjacent domains such as computer vision and natural language
processing. Convolutional neural networks (CNNs), designed to
learn features from image data, started the triumph of deep neural
networks with their outstanding performance in image recognition
tasks [3], and earned their inventor Yann LeCun a Turing award.
Efficient training and inference for deep neural networks is gaining
a lot of attention recently, e.g., in the form of specialized optimizing
compilers [1].
The highlighted paper. The work by Nakandala et al. concen-
trates on the problem of efficiently computing occlusion-based
explanations of the predictions of a CNN. This explanation method
repeatedly occludes small regions of an input image, and measures

the corresponding changes in the predictions. This approach re-
quires a very large number of inference requests to the CNN, and
the paper presents efficient methods to drastically reduce the run-
time of the corresponding computation.

The beauty of this research lies in the fact that it elegantly con-
nects all three previously discussed areas: responsible data manage-
ment (explaining the predictions of an ML model), deep learning
(with its focus on convolutional neural networks) and data man-
agement (query optimisation for ML inference).

The paper is based on the observation that deep neural networks
open up many opportunities for applying established optimisations
from relational query processing, as they also build on a strict
algebraic foundation: their underlying computations are modeled as
directed acyclic graphs of linear algebra operators, which exchange
data in the form of tensors. The authors take established techniques
from the data management space (incremental view maintenance
andmulti-query optimisation), and reinvent them for theML related
context of efficiently executing a large number of related inference
requests. For that, the paper treats inference requests as “queries”,
the CNN as a “query plan” with operators like max-pooling, and
tensors (which represent the input images and operator outputs)
as “relations”.

This work is an important step forward towards bridging the gap
between classical relational data management and modern machine
learning workloads. I hope that we will see generalizations of the
applied techniques for a wide variety of related ML tasks in the
future.
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ABSTRACT
Deep Convolutional Neural Networks (CNNs) now match
human accuracy in many image prediction tasks, resulting
in a growing adoption in e-commerce, radiology, and other
domains. Naturally, “explaining” CNN predictions is a key
concern for many users. Since the internal workings of CNNs
are unintuitive for most users, occlusion-based explanations
(OBE) are popular for understanding which parts of an im-
age matter most for a prediction. One occludes a region of
the image using a patch and moves it around to produce a
heatmap of changes to the prediction probability. This ap-
proach is computationally expensive due to the large num-
ber of re-inference requests produced, which wastes time
and raises resource costs. We tackle this issue by casting
the OBE task as a new instance of the classical incremental
view maintenance problem. We create a novel and compre-
hensive algebraic framework for incremental CNN inference
combining materialized views with multi-query optimization
to reduce computational costs. We then present two novel
approximate inference optimizations that exploit the seman-
tics of CNNs and the OBE task to further reduce runtimes.
We prototype our ideas in a tool we call Krypton. Ex-
periments with real data and CNNs show that Krypton
reduces runtimes by up to 5x (resp. 35x) to produce exact
(resp. high-quality approximate) results without raising re-
source requirements.

1. INTRODUCTION
Deep Convolutional Neural Networks (CNNs) are now the

state-of-the-art machine learning (ML) method for many im-
age prediction tasks [25]. Thus, there is growing adoption of
deep CNNs in many applications across healthcare, domain
sciences, enterprises, and Web companies. Remarkably, even
the US Food and Drug Administration recently approved
the use of deep CNNs to assist radiologists in processing
X-rays and other scans, cross-checking their decisions, and
even mitigating the shortage of radiologists [1].

c©ACM 2019. This is a minor revision of the paper entitled "In-
cremental and Approximate Inference for Faster Occlusion-based Deep
CNN Explanations," published in SIGMOD’19, ISBN 978-1-4503-
5643-5/19/06, June 30-July 5, 2019, Amsterdam, Netherlands. DOI:
https://doi.org/10.1145/3299869.3319874
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.
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Figure 1: (a) Using a CNN to predict diabetic retinopathy in
an OCT image/scan. (b) Occluding a part of the image changes
the prediction probability. (c) By moving the occluding patch, a
sensitivity heatmap can be produced.

Despite their successes, a key criticism of CNNs is that
their internal workings are unintuitive to non-technical
users. Thus, users often seek an “explanation” for why a
CNN predicted a certain label. Explanations can help users
trust CNNs, especially in high stakes applications such as
radiology [10], and are a legal requirement for machine
learning applications in some countries [27]. How to ex-
plain a CNN prediction is still an active research question,
but in the practical literature, an already popular mech-
anism for CNN explanations is a simple procedure called
occlusion-based explanations [29], or OBE for short.

OBE works as follows. Place a small patch (usually gray)
on the image to occlude those pixels. Rerun CNN inference,
illustrated in Figure 1(b), on the occluded image. The prob-
ability of the predicted class will change. Repeat this process
by moving the patch across the image to obtain a sensitivity
heatmap of probability changes, as Figure 1(c) shows. This
heatmap highlights regions of the image that were highly
“responsible” for the prediction (red/orange color regions).
Such localization of the regions of interest allows users to
gain intuition on what “mattered” for the prediction. For
instance, the heatmap can highlight the diseased areas of a
tissue image, which a radiologist can then inspect more for
further tests. Overall, OBE is popular because it is easy for
non-technical users to understand.

However, OBE is highly computationally expensive. Deep
CNN inference is already expensive; OBE just amplifies it by
issuing a large number of CNN re-inference requests (even
thousands). For example, [31] reports 500,000 re-inference
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requests for 1 image, taking 1 hour even on a GPU! Such
long wait times can hinder users’ ability to consume expla-
nations and reduce their productivity. One could use more
compute hardware, if available, since OBE is embarrassingly
parallel across re-inference requests. However, this may not
always be affordable, especially for domain scientists, or fea-
sible in all settings, e.g., in mobile clinical diagnosis. Extra
hardware can also raise monetary costs, especially in the
cloud.

To mitigate the above issue, we use a database-inspired
lens to formalize and accelerate OBE. We start with a sim-
ple but crucial observation: occluded images are not disjoint
but share most of their pixels; so, most of the re-inference
computations are redundant. This observation leads us to
connect OBE with two classical data management concerns:
incremental view maintenance (IVM) and multi-query op-
timization (MQO). Instead of treating a CNN as a “black-
box,” we open it up and formalize CNN layers as “queries.”
Just like how a relational query converts relations to other
relations, a CNN layer converts tensors (multidimensional
arrays) to other tensors. A deep CNN stacks many types of
such layers to convert the input (represented as a tensor) to
the prediction output, as Figure 1(a) illustrates. So, we re-
imagine OBE as a set of tensor transformation queries with
incrementally updated inputs. With this fresh database-
inspired view, we devise several novel CNN-specific query
optimization techniques to accelerate OBE.

Our first optimization is incremental inference. We first
materialize all tensors produced by the CNN. For every
re-inference request, instead of rerunning inference from
scratch, we treat it as an IVM query, with the “views” being
the tensors. We rewrite such queries to reuse the materi-
alized views as much as possible and recompute only what
is needed, thus avoiding computational redundancy. Such
rewrites are non-trivial because they are tied to the com-
plex geometric dataflows of CNN layers. We formalize such
dataflows to create a novel algebraic rewrite framework. We
also create a “static analysis” routine to tell up front how
much computations can be saved. Going further, we batch
all re-inference requests to reuse the same materialized
views. This is a form of MQO we call batched incremental
inference. We create a GPU-optimized kernel for such exe-
cution. To the best of our knowledge, this is the first time
IVM is combined with MQO in query optimization, at least
in machine learning (ML) systems.

We then introduce two novel approximate inference opti-
mizations that allow users to tolerate some degradation in
visual quality of the heatmaps produced to reduce runtimes
further. These optimizations build upon our incremental
inference optimization and use our IVM framework. Our
first approximate optimization, projective field thresholding,
draws upon an idea from neuroscience and exploits the in-
ternal semantics of how CNNs work. Our second, adaptive
drill-down, exploits the semantics of the OBE task and the
way users typically consume the heatmaps produced. We
also present intuitive automated parameter tuning methods
to help users adopt these optimizations. Our optimizations
operate largely at the logical level and are complementary
to more physical-level optimizations such as low-precision
computation and model pruning.

We prototype our ideas in the popular deep learning
framework PyTorch to create a tool we call Krypton. It
works on both CPU and GPU. We perform an empirical

evaluation of Krypton with multiple CNNs and real-world
image datasets from recent radiology and ML papers. Kryp-
ton yields up to 35x speedups over the current dominant
practice of running re-inference with just batching for pro-
ducing high-quality approximate heatmaps, and up to 5x
speedups for producing exact heatmaps.

This paper is a shortened version of our paper titled “In-
cremental and Approximate Inference for Faster Occlusion-
based Deep CNN Explanations”that appeared in ACM SIG-
MOD 2019 [20]. More details about the techniques discussed
in this paper and more experimental results can be found in
that SIGMOD paper, as well as in the associated extended
version published in ACM TODS [21].

2. SETUP AND PRELIMINARIES
We now state our problem formally and explain our as-

sumptions. We then formalize the dataflow of the layers
of a CNN, since these are required for understanding our
techniques in Sections 3 and 4. Table 1 lists our notation.

2.1 Problem Statement and Assumptions
We are given a CNN f that has a sequence (or DAG) of

layers l, each of which has a tensor transformation func-
tion T:l. We are also given the image I:img for which the
occlusion-based explanation (OBE) is desired, the class la-
bel L predicted by f on I:img, an occlusion patch P in RGB
format, and occlusion patch stride SP . We are also given
a set of patch positions G constructed either automatically
or manually with a visual interface interactively. The OBE
workload is as follows: produce a 2-D heatmap M , wherein
each value corresponds to a position in G and has the pre-

diction probability of L by f on the occluded image I′
x,y:img

(i.e., superimpose occlusion patch on image) or zero other-
wise. More precisely, we can describe the OBE workload
with the following logical statements:

WM = b(width(I:img)− width(P) + 1)/SPc (1)

HM = b(height(I:img)− height(P) + 1)/SPc (2)

M ∈ IRHM×WM (3)

∀ (x, y) ∈ G : (4)

I′
x,y:img ← I:img ◦(x,y) P (5)

M [x, y]← f(I′
x,y:img)[L] (6)

Steps (1) and (2) calculate the dimensions of the heatmap
M . Step (5) superimposes P on I:img with its top left cor-
ner placed on the (x, y) location of I:img. Step (6) calculates
the output value at the (x, y) location by performing CNN

inference for I′
x,y:img using f and picks the prediction prob-

ability of L. Steps (5) and (6) are performed independently
for every position in G. In the non-interactive mode, G is
initialized to G = [0, HM ) × [0,WM ). Intuitively, this rep-
resents the set of all possible occlusion patch positions on
I:img, which yields a full heatmap. In the interactive mode,
the user manually places the occlusion patch only at a few
locations at a time, yielding partial heatmaps.

2.2 Dataflow of CNN Layers
CNNs are organized as layers of various types, each of

which transforms a tensor (multidimensional array, typ-
ically 3-D) into another tensor: Convolution uses image
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Figure 2: Simplified illustration of the key layers of a typical CNN. The highlighted cells (dark/red background) show how a small local
spatial context in the first input propagates through subsequent layers. (a) Convolution layer (for simplicity sake, bias addition is not
shown). (b) ReLU Non-linearity layer. (c) Pooling layer (max pooling). Notation is explained in Table 1.

Symbol Meaning

f Given deep CNN; input is an image tensor; output is
a probability distribution over class labels

L Class label predicted by f for the original image I:img

T:l Tensor transformation function of layer l of the given
CNN f

P Occlusion patch in RGB format

SP Occlusion patch striding amount

G Set of occlusion patch superimposition positions on
I:img in (x,y) format

M Heatmap produced by the OBE workload

HM ,WM Height and width of M

◦(x,y) Superimposition operator. A ◦(x,y) B, superimposes
B on top of A starting at (x, y) position

I:l (I:img) Input tensor of layer l (Input Image)

O:l Output tensor of layer l

CI:l, HI:l,WI:l Depth, height, and width of input of layer l

CO:l, HO:l,WO:l Depth, height, and width of output of layer l

Kconv:l Convolution filter kernels of layer l

Bconv:l Convolution bias value vector of layer l

Kpool:l Pooling filter kernel of layer l

HK:l,WK:l Height and width of filter kernel of layer l

S:l;Sx:l;Sy:l Filter kernel striding amounts of layer l; S:l ≡
(Sx:l, Sy:l), strides along width and height dimensions

P:l;Px:l;Py:l Padding amounts of layer l; P:l ≡ (Px:l, Py:l), padding
along width and height dimensions

Table 1: Notation used in this paper.

filters from graphics to extract features, but with para-
metric filter weights (learned during training); Pooling
subsamples features in a spatial-aware manner; Batch-
Normalization normalizes the output tensor; Non-Linearity
applies an element-wise non-linear function (e.g., ReLU);
Fully-Connected is an ordered collection of perceptrons [9].
The output tensor of a layer can have a different width,
height, and/or depth than the input. An image can be
viewed as a tensor, e.g., a 224×224 RGB image is a 3-D
tensor with width and height 224 and depth 3. A Fully-
Connected layer converts a 1-D tensor (or a “flattened” 3-D
tensor) to another 1-D tensor. For simplicity of exposition,
we group CNN layers into 3 main categories based on the
spatial locality of how they transform a tensor: (1) Trans-
formations with a global context ; (2) Transformations at the
granularity of individual elements; and (3) Transformations
at the granularity of a local spatial context.

Global context granularity. Such layers convert the in-
put tensor into an output tensor using one global transfor-
mation. Since, every element of the output will likely be af-
fected by a point change in the input, such layers do not offer
a major opportunity for incremental computations. Fully-
Connected is the only layer of this type. They typically arise
only as the last layer(s) in deep CNNs (and never in some
recent deep CNNs), and typically account for a negligible
fraction of the total computational cost.

Individual element granularity. Such layers apply a
“map()” function on the elements of the input tensor, as Fig-
ure 2 (b) illustrates. Non-Linearity (e.g., ReLU) falls under
this category. If the input is incrementally updated, only the
corresponding region of the output will be affected. Thus,
incremental inference for such layers is straightforward.

Local spatial context granularity. Such layers perform
weighted aggregations of slices of the input tensor, called lo-
cal spatial contexts, by multiplying them with a filter kernel
(a tensor of weights). If the input is incrementally updated,
the region of the output that will be affected is not straight-
forward to ascertain–this requires non-trivial and careful cal-
culations due to the overlapping nature of how filters get ap-
plied to local spatial contexts. Both Convolution and Pool-
ing fall under this category. Since such layers typically ac-
count for the bulk of the computational cost of deep CNN
inference, enabling incremental inference for such layers in
the OBE context is a key focus of this paper (Section 3). The
rest of this section explains the machinery of the dataflow
in such layers using our notation.

Dataflow of Convolution Layers. A layer l has CO:l 3-
D filter kernels arranged as a 4-D array Kconv:l, with each
having a smaller spatial width WK:l and height HK:l than
the width WI:l and height HI:l of the input tensor I:l but
the same depth CI:l. During inference, cth filter kernel is
“strided” along the width and height dimensions of the in-
put to produce a 2-D “activation map” A:c = (ay,x:c) ∈
IRHO:l× WO:l by computing element-wise products between
the kernel and the local spatial context and adding a bias
value. The computational cost of each of these small ma-
trix products is proportional to the volume of the filter ker-
nel. All the 2-D activation maps are then stacked along
the depth dimension to produce the output tensor O:l ∈
IRCO:l×HO:l×WO:l . Figure 2 (a) presents a simplified illus-
tration of this layer.

Dataflow of Pooling Layers. Such layers behave essen-
tially like Convolution layers with a fixed (not learned) 2-D
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filter kernel Kpool:l. These kernels aggregate a local spa-
tial context to compute its maximum or average element.
However, unlike Convolution, Pooling operates on the depth
slices of the input tensor independently. Figure 2(c) presents
a simplified illustration of this layer. Since OBE only con-
cerns the width and height dimensions of the image and
subsequent tensors, we treat both these types of layers in a
unified manner for our optimizations.

Relationship between Input and Output Dimen-
sions. For Convolution and Pooling layers, WO:l and HO:l

are determined by WI:l and HI:l, WK:l and HK:l, and two
other parameters that are specific to that layer: stride S:l

and padding P:l. Stride is the number of pixels by which
the filter kernel is moved at a time. For some layers, to
help control the dimensions of the output to be the same
as the input, one “pads” the input with zeros. Padding
P:l captures how much such padding extends these dimen-
sions. Both stride and padding values can differ along the
width and height dimensions; Sx:l and Sy:l and Px:l and
Py:l, respectively. In Figure 2, the Convolution layer has
Sx:l = Sy:l = 1, while the Pooling layer has Sx:l = Sy:l = 2.
Convolution layer also has Px:l = Py:l = 1. Given these
parameters, width (similarly height) of the output tensor is
given by the following formula:

WO:l = (WI:l −WK:l + 1 + 2× Px:l)/Sx:l (7)

Computational Cost of Inference. Convolution layers
typically account for a bulk of the cost (90% or more). Thus,
we can roughly estimate the computational cost of inference
by counting the number of fused multiply-add (FMA) float-
ing point operations (FLOPs) needed for the Convolution
layers. The amount of computations performed by a single
application of a Convolution filter kernel K:l is equal to the
volume of the filter in FLOPs, with each FLOP correspond-
ing to one FMA. Thus, the total computational cost Q:l of a
layer that produces output O:l and the total computational
cost Q of the entire set of Convolution layers of a given CNN
f can be calculated as per Equations (8) and (9).

Q:l = (CI:l ·HK:l ·WK:l)(CO:l ·HO:l ·WO:l) (8)

Q =
∑

l in f

Q:l (9)

3. INCREMENTAL CNN INFERENCE
In relational IVM, when a part of the input relation is

updated, we recompute only the part of the output that
changes. We bring this notion to CNNs; a CNN layer is
our “query” and a materialized feature tensor is our “rela-
tion.” OBE updates only a part of the image. So, only some
parts of the tensors need to be recomputed. We call this
incremental inference. We create an algebraic framework
to determine which parts of a CNN layer must be updated
and how to propagate updates across layers. We then com-
bine our incremental inference framework with an MQO-
style technique and characterize theoretical upper bounds
on the speedups possible with these ideas.

3.1 Single Layer Incremental Inference
As per the discussion in Section 2.2, we focus only on

the non-trivial layers that operate at the granularity of a

Symbol Meaning

xIP:l, y
I
P:l Start coordinates of input update patch for layer l

xRP:l, y
R
P:l Start coordinates of read-in context for layer l

xOP:l, y
O
P:l Start coordinates of output update patch for layer l

HIP:l,W
I
P:l Height and width of input update patch for layer l

HRP:l,W
R
P:l Height and width of read-in context for layer l

HOP:l,W
O
P:l Height and width of output update patch for layer l

τ Projective field threshold

rdrill−down Drill-down fraction for adaptive drill-down

Table 2: Additional notation for Sections 3 and 4.

0

0

Input Output

Updated patch in 
the output

Updated patch in the input

Input patch that needs to be read in 
to the transformation operator

0

0

Padding

Filter kernel

Figure 3: Simplified illustration of input and output update
patches for Convolution/Pooling layers.

local spatial context (Convolution and Pooling). Table 2
lists some extra notation for this section.

Determining Patch Update Locations. We first explain
how to calculate the coordinates and dimensions of the out-
put update patch of layer l given the input update patch and
layer-specific parameters. Figure 3 illustrates these calcu-
lations. Our coordinate system’s origin is at the top left
corner. The input update patch is shown in red/dark color
and starts at (xIP:l, y

I
P:l), with height HIP:l and width W IP:l.

The output update patch starts at (xOP:l, y
O
P:l) and has a

height HOP:l and width WOP:l. Due to overlaps among fil-
ter kernel positions during inference, computing the output
update patch requires reading a slightly larger spatial con-
text than the input update patch–we call this the “read-in
context,” and it is illustrated by the blue/shaded region in
Figure 3. The read-in context starts at (xRP:l, y

R
P:l), with

its dimensions denoted by WRP:l and HRP:l. The relationship
between these quantities along the width dimension can be
expressed as follows (likewise for the height dimension):

xOP:l = max
(
d(Px:l + xIP:l −WK:l + 1)/Sx:le, 0

)
(10)

WOP:l = min
(
d(W IP:l +WK:l − 1)/Sx:le,WO:l

)
(11)

xRP:l = xOP:l × Sx:l − Px:l (12)

WRP:l = WK:l + (WOP:l − 1)× Sx:l (13)
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Equation (10) calculates the coordinates of the output up-
date patch. As shown in Figure 3, padding effectively shifts
the coordinate system and thus, Px:l is added to correct it.
Due to overlaps among the filter kernels, the affected region
of the input update patch (blue/shaded region in Figure 3)
will be increased by WK:l − 1, which needs to be subtracted
from the input coordinate xIP:l. A filter of size WK:l that is
placed starting at xIP:l−WK:l +1 will see an update starting
from xIP:l. Equation (11) calculates the width of the output
update patch, which is essentially the number of filter kernel
stride positions on the read-in input context. However, this
value cannot be larger than the output size. Given these, a
start coordinate and width of the read-in context are given
by Equations (12) and (13); similar equations hold for the
height dimension (skipped for brevity).

Incremental Inference Operation. For layer l, given
the transformation function T:l, the pre-materialized input
tensor I:l, input update patch PO:l , and the above calculated
coordinates and dimensions of the input, output, and read-in
context, the output update patch PO:l is computed as follows:

U = I:l[:, xRP:l : xRP:l +WRP:l, y
R
P:l : yRP:l +HRP:l] (14)

U = U ◦(xI
P:l
−xR

P:l
),(yI

P:l
−yR

P:l
) PI:l (15)

PO:l = T:l(U) (16)

Equation (14) slices the read-in context U from the pre-
materialized input tensor I:l. Equation (15) superimposes
the input update patch PI:l on it. This is an in-place update
of the array holding the read-in context. Finally, Equa-
tion (16) computes the output update patch PO:l by invoking
T:l on U . Thus, we avoid performing inference on all of I:l,
thus achieving incremental inference and reducing FLOPs.

3.2 Propagating Updates across Layers
Unlike relational IVM, CNNs have many layers, often in

a sequence. This is analogous to a sequence of queries, each
requiring IVM on its predecessor’s output. This leads to
a new issue: correctly and automatically configuring the
update patches across layers of a CNN. While this seems
simple, it requires care at the boundary of a local context
transformation and a global context transformation. In par-
ticular, we need to materialize the full updated output, not
just the output update patches, since global context trans-
formations lose spatial locality for subsequent layers. Some
recent deep CNNs have a more general directed acyclic graph
(DAG) structure for layers. They have two new kinds of lay-
ers that “merge” two branches in the DAG: element-wise ad-
dition and depth-wise concatenation. To address such cases,
we propose a simple unified solution: compute the bounding
box of the input update patches. While this will potentially
recompute parts of the output that do not get modified, we
think this trade-off is acceptable because the gains are likely
to be marginal for the additional complexity introduced.

3.3 Multi-Query Incremental Inference
OBE issues |G| re-inference requests in one go. View-

ing each request as a “query” makes the connection with
MQO [26] clear. The |G| queries are also not disjoint, as
the occlusion patch is small, which means most pixels are
the same. We now briefly explain how we extend our IVM
framework with an MQO-style optimization fusing multiple

re-inference requests. An analogy with relational queries is
many concurrent incremental updates on the same relation.

Batched Incremental Inference. Our optimization
works as follows: materialize all CNN tensors once and
reuse them for incremental inference across all |G| queries.
Since the occluded images share most of their pixels, parts of
the tensors will likely be identical too. Thus, we can amor-
tize the materialization cost. Batched execution is standard
practice on high-throughput compute hardware like GPUs,
since it amortizes CNN set up costs, data movement costs,
etc. Batch sizes are tuned to optimize hardware utilization.
Thus, we combine both these ideas to execute incremen-
tal inference in a batched manner. We call this approach
“batched incremental inference.” Empirically, we found that
batching alone yields limited speedups (under 2X), but
batched incremental inference amplifies the speedups.

GPU Optimized Implementation. Empirically, we
found a dichotomy between CPUs and GPUs: batched in-
cremental inference yielded expected speedups on CPUs,
but it performed dramatically poorly on GPUs. In fact,
a naive implementation on GPUs was slower than full re-
inference! The reason for this was the overheads incurred
during read-in context preparation step, which throttles the
GPU throughput. To overcome this issue, we created a cus-
tom CUDA kernel to perform read-in context preparation
more efficiently by copying memory regions in parallel for
all items in the batched inference request.

3.4 Expected Speedups
We extend our framework to perform “static analysis” on

a given CNN f to find how much FLOPs can be saved us-
ing incremental inference, yielding us an upper bound on
speedups. The computational cost of incremental inference
for a layer is proportional to the volume of the individual
filter kernel times the total volume of the updated output.
The total computational cost for incremental inference, de-
noted Qinc , is the sum of incremental inference cost across
all layers. Qinc can be much smaller than Q in Equation (9).
We define the theoretical speedup as the ratio Q

Qinc
. This tells

us how beneficial incremental inference can be in the best
case without running the actual inference itself.

We calculated the theoretical speedups for many popu-
lar CNNs for occlusion patches with varying sizes placed
at the center of the image. For an occlusion patch of size
16 × 16, VGG-16 sees the highest theoretical speedups of
6x; DenseNet-121 sees a speedup of 2x, the lowest. Most
CNNs fall in the 2x–3x range. The differences arise due to
the specifics of the CNNs’ architectures: VGG-16 has small
Convolution filter kernels and strides, which means full re-
inference is costlier. While speedups of 2x–3x may sound
“not that significant” in practice, we find they are indeed
significant for two reasons. First, users often wait in the
loop for OBE when performing interactive diagnoses. Thus,
even such speedups can improve their productivity. Second,
our IVM is the foundation for our approximate inference
optimizations (Section 4), which amplify the speedups.

4. APPROXIMATE CNN INFERENCE
Since incremental inference is exact, i.e., it yields the same

heatmap as full inference, it does not exploit a capability of
human perception: tolerance of some degradation in visual
quality. We now briefly explain how we build upon our IVM
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framework to create two novel heuristic approximate infer-
ence optimizations that trade off the heatmap’s quality in a
user-tunable manner to accelerate OBE further.

4.1 Projective Field Thresholding
The projective field of a CNN neuron is the slice of the

output tensor that is connected to it. It is a term from neu-
roscience to describe the effects of a retinal cell on the output
of the eye’s neuronal circuitry [7]. This notion sheds light
on the growth of the size of the update patches through the
layers of a CNN. The 3 kinds of layers (Section 2.2) affect
the projective field size growth differently. Individual ele-
ment transformations do not alter the projective field size.
Global context transformations increase it to the whole out-
put. However, local spatial context transformations, which
are the most crucial, increase it gradually at a rate deter-
mined by the filter kernel’s size and stride: additively in
the size and multiplicatively in the stride. The growth of
the projective field size implies the amount of FLOPs saved
by IVM decreases as we go to the higher layers of a CNN.
Eventually, the output update patch becomes as large as the
output tensor. This growth is illustrated by Figure 4(a).

(a) Projective Field (b) Projective field thresholding

1

3

6

7

6

3

1

3

6

7

6

3

Figure 4: (a) Projective field growth for 1-D Convolution (filter
size 2, stride 1). (b) Projective field thresholding; τ = 5/7.

Our above observation motivates the main idea of this op-
timization, which we call projective field thresholding: trun-
cate the projective field from growing beyond a given thresh-
old fraction τ (0 < τ ≤ 1) of the output size. This means
inference in subsequent layers is approximate. Figure 4(b)
illustrates the idea for a filter size 3 and stride 1. This ap-
proximation can alter the accuracy of the output values and
the heatmap’s visual quality. Empirically, we find that mod-
est truncation is tolerable and does not affect the heatmap’s
visual quality too significantly.

To provide intuition on why the above happens, consider
histograms shown in Figures 4(a,b) that list the number of
unique “paths” from the updated element to each output el-
ement. It resembles a Gaussian distribution. Thus, for most
of the output patch updates, truncation will only discard a
few values at the “fringes” that contribute to an output ele-
ment. This optimization is only feasible in conjunction with
our incremental inference framework (Section 3) to reuse the
remaining parts of the tensors and save FLOPs.

4.2 Adaptive Drill-Down
This heuristic optimization is based on our observation

about a peculiar semantics of OBE that lets us modify how
G (the set of occlusion patch locations) is specified and han-
dled, especially in the non-interactive specification mode.
We explain our intuition with an example. Consider a radi-
ologist explaining a CNN prediction for diabetic retinopathy
on a tissue image. The region of interest typically occupies

only a tiny fraction of the image. Thus, it is not neces-
sary to perform regular OBE for every patch location: most
of the (incremental) inference computations are effectively
“wasted” on uninteresting regions. In such cases, we mod-
ify the OBE workflow to produce an approximate heatmap
using a two-stage process, illustrated by Figure 5.

Stage 1 Stage 2 Final Output
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Figure 5: Schematic representation of adaptive drill-down.

In stage one, we produce a lower resolution heatmap by
using a larger stride–we call it stage one stride S1. Us-
ing this heatmap, we identify the regions of the input that
see the largest drops in predicted probability for label L.
Given a predefined parameter drill-down fraction, denoted
rdrill−down , we select a proportional number of regions based
on the probability drops. In stage two, we perform OBE
only for these regions with original stride value (we call this
stage two stride, S2) to yield a portion of the heatmap at
the original higher resolution. This optimization also builds
upon our incremental inference optimizations, but it is or-
thogonal to projective field thresholding.

4.3 Automated Parameter Tuning
We also devise automated parameter tuning methods for

easily configuring the approximate inference optimizations.
For projective field thresholding, mapping a threshold value
(τ) to visual quality directly is likely to be unintuitive for
users. Thus, to measure visual quality more intuitively,
we adopt a cognitive science-inspired metric called Struc-
tural Similarity (SSIM) Index, which is widely used to quan-
tify human-perceptible differences between two images [28].
During an offline phase, we learn a function that maps the
heatmap visual quality to a τ value using a sample of work-
load images. During the online phase, we use the learned
function to map the user given SSIM value to a target τ
value. For adaptive drill-down, we expect the user to provide
the drill-down ratio (rdrill−down) based on her understand-
ing of the size of the region of interest in the OBE heatmap
and on how much speedup she wants to achieve. We set the
stage one stride (S1) using these two user-given settings.

5. EXPERIMENTAL EVALUATION
We integrated our techniques with the popular deep learn-

ing tool PyTorch to create a system we call Krypton. We
now present a snapshot of our key empirical results with
Krypton on different CNNs and datasets.

Datasets. We use 2 real-world image datasets: OCT and
Chest X-Ray. OCT has about 84,000 optical coherence to-
mography retinal images with 4 classes. Chest X-Ray has
about 6,000 X-ray images with 3 classes. Both OCT and
Chest X-Ray are from a recent radiology study that applied
deep CNNs to detect the respective diseases [11].

Workloads. We use 3 diverse ImageNet-trained [25] deep
CNNs: VGG16, ResNet18 and Inception3. They comple-
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Figure 6: End-to-end runtimes of Krypton and the baseline on 2 datasets and 3 CNNs on GPU and CPU.

ment each other in terms of model size, architectural com-
plexity, computational cost, and our predicted theoretical
speedups. CNNs were fine-tuned by retraining their final
Fully-Connected layers using the OCT and Chest X-Ray
datasets, as per standard practice. The GPU-based exper-
iments used a batch size of 128; for CPUs, the batch size
was 16. All CPU-based experiments were executed with a
thread parallelism of 8.

Experimental Setup. We use a machine with 32 GB
RAM, Intel i7 3.4GHz CPU, and NVIDIA Titan X (Pas-
cal) GPU with 12 GB memory. The machine runs Ubuntu
16.04 with PyTorch version 0.4.0, CUDA version 9.0, and
cuDNN version 7.1.2. All reported runtimes are the average
of 3 runs, with 95% confidence intervals shown.

5.1 End-to- End Runtimes
We focus on perhaps the most common scenario for OBE:

produce the whole heatmap for automatically created G
(“non-interactive” mode). The occlusion patch size is set to
16; stride, 4. We compare two variants of Krypton: Kryp-
ton-Exact uses only incremental inference, while Krypton-
Approximate uses our approximate inference optimizations
too. The baseline is Naive, which runs full re-inference with
only batching to improve hardware utilization. We set the
approximate inference parameters based on the semantics of
each dataset’s prediction task. Figure 6 presents the results.
More details about the parameters and visual examples of
the heatmaps are available in the longer version of this pa-
per [20].

Overall, we see that Krypton offers significant speedups
across the board on both GPU and CPU, with the highest
speedups seen by Krypton-Approximate on OCT with
VGG16: 16x on GPU and 34.5x on CPU. The highest
speedups of Krypton-Exact are also on VGG16: 3.9x
on GPU and 5.4x on CPU. The speedups of Krypton-
Exact are identical across datasets for a given CNN, since it
does not depend on the image semantics, unlike Krypton-
Approximate due to its parameters. Krypton-Approximate
sees the highest speedups on OCT.

The speedups are lower with ResNet18 and Inception3
than VGG16 due to their architectural properties (kernel
filter dimensions, stride, etc.) that make the projective field
grow faster. Moreover, Inception3 has a complex DAG archi-
tecture with more branches and depth-wise concatenation,
which limits GPU throughput for incremental inference. In
fact, Krypton-Exact on GPU shows a minor slow-down
(0.7x) with Inception3. However, Krypton-Approximate
still offers speedups on GPU with Inception3 (up to 4.5x).

We also found that ResNet18 and VGG16 see speedups al-
most near their theoretical speedups, but Inception3 does
not. Note that our theoretical speedup definition only counts
FLOPs and does not account for memory stall overheads.

Finally, the speedups are higher on CPU than GPU; this
is because CPU suffers less from memory stalls during in-
cremental inferences. However, the absolute runtimes are
much lower on GPU, as expected. Overall, Krypton re-
duces OBE runtimes substantially for multiple datasets and
deep CNNs.

5.2 Other Experimental Results
We also perform ablation studies to evaluate the impact

of each of our optimization techniques for varying configu-
ration parameters for OBE. The patch size and stride have
an inverse effect on speedups because they reduce the sheer
amount of FLOPs in the re-inference requests. The param-
eters of the approximate optimizations also affect speedups
significantly, and our automated tuning methods help opti-
mize the accuracy-runtime tradeoffs effectively. The mem-
ory overhead of our batched incremental inference approach
is also significantly lower (about 2x) compared to full re-
inference.

5.3 Demonstration and Extensions
In follow-on work, we extended Krypton and demon-

strated support for human-in-the-loop OBE [19, 24]. The
user can interactively select a sub-region of the image (to
specify G) and iteratively refine it. We also showed that
Krypton can help accelerate OBE on time-series data out
of the box and can also help accelerate object recognition in
fixed-angle camera videos when combined with new approx-
imate inference techniques [21].

6. OTHER RELATED WORK
Explaining CNN Predictions. Perturbation-based and
gradient-based are the two main kinds of methods for ex-
plaining CNN predictions. Perturbation-based methods ob-
serve the output of the CNN by modifying regions of the
input image. OBE belongs to this category. In practice,
however, OBE is usually more popular among domain sci-
entific users, especially in radiology [10], since it is easy to
understand for non-technical users and typically produces
high-quality heatmaps.

Faster CNN Inference. EVA2 [3] and CBInfer [4] use
approximate change detection for faster CNN inference over
video data. While one can map OBE to a “video,” our IVM
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and MQO techniques are complementary to such systems,
while our approximate inference optimizations are also novel
and exploit specific properties of CNNs and OBE.

Query Optimization. Our work is inspired by the long
line of work on relational IVM [6, 16], but ours is the first
to use the IVM lens for OBE with CNNs. Our algebraic
IVM framework is closely tied to the dataflow of CNN lay-
ers, which transform tensors in non-trivial ways. Our work
is related to the IVM framework for linear algebra in [23].
They focus on bulk matrix operators and incremental addi-
tion of rows. The focus of our work is on more fine-grained
CNN inference computations. Our work is also inspired by
relational MQO [26], but our focus is CNN inference, not re-
lational queries. MQO for ML systems is a growing area of
research [2, 14, 15], both for classical statistical ML (e.g., [5,
12, 13, 17, 30]) and deep learning (e.g., [18, 22]). Our work
adds to this direction, but ours is the first work to combine
MQO with IVM for ML systems. Our approximate inference
optimizations are inspired by AQP [8], but unlike statisti-
cal approximations of SQL aggregates, our techniques are
novel CNN-specific and human perception-aware heuristics
tailored to OBE.

7. CONCLUSIONS AND FUTURE WORK
Deep CNNs are popular for image prediction tasks, but

their internal workings are unintuitive for most users.
Occlusion-based explanation (OBE) is a popular mecha-
nism to explain CNN predictions, but it is highly compute-
intensive. We formalize OBE from a data management
standpoint and present several novel database-inspired op-
timizations to speed up OBE. Our techniques span incre-
mental inference and multi-query optimization for CNNs
to human perception-aware approximate inference. Over-
all, our ideas yield over an order of magnitude speedups for
OBE on both GPU and CPU. As for future work, we plan to
extend our ideas to other deep learning workloads and data
types. More broadly, we believe database-inspired query
optimization techniques can help reduce resource costs of
deep learning systems significantly, thus enabling a wider
base of application users to benefit from modern ML.
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For many applications, data are worthy only if they are
trustworthy. The concept of trust is sometimes elusive, and
yet it is fundamental in data management. Even when not
expressed explicitly, the correctness of computations and re-
liability of applications depend on trustworthy management
of the data. These notions received new attention with the
advent of blockchain and distributed ledger technology.

Blockchain was originally introduced as a decentralized
ledger of cryptocurrency transactions, in order to solve the
“double-spending” problem [2]. Cryptocurrency coins that
are given to a user should not be spent more than once.
This is crucial for establishing trust in the currency and
guaranteeing that the total number of coins will be lim-
ited. To prevent double spending, blockchain is tamper-
proof and transparent—it is very hard computationally to
change stored transactions (practically impossible).

The ability to create a trusted ledger in a decentralized
environment, by consensus, attracted the attention of prac-
titioners, theoreticians, organizations and application de-
velopers. A large variety of blockchain technologies and
blockchain-based applications were developed [3]. But while
blockchain technologies have many advantages, they still
lack many capabilities that exist in database management
systems, e.g., query language, views, data provenance, etc.

The database community has extensively studied data
provenance (also known as data lineage) as a concept and
a set of tools that are aimed to make data history more
transparent [1]. Being able to examine the “story” of a data
instance, starting with the data sources and through the op-
erations that were applied to the data, has been promoted
as a way to increase credibility and the user’s understanding
of the data in complex databases.

The paper of Ruan et al. presents a powerful combina-
tion of blockchain and provenance. It lays foundations for
building a bridge between database systems and blockchains
by showing that the marriage of blockchain technologies and
database concepts like provenance can yield a better solution
for transparent data management, while tracing historical
changes in the data.

Originally, blockchains were not designed for tracking his-
torical data. Once an amount of cryptocoins has been spent,
it can no longer be a part of a valid payment, so its does not
need to be accessed. Furthermore, dependencies between
operations are not recorded, e.g., when a value is read from
the blockchain, modified and written back to the blockchain,
the dependency between the stored values is not recorded.
The challenge the authors had to solve was how to provide
provenance information in a way that is both trustworthy

and efficient. This is not an easy task given that blockchain
systems often sacrifice efficiency for reliability and security.

To track provenance data, the authors present novel data
structures—a novel index based on skip lists and Merkle
DAG which is an adaptation of Merkle tree—and their in-
tegration to implement efficient and reliable storage and re-
trieval of provenance data. To suit the blockchain environ-
ment, these index structures are required to satisfy the fol-
lowing three properties. (1) The index should provide a ver-
ifiable digest of tracked states, without the need to read the
entire transaction history. (2) Updates should be incremen-
tal and succinct, because the storage and the management of
provenance data must be efficient. (3) The index should be
tamper-proof, similar to the transaction and state informa-
tion for which it was built. The paper shows how to achieve
these requirements using the proposed index structures.

The paper demonstrates a clever use of smart contracts
to achieve the desired goals. A smart contract is essentially
code that is triggered when particular events occur, and ex-
ecuted by the peers that manage the blockchain, in a decen-
tralized fashion. Smart contracts are somewhat similar to a
combination of triggers and stored procedures in database
management systems, but there are also differences between
these mechanisms. Papers like this work of Ruan et al. shed
light on some of the differences and similarities between trig-
gers and smart contracts, but more papers like this work are
needed to further investigate the limits of smart contracts
in data management applications.

This paper is of high significance because it presents a
new way to examine how historical data on a blockchain
can be retrieved and used—rather than just looking at the
latest state, the entire history that led to the state can be
examined and used. It paves the way for systems that would
manage tamper-proof records of data transformations in a
decentralized fashion. This work is also important because
it gives us a glimpse into how advanced decentralized data
management should look like and how we could increase
transparency and trustworthiness in data management.
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ABSTRACT
The success of Bitcoin and other cryptocurrencies bring
enormous interest to blockchains. A blockchain system im-
plements a tamper-evident ledger for recording transactions
that modify some global states. The system captures the en-
tire evolution history of the states. The management of that
history, also known as data provenance or lineage, has been
studied extensively in database systems. However, query-
ing data history in existing blockchains can only be done
by replaying all transactions. This approach is feasible for
large-scale, offline analysis, but is not suitable for online
transaction processing.

We present LineageChain, a fine-grained, secure, and effi-
cient provenance system for blockchains. LineageChain ex-
poses provenance information to smart contracts via simple
interfaces, thereby enabling a new class of blockchain ap-
plications whose execution logics depend on provenance in-
formation at runtime. LineageChain captures provenance
during contract execution and stores it in a Merkle tree.
LineageChain provides a novel skip list index that supports
efficient provenance queries. We have implemented Lin-
eageChain on top of Hyperledger Fabric and a blockchain-
optimized storage system called ForkBase. We conduct ex-
tensive evaluation, demonstrating benefits of LineageChain,
its efficient querying, and its small storage overhead.

1. INTRODUCTION
Blockchains are capturing attention from both academia

and industry. A blockchain is a chain of blocks, in which
each block contains many transactions and is linked with
the previous block via a hash pointer. It was first used
in Bitcoin [12] to store cryptocurrency transactions. Of-
ten referred to as decentralized ledger, blockchain ensures
integrity (tamper evidence) of the complete transaction his-
tory. It is replicated over a peer-to-peer (P2P) network, and
a distributed consensus protocol, for instance Proof-of-Work
(PoW), is used to ensure that honest nodes in the network
have the same ledger. More recent blockchains, for instance
Ethereum [1] and Hyperledger Fabric [3], enable applications

c©VLDB Endowment 2019. This is a minor revision of the paper entitled
"Fine-Grained, Secure and Efficient Data Provenance on Blockchain Sys-
tems", published in the Proceedings of the VLDB Endowment, Vol. 12, No.
9, 975-988. DOI: https://doi.org/10.14778/3329772.3329775
.

beyond cryptocurrencies by supporting smart contracts. A
smart contract has its states stored on the blockchain. The
states are modified via transactions that invoke the contract.

The management of data history, or data provenance, has
been extensively studied in databases, and many systems
have been designed to support provenance [6, 4]. In the con-
text of blockchain, there is explicit, but only coarse-grained
support for data provenance. In particular, the blockchain
can be seen as having some states (with known initial val-
ues), and every transaction moves the system to new states.
The evolution history of the states (or provenance) can be
securely and completely reconstructed by replaying all trans-
actions. However, this reconstruction can only be done dur-
ing offline analysis. During contract execution (or runtime),
no provenance information is accessible to smart contracts.
This lack of runtime access to provenance therefore restricts
the expressiveness of the computation logics that the con-
tract can encode.

Consider an example smart contract shown in Figure 1,
which contains a method for transferring a number of tokens
from one user to another. Suppose user A wants to send to-
kens to B based on the latter’s historical balance in recent
months. For example, A only sends tokens ifB’s average bal-
ance per day is more than t. It is not currently possible to
write a contract method for this operation. To work around
this, A needs to first compute the historical balance of B by
querying and replaying all on-chain transactions, then based
on the result issues the Transfer transaction. Beside perfor-
mance overhead incurred from multiple interactions with the
blockchain, this approach is not safe: it violates transaction
serializability. In particular, suppose A issues the Transfer

transaction tx based on its computation of B’s historical bal-
ance. But before tx is received by the blockchain, another
transaction is committed such that B’s average balance be-
comes t′ < t. Consequently, when tx is later committed,
it will have been based on stale state, and therefore fails
to meet the intended business logic. This scenario can be
caused by benign network conditions as well as by malicious
attacks. In blockchains with native currencies, serializability
violation can be exploited for Transaction-Ordering attacks
that cause substantial financial loss to the users [10].

We design and implement LineageChain, a fine-grained,
secure, and efficient provenance system for blockchains that
enables a new class of smart contracts which can access
provenance information at runtime. LineageChain avoids
the safety issue of existing solutions, as illustrated in the ex-
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contract Token {
method Transfer(sender, recipient, amount) {

bal1 = gState[sender];
bal2 = gState[recipient];
if (amount < bal1) {

gState[sender] = bal1 - amount;
gState[recipient] = bal2 + amount;

} } }

Figure 1: A smart contract for token management.

ample above, by allowing the transaction logic to be based
on provenance at runtime. Although our goal is similar to
that of existing works in adding provenance to databases, we
face three unique challenges due to the nature of blockchain.
First, there is a lack of data operators whose semantics cap-
ture provenance in the form of input-output dependency.
More specifically, for general data management workloads
(i.e., non-cryptocurrency), current blockchains expose only
generic operators, for example, put and get of key-value
tuples. These operators do not have input-output depen-
dency. In contrast, relational database operators such as
map, join, union, are defined as relations between input
and output, which clearly capture their dependencies. To
overcome this lack of provenance-friendly operators, we in-
strument the blockchain runtime to record read-write de-
pendency of all the states used in any contract invocation,
which is then passed to a user-defined method that specifies
which dependency should be persisted.

The second challenge is that blockchains assume an adver-
sarial environment, and therefore any captured provenance
must be made tamper evident. To address this, we store
provenance in a Merkle tree data structure that also allows
for efficient verification. The final challenge is to ensure that
provenance queries are efficient, not only to improve latency,
but also to avoid degrading security [11]. To address this
challenge, we design a novel skip list index optimized for
provenance queries.

In summary, we make the following contributions:

• We present LineageChain, a system that efficiently
captures fine-grained provenance for blockchains. It
stores provenance securely, and exposes a simple ac-
cess interface to smart contracts.

• We present a novel index optimized for querying
blockchain provenance. The index is similar to skip
list, but is deterministic. Its performance is indepen-
dent of the blockchain size.

• We implement LineageChain for Hyperledger Fabric
v1.3 [3]. Our implementation builds on top of Fork-
Base, a blockchain-optimized storage [14]. Our experi-
mental results demonstrate its benefits to provenance-
dependent applications and its efficient querying.

LineageChain is a component of our FabricSharp system
[2], for which we improve Fabric’s execution and storage
layer for the secure runtime provenance support. Elsewhere,
we have addressed the consensus bottleneck by applying
sharding efficiently and exploiting trusted hardware to scale
out system horizontally, to substantially improve the system
throughput [7]. We have also improved the storage efficiency
by designing a tamper-evident storage engine that supports
efficient forking called Forkbase.

2. ORGANIZING BLOCKCHAIN STATES
In this section, we discuss how the global states are or-

ganized in blockchains. [8] provides a comprehensive survey
of blockchain design. There are three key requirements for
building an index over the global states of a blockchain. We
explain how they are met in Ethereum and Hyperledger Fab-
ric. LineageChain also meets these requirements.

Tamper evidence. A user may read some states without
downloading and executing all the transactions. Thus, the
index structure must be able to generate an integrity proof
for any state. The index must provide a unique digest for
the global states, so that blockchain nodes can quickly check
if their states are the same.

Incremental update. Whereas the size of global states
may be large, one block only updates a small portion of
states. For example, some states may be updated at every
block, whereas others may be updated much more infre-
quently. Because the index must be updated at every block,
it must be efficient at handling incremental updates.

Snapshot. A snapshot of the index, as well as of the global
states, must be made at every block. This is necessary be-
cause of the immutability property of the blockchain which
allows users to read any historical states. It is also impor-
tant for block verification: when a new block is received that
creates a fork, an old snapshot of the state is used for verifi-
cation. Even when the blockchain allows no forks, snapshots
enable roll-back when the received block is found to be in-
valid after execution.

Existing blockchains use indices that are based on Merkle
trees. In particular, Ethereum implements Merkle Patri-
cia Trie (MPT), and Hyperledger Fabric v0.6 implements
Merkle Bucket Tree (MBT). In a Merkle tree, content of
the parent node is recursively defined by those of the child
nodes. A proof of integrity can be efficiently constructed
without reading the entire tree. The Merkle tree meets the
first requirement. It also meets the second requirement, be-
cause only the tree nodes affected by the update need to be
changed. It meets the third requirement, because an update
in the block recursively creates new tree nodes in the path
affected by the change. And the new root then serves as
index of the new snapshot, and is then included in the block
header.

3. FINE-GRAINED PROVENANCE
In this section, we describe how we capture provenance,

and the smart contract APIs for accessing it. We use a run-
ning example of the token smart contract shown in Figure 1.
Figure 2 depicts how the global states are modified by the
contract. In particular, the contract is deployed at block
L in the blockchain. Two accounts (or addresses), Addr1
and Addr2, are initialized with 100 tokens. Two transac-
tions Txn1 and Txn2 transferring tokens between the two
addresses are committed at blocks M and N respectively.
The value of Addr1 is 100 from block L to block M − 1, 90
from block M to N − 1, and 70 from block N . The global
state gState is essentially a map of addresses to their values.

3.1 Capturing Provenance
In LineageChain, every contract method can be made

provenance-friendly via a helper method. In particular, dur-
ing transaction execution, LineageChain collects the identi-
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Txn1 Txn2Contract

Deployment

balance[Addr1]=100
balance[Addr2]=100

balance[Addr1]=90
balance[Addr2]=110

balance[Addr1]=70
balance[Addr2]=130

Figure 2: Content of the blockchain and gState.

contract Token {
method Transfer(...){...} // as above
method prov_helper(name, reads, writes) {
if name == "Transfer" {
for (id,value) in writes {

if (reads[id] < value) {
recipient = id;

} else {sender = id; }
}
// dependency list with a
// single element.
dep = [sender];
return {recipient:dep};

}
...

}
}

Figure 3: The provenance helper method for To-
ken contract, which defines dependency between the
sender identifier and recipient identifier.

fiers and values of the accessed states, i.e., those used in read

and write operations. The results are a read set reads and
write set writes. For Txn1, reads = {Addr1 : 100,Addr2 :
100}, and writes = {Addr1 : 90,Addr2 : 110}. After
the execution finishes, these sets are passed to prov_helper

method, together with the name of the contract method.
prov_helper has the following signature:

method prov_helper(name: string,

reads: map(string, byte[]),

writes: map(string, byte[]))

returns map(string, string[]);

prov_helper is defined by the contract developer, and it
returns a set of dependencies based on the input read and
write sets. Figure 3 shows an implementation of the helper
method for the Token contract. It first computes the identi-
fier of the sender and recipient from the read and write sets.
Specifically, the identifier whose value in writes is lower
than that in reads is the sender, and the opposite is true for
the recipient. It then returns a dependency set of a single
element: the recipient-sender dependency. In our example,
for Txn1, this method returns {Addr2 : [Addr1]}.

3.2 Smart Contract APIs
Current smart contracts can only access the latest states.

LineageChain provides access to the captured provenance
via three additional smart contract APIs.

• Hist(stateID, [blockNum]): returns the tuple (val,

blkStart, txnID) where val is the value of stateID
at block blockNum. If blockNum is not specified, the

contract Token {
...
method Blacklist(addr) {
blk := last block in the ledger
blacklisted = false;
iterate 5 times {
val, startBlk, txnID = Hist(addr, blk);
for (depAddr, depBlk)

in (Backward(addr, startBlk)
or Forward(addr, startBlk)) {

if depAddr in gState["blacklist"] {
gState["blacklist"].append(addr);
return;

}
}
blk = startBlk - 1;

}
}

}

Figure 4: Smart contract with the new APIs.

latest block is used. txnID is the transaction that sets
stateID to val, and blkStart is the block number at
which txnID is executed.

• Backward(stateID, blkNum): returns a list of tuples
(depStateID, depBlkNum) where depStateID is the
dependency state of stateID at block blkNum. dep-

BlkNum is the block number at which the value of dep-
StateID is set. In our example, Backward(Addr2, N)

returns (Addr1, M).

• Forward(stateID, blkNum): similar to the Backward

API, but returns the states of which stateID is a de-
pendency. For example, Forward(Addr1, L) returnss
(Addr2, M).

Figure 4 illustrates how the above APIs are used to ex-
press smart contract logics that are currently impossible, as
shown in the Blacklist method. This will mark an ad-
dress as blacklisted if one of its last 5 transactions is with a
blacklisted address.

4. PROVENANCE STORAGE AND QUERY
In this section, we describe the design for storing and

querying the captured provenance.

4.1 Storage
LineageChain enhances existing blockchain storage layer

to provide efficient tracking and tamper evidence for the
captured provenance. The key idea is to reorganize the flat
leaf nodes in the original Merkle tree into a Merkle DAG.

Merkle DAG. Let k be the unique identifier of a
blockchain state, whose evolution history is expected to be
tracked. Let v be the unique version number that identifies
the state in its evolution history. When the state at version
v is updated, the new version v′ is strictly greater than v.
In LineageChain, we directly use the block number as its
version v. Let sk,v denote the value of the state with iden-
tifier k at version v. We drop the subscripts if the meaning
of k and v are trivial. For any k 6= k′ and v 6= v′, sk,v and
sk′,v′ represent the values of two different states at different

versions. sbk represents the state value with identifier k at its
latest version before block b. In our example, for k = Addr1
and v = M , sk,v = 90.
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Figure 5: A Merkle DAG for storing provenance.
sk2,v4 and sk3,v4 updated by the same transaction
(tid4), block b contains two transactions, tid3 and
tid4. Its latest states are represented by the Merkle
root.

Definition 1. A transaction, identified by tid which is
strictly increasing, consumes a set of input states Si

tid and
produces a set of output states So

tid. A valid transaction sat-
isfies the following properties:

∀sk1,v1 , sk2,v2 ∈ So
tid. k1 6= k2 ∧ v1 = v2 (1)

∀sk1,v1 ∈ Si
tid, sk2,v2 ∈ So

tid. v1 < v2 (2)

∀sk,v ∈ Si
tid, sk,v′ ∈ Si

tid′ . tid < tid′ ⇒ v ≤ v′. (3)

tid 6= tid′ ⇒ So
tid ∩ So

tid′ = ∅ (4)

Property (1) means that the versions of all output states
of a transaction are identical, because they are updated by
the same transaction in the same block. Property (2) implies
the version of any input state is strictly lower than that of
the output version. This makes sense because the blockchain
establishes a total order over the transactions, and because
the input states can only be updated in previous transac-
tions. Property (3) specifies that, for all the states with
the same identifier, the input of later transactions can never
have an earlier version. This ensures the input state of any
transaction must be up-to-date during execution. Finally,
Property (4) means that every state update is unique.

Definition 2. The dependency of state s is a subset of
the input states of the transaction that outputs s. More
specifically:

dep(s) ⊂ Si
tid where s ∈ So

tid.

Note that dep, which is returned by prov_helper method,
is only a subset of the read set.

Definition 3. The entry Esk,v of the state sk,v is a tu-
ple containing the current version, the state value, and the
hashes of the entries of its dependent state. More specifi-
cally:

Esk,v = 〈v, sk,v, {hash(Es′)|s′ ∈ dep(sk,v)}〉

An entry uniquely identifies a state. In LineageChain, we
associate each entry with its corresponding hash.

Definition 4. The set of latest states at block b, denoted
as Slatest,b, is:

Slatest,b =
⋃

k

{sbk}

Let Ub be the updated states in block b. We can compute
Slatest,b by recursively combining Ub with Slatest,b−1 \ Ub.

Definition 5. χb is the root of a Merkle tree built on the
map Sb where

Sb = {k : hash(Esb
k
)|∀sbk ∈ Slatest,b}.

LineageChain stores χb as the state digest in the block
header.

Forward tracking. One problem with the above DAG
model is that it does not support forward tracking, be-
cause the hash pointers only reference backward dependen-
cies. When a state is updated, these backward dependencies
are permanently established, so that they belong to the im-
mutable history of the state. However, the state can be read
by future transactions, and as a consequence its forward de-
pendencies cannot be determined at the time of update.

Fortunately, an important observation is that only forward
dependencies of the latest state are mutable. Once the state
is updated, due to the execution model of blockchain smart
contract, in which the latest state is always read, forward
dependencies of the previous state version become perma-
nent. As a result, they can be included into the history.
Figure 5 illustrates an example, in which forward depen-
dencies of sk1,v1 become fixed when the state is updated to
sk1,v2 . This is because when the transaction that outputs
sk2,v4 is executed, it reads sk1,v2 instead of sk1,v1 .

In LineageChain, for each state sk,v at its latest version,
we buffer a list of forward pointers to the entries whose de-
pendencies include sk,v. We refer to this list as Fsk,v , where

Fsk,v = {hash(Es′)|sk,v ∈ dep(s′)}
When the state is updated to sk,v′ for v′ > v, we store Fsk,v

at the entry of sk,v′ .

4.2 Efficient Query Processing
The Merkle DAG structure supports efficient access to the

latest state version, since the state index at block b contains
pointers to all the latest versions at this block. To read the
latest version of s, one simply reads χb, follows the index to
the entry for s, and then reads the state value from the entry.
However, querying an arbitrary version in the DAG is ineffi-
cient, because one has to start at the DAG root and traverse
the edges towards the requested version. Supporting fast
version queries is important when a user wants to examine
the state history only from a specific version (for auditing,
for example). It is also important for provenance-dependent
smart contracts because such queries directly affect contract
execution time.

Deterministic Append-only Skip List. We propose to
build an index, called Deterministic Append-only Skip List
(or DASL), on top of a state DAG to support fast version
queries. The index has a skip list structure. It is designed
for blockchains, exploiting the fact that the blockchain is
append-only, and randomness is not well supported [5]. A
DASL has two distinct properties compared to a normal skip
list. First, it is append-only; that is, the index keys of the
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struct Node {
Version v;
Value val;
List<Version> pre_versions;
List<Node*> pre_nodes;

}

Figure 6: A Node structure that captures a state
sk,v with value val

1 3 5 10L0:

1 3 5 10L1:

1 5 10L2:

1 10L3:
0 7 8 15

0 34 7 8 11

(a)

1 3 5 10 12 16L0:
1 3 5 10 12 16L1:
1 5 10 12 16L2:
1 10 16L3:

1 16L4:
0 7 8 15 16 23

0 15 16
1 16L5:
0 31

31

(b)

Figure 7: (a) A DASL containing versions 1, 3, 5
and 10. The base b is 2. The intervals for L2 and
L3 are shown in blue lines. (b) The new DASL after
appending versions 12 and 16. L4 is created when
appending version 16. L5 is created, then discarded.

appended entries, which are state versions, are strictly in-
creasing. Second, it is deterministic; that is, the index struc-
ture is uniquely determined by the values of the appended
items, unlike a stochastic skip list.

Definition 6. Let Vk = 〈v0, v1, ...〉 be the sequence of
version numbers of states with identifier k, in which vi < vj
for all i < j. A DASL index for k consists of N linked
lists L0, L1, .., LN−1. Let vij−1 and vij be the versions in the

(j− 1)th and jth node of list Li. Let b be the base number, a
system-wide parameter. The content of Li is constructed as
follows:

1) v0 ∈ Li

2) Given vij−1, vij is the smallest version in Vk such that:

⌊
vij−1

bi

⌋
<

⌊
vij
bi

⌋
(5)

Figure 6 shows how DASL is stored with the state in a
data structure called Node. This structure (also referred
to as node) contains the state version and value. A node
belongs to multiple lists (or levels), hence it maintains a list
of pointers to other nodes in each level as well as a list of
the version numbers of pointed nodes. Both lists are of size
N , and the ith entry of a list points to the previous version
(or the previous node) of this node in level Li. For the same
key, the version number uniquely identifies the node, and
hence we use version numbers to refer to the corresponding
nodes.

We can view a list as consisting of continuous, non-
overlapping intervals of certain sizes. In particular, the jth

interval of Li represents the range Ri
j = [jbi, (j+1)bi). Only

the smallest version in Vk that falls in this range is included
in the list. Figure 7(a) gives an example of a DASL structure
with b = 2. It can be seen that when the version numbers
are sparsely distributed, the lists at lower levels are identi-
cal. In this case, b can be increased to create larger intervals

Algorithm 1: DASL Append

Input: version v and last node last
Output: previous versions and nodes

1 level=0; // list level

2 pre versions = [];
3 pre nodes = [];
4 finish = false ;
5 cur = last ;
6 while not finish do
7 l = cur->pre versions.size() ;
8 if l > 0 then
9 for j=level; j<l; ++j do

10 if cur->version / bj < v / bj then
11 pre versions.append(cur->version);
12 pre nodes.append(cur);

13 else
14 finish = true;
15 break;

16 if not finish then
17 cur = cur->pre versions[l-1] ;
18 level = l

19 else
/* We have reached the last level */

20 finish = true;

21 while cur->version / blevel < v / blevel do
22 ++level;
23 pre versions.append(cur->version);
24 pre nodes.append(cur);

25 return pre version, pre nodes;

in order to reduce the overlapping among lower-level lists.
A DASL and a skip list share two properties. First, if a

version number appears in Li, it also appears in Lj where
j < i. Second, with b = 2, suppose the last level that a ver-
sion appears in is i, then this version’s preceding neighbour
in Li appears in Lj where j > i. Given these properties,
a query for a version in the DASL is executed in the same
way as in the skip list. More specifically, the query traverses
a high-level list as much as possible, starting from the last
version in the last list. It moves to a lower level only if the
preceding version in the current list is strictly smaller than
the requested version. In DASL, the query for version vq
returns the largest version v ∈ Vk such that v ≤ vq (the
inequality occurs when vq does not exist). This result rep-
resents the value of the state which is visible at the time of
vq.

We now describe how a new node is appended to DASL.
The challenge is to determine the lists that should include
the new node. Algorithm 1 details the steps that find the
lists, and subsequently the previous versions, of the new
node. The key idea is to start from the last node in L0, and
then keep moving up the list level until the current node and
the new node belong to the same interval (line 9 - 18). Figure
7(b) shows the result of appending a node with version 12
to the original DASL. The algorithm starts at node 10 and
moves up to lists L1 and L2. It stops at L3 because in
this level nodes 10 and 12 belong to the same interval, i.e.,
[8, 16). Thus, the new node is appended to lists L0 to L2.
When the algorithm reaches the last level and is still able to
append, it creates a new level where node 0 is the first entry
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and repeats the process (line 21 - 24). In Figure 7(b), when
appending version 16, all existing lists can be used. The
algorithm then creates L4 with node 1 and appends node
16 to it. It also creates a new level L5, but subsequently
discards it because node 16 will not be appended since it
belongs to same interval of [0, 32) with node 1.

4.3 Discussion
Our new Merkle DAG can be easily integrated to exist-

ing blockchain index structures. It meets the three require-
ments listed in Section 2. In particular, existing Merkle in-
dices such as MPT store state values directly at the leaves,
whereas the Merkle DAG in LineageChain stores the entry
hashes of the latest state versions at the leaves. By adding
one more level of indirection, we preserve the three proper-
ties of the index (tamper evidence, incremental update and
snapshot), while enhancing it with the ability to traverse the
DAG to extract fine-grained provenance information. Recall
that the state entry hash captures the entire evolution his-
tory of the state. Since this hash is protected by the Merkle
index for tamper evidence, so is the state history. In other
words, we add integrity protection for provenance without
any extra cost to the index structure. For example, suppose
a client wants to read a specific version of a state, it first
reads the state entry hash at the latest block. This read
operation can be verified against tampering, as in existing
blockchains. Next, the client traverses the DAG from this
hash to read the required version. Because the DAG is tam-
per evident, the integrity of the read version is guaranteed.

DASL and Merkle DAG integration. Adding DASL
to the Merkle DAG is straightforward. The node structure
(Figure 6) is stored in the state entry (Definition 3). The
node pointers are implemented as entry hashes. The Merkle
tree structure remains unchanged.

Speed vs. storage. As a skip list variant, DASL shares
the same space complexity and logarithmic query time com-
plexity. Suppose there are v∗ number of versions and the
base of DASL is b. There are at most dlogb v

∗e levels and

the i-th level takes at most d v∗
bi
e − 1 pointers. Suppose the

queried version is vq and the query distance d = v∗ − vq,
the maximum number of hops in such query is capped at
2bdlogb de. This is because a typical query consists of two
stages: one going towards the lower levels, and the other go-
ing towards the upper level. Each stage involves traversing
at most b hops on the same list before moving to the next
level, and there are at most dlogb de levels. It can be seen
that b determines the tradeoff between the space overhead
and query latency. Furthermore, DASL queries are more
efficient for more recent versions, i.e. d are small, which
is useful for smart contracts that rely on recent rather than
old versions. Finally, the performance of such recent-version
queries does not change as the state history grows.

5. PERFORMANCE EVALUATION
We implement LineageChain on top of Hyperledger Fab-

ric v1.3. More details of the implementation can be found
in [13]. Figure 8 shows the software stack, highlighting the
changes to the original Fabric’s stack. We completely re-
place Fabric’s storage layer with our implementation of the
Merkle DAG and DASL index on top of ForkBase [14], a
state-of-the-art blockchain storage system with efficient sup-
port for versioning. We instrument Fabric’s execution engine

Storage Layer

ForkBase

          DAG Model with DASL Index

Execution Layer

Provenance

Consensus Layer (Unchanged)

Application

Provenance Helper 
Method Specification

Provenance 
Query Handler

Original 
Handler

Execution Engine
Provenane 

Engine
Accessed States

Figure 8: LineageChain’s software stack. The
original storage layer is replaced with the imple-
mentation that supports fine-grained provenance.
The original execution layer is instrumented with a
provenance capture engine. The application layer
contains the new helper method and provenance
query APIs. The consensus layer is unchanged.

to record read and write sets during contract execution. At
the application layer we add a new helper method and three
provenance APIs. The execution engine invokes the helper
method after every successful contract execution.

5.1 Methodologies
We evaluate LineageChain against two baselines. In the

first baseline, called Fabric-plus, we directly store prove-
nance information to Fabric’s original storage and rely on its
internal index to support provenance query. In the second
baseline, called LineageChain-lite, we use ForkBase for stor-
ing state versions. This baseline has no support for multi-
state dependency, and no DASL index. We use this to un-
derstand the index’s performance.

We perform three sets of experiments. First, we eval-
uate the performance of LineageChain for provenance-
dependent blockchain applications. We compare it against
the approach that queries provenance offline before issuing
blockchain transactions. Second, we evaluate the perfor-
mance of provenance queries in LineageChain on a single
machine. For single-state version queries, we use the YCSB
benchmark provided in BLOCKBENCH [9] to populate the
blockchain states with key-value tuples. We then measure
the latencies of two queries: one retrieves a state at a spe-
cific block, and the other iterates over the state history.
For multi-state dependency tracking, we implement a con-
tract for a supply chain application. In this application, a
phone is assembled from intermediary components which are
made from other components or raw material. The supply
chain creates a DAG representing the derivation history of a
phone. The maximum depth of the DAG is 6. We generate
synthetic data for this contract, and examine the latency of
the operation that uses Backtrack to retrieve dependencies
of a given phone.

In the third set of experiments, we evaluate the impact
of provenance on the overall blockchain performance. For
this, we run the Smallbank benchmark on multiple nodes.
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Figure 9: Performance of (a) a provenance-
dependent blockchain application and (b) BFS
Traversal latency

We measure the overall throughput, and analyze the cost
breakdown to understand the overhead of provenance sup-
port.

Our experiments are run on a local cluster of 16 nodes.
Each node is equipped with E5-1650 3.5GHz CPU, 32GB
RAM, and 2TB hard disk. The nodes are connected via
1Gbps Ethernet.

5.2 Experimental Results

Provenance-dependent Applications
We implement a simple provenance-dependent blockchain
application by modifying the YCSB benchmark in BLOCK-
BENCH such that the update operation depends on his-
torical values. With LineageChain, the contract has direct
access to the provenance information, and the client remains
the same as in the original YCSB. Without LineageChain,
the client is modified such that it reads B latest blocks be-
fore issuing transactions. B represents how far behind the
client is to the latest states.

Figure 9(a) shows transaction latency with varying B. It
can be seen that with LineageChain, the latency remains
almost constant because the client does not have to fetch
any block for the provenance query. In contrast, without
LineageChain, the latency increases linearly with B. This
demonstrates the performance gain brought byLineageChain
for having access to provenance information at runtime.

Provenance Queries
We first create 500 key-value tuples and then continuously is-
sue update transactions until there are more than 10k blocks
in the ledger. Each block contains 500 transactions. We
then execute a query for the values of a key at different
block numbers. Figure 10(a) illustrates the query latency
with increasing block distance from the last block. It can be

seen that when the distance is small, LineageChain-lite has
the lowest latency. LineageChain-lite does not have DASL
index, and as a consequence for this query it has to scan
linearly from the latest version. As expected, the query
is fast when the requested version is very recent because
the number of reads is small, but degrades the performance
quickly as the distance increases. In particular, when the
block distance reaches 128, the query is 4× slower than Lin-
eageChain. We observe that the query latency in Fabric-
plus is independent of the block distance, because the query
uses flat storage index directly. LineageChain outperforms
both LineageChain-lite and Fabric-plus. Because of DASL,
the query latency in LineageChain is low when the block
distance is small. When the block distance increases, the la-
tency increases only logarithmically, as opposed to linearly
in LineageChain-lite.

We repeat the experiment above while fixing the block
distance to 64 and varying the total number of blocks.
Figure 10(b) shows the results for the version query with
increasing number of blocks. It can be seen that the
query latency in both LineageChain and Fabric-plus re-
mains roughly the same. In other words, the performance
of version queries in these systems are independent of the
block numbers, which is due to the DAG data model that
tracks state versions. LineageChain outperforms Fabric-
plus, thanks to the index that reduces the number of entries
needed to be read.

Next, we measure the latency for the operation that scans
the entire version history of a given key. Figure 10(c) shows
the scan latency with increasing number of blocks. For
Fabric-plus, we first construct the key range and rely on the
storage iterator for scanning. LineageChain-lite and Lin-
eageChain both use ForkBase iterator, and therefore they
have the same performance. As the number of blocks in-
creases, the version history becomes longer which accounts
for the linear increase in latency in both systems. However,
LineageChain outperforms Fabric-plus by a constant factor.
We attribute this difference to ForkBase’s optimizations for
version tracking.

Finally, we evaluate the query performance with multi-
state dependency. We populate the blockchain states and
issue transactions that produce new phones. We perform
a breadth-first search to retrieve all the dependencies of a
phone. For this experiment, we only compare Fabric-plus
and LineageChain, because LineageChain-lite does not sup-
port multi-state dependencies. Figure 9(b) shows the per-
formance with varying search depths. The latency of both
Fabric-plus and LineageChain grow exponentially with in-
creasing depths, but LineageChain outperforms the baseline.
It is because the index in LineageChain directly captures the
dependencies, whereas each backtrack operation in Fabric-
plus requires traversing the storage index. As the number
of queries increases with the search level, their performance
gap widens.

Performance Overhead
Finally, we evaluate LineageChain overhead on Hyperledger
Fabric v1.3. We use 16 nodes and vary the offer load by
increasing the client’s transaction rate. Figure 11 shows
the performance overhead. At saturation, LineageChain-lite
and LineageChain add less than 200ms in latency, compared
to the original Fabric that has no provenance support. In
contrast, Fabric-plus adds more than 1s. LineageChain-lite
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Figure 11: Performance on Fabric v1.3

and LineageChain reach similar throughput as the original
Hyperledger, which is around 350tps. Fabric-plus peaks
at around 330tps. These results demonstrate that Lin-
eageChain’s overhead over the original Fabric is small.

6. CONCLUSIONS
In this paper, we presented LineageChain, a fine-grained,

secure and efficient provenance system for blockchains. The
system efficiently captures provenance information during
runtime, and exposes simple APIs to smart contracts,
which enables provenance-dependent blockchain applica-
tions. Provenance is stored securely, and queries are efficient
thanks to a novel skip list index. We implemented Lin-
eageChain on top of Hyperledger Fabric and benchmarked
it against several baselines. The results show the benefits
of LineageChain in supporting rich, provenance-dependent
applications. They demonstrate that provenance queries are
efficient, and LineageChain incurs small runtime overhead.
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