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ABSTRACT

The success of Bitcoin and other cryptocurrencies bring
enormous interest to blockchains. A blockchain system im-
plements a tamper-evident ledger for recording transactions
that modify some global states. The system captures the en-
tire evolution history of the states. The management of that
history, also known as data provenance or lineage, has been
studied extensively in database systems. However, query-
ing data history in existing blockchains can only be done
by replaying all transactions. This approach is feasible for
large-scale, offline analysis, but is not suitable for online
transaction processing.

We present LineageChain, a fine-grained, secure, and effi-
cient provenance system for blockchains. LineageChain ex-
poses provenance information to smart contracts via simple
interfaces, thereby enabling a new class of blockchain ap-
plications whose execution logics depend on provenance in-
formation at runtime. LineageChain captures provenance
during contract execution and stores it in a Merkle tree.
LineageChain provides a novel skip list index that supports
efficient provenance queries. We have implemented Lin-
eageChain on top of Hyperledger Fabric and a blockchain-
optimized storage system called ForkBase. We conduct ex-
tensive evaluation, demonstrating benefits of LineageChain,
its efficient querying, and its small storage overhead.

1. INTRODUCTION

Blockchains are capturing attention from both academia
and industry. A blockchain is a chain of blocks, in which
each block contains many transactions and is linked with
the previous block via a hash pointer. It was first used
in Bitcoin [12] to store cryptocurrency transactions. Of-
ten referred to as decentralized ledger, blockchain ensures
integrity (tamper evidence) of the complete transaction his-
tory. It is replicated over a peer-to-peer (P2P) network, and
a distributed consensus protocol, for instance Proof-of-Work
(PoW), is used to ensure that honest nodes in the network
have the same ledger. More recent blockchains, for instance
Ethereum [1] and Hyperledger Fabric [3], enable applications
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beyond cryptocurrencies by supporting smart contracts. A
smart contract has its states stored on the blockchain. The
states are modified via transactions that invoke the contract.

The management of data history, or data provenance, has
been extensively studied in databases, and many systems
have been designed to support provenance [6, 4]. In the con-
text of blockchain, there is explicit, but only coarse-grained
support for data provenance. In particular, the blockchain
can be seen as having some states (with known initial val-
ues), and every transaction moves the system to new states.
The evolution history of the states (or provenance) can be
securely and completely reconstructed by replaying all trans-
actions. However, this reconstruction can only be done dur-
ing offline analysis. During contract execution (or runtime),
no provenance information is accessible to smart contracts.
This lack of runtime access to provenance therefore restricts
the expressiveness of the computation logics that the con-
tract can encode.

Consider an example smart contract shown in Figure 1,
which contains a method for transferring a number of tokens
from one user to another. Suppose user A wants to send to-
kens to B based on the latter’s historical balance in recent
months. For example, A only sends tokens if B’s average bal-
ance per day is more than ¢. It is not currently possible to
write a contract method for this operation. To work around
this, A needs to first compute the historical balance of B by
querying and replaying all on-chain transactions, then based
on the result issues the Transfer transaction. Beside perfor-
mance overhead incurred from multiple interactions with the
blockchain, this approach is not safe: it violates transaction
serializability. In particular, suppose A issues the Transfer
transaction tx based on its computation of B’s historical bal-
ance. But before tz is received by the blockchain, another
transaction is committed such that B’s average balance be-
comes t' < t. Consequently, when tz is later committed,
it will have been based on stale state, and therefore fails
to meet the intended business logic. This scenario can be
caused by benign network conditions as well as by malicious
attacks. In blockchains with native currencies, serializability
violation can be exploited for Transaction-Ordering attacks
that cause substantial financial loss to the users [10].

We design and implement LineageChain, a fine-grained,
secure, and efficient provenance system for blockchains that
enables a new class of smart contracts which can access
provenance information at runtime. LineageChain avoids
the safety issue of existing solutions, as illustrated in the ex-
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contract Token {
method Transfer(sender, recipient, amount) {
ball = gState[sender];
bal2 = gState[recipient];
if (amount < ball) {
gState[sender] = ball - amount;
gState[recipient] = bal2 + amount;

} 1}

Figure 1: A smart contract for token management.

ample above, by allowing the transaction logic to be based
on provenance at runtime. Although our goal is similar to
that of existing works in adding provenance to databases, we
face three unique challenges due to the nature of blockchain.
First, there is a lack of data operators whose semantics cap-
ture provenance in the form of input-output dependency.
More specifically, for general data management workloads
(i.e., non-cryptocurrency), current blockchains expose only
generic operators, for example, put and get of key-value
tuples. These operators do not have input-output depen-
dency. In contrast, relational database operators such as
map, join, union, are defined as relations between input
and output, which clearly capture their dependencies. To
overcome this lack of provenance-friendly operators, we in-
strument the blockchain runtime to record read-write de-
pendency of all the states used in any contract invocation,
which is then passed to a user-defined method that specifies
which dependency should be persisted.

The second challenge is that blockchains assume an adver-
sarial environment, and therefore any captured provenance
must be made tamper evident. To address this, we store
provenance in a Merkle tree data structure that also allows
for efficient verification. The final challenge is to ensure that
provenance queries are efficient, not only to improve latency,
but also to avoid degrading security [11]. To address this
challenge, we design a novel skip list index optimized for
provenance queries.

In summary, we make the following contributions:

o We present LineageChain, a system that efficiently
captures fine-grained provenance for blockchains. It
stores provenance securely, and exposes a simple ac-
cess interface to smart contracts.

e We present a novel index optimized for querying
blockchain provenance. The index is similar to skip
list, but is deterministic. Its performance is indepen-
dent of the blockchain size.

o We implement LineageChain for Hyperledger Fabric
v1.3 [3]. Our implementation builds on top of Fork-
Base, a blockchain-optimized storage [14]. Our experi-
mental results demonstrate its benefits to provenance-
dependent applications and its efficient querying.

LineageChain is a component of our FabricSharp system
[2], for which we improve Fabric’s execution and storage
layer for the secure runtime provenance support. Elsewhere,
we have addressed the consensus bottleneck by applying
sharding efficiently and exploiting trusted hardware to scale
out system horizontally, to substantially improve the system
throughput [7]. We have also improved the storage efficiency
by designing a tamper-evident storage engine that supports
efficient forking called Forkbase.

SIGMOD Record, March 2020 (Vol. 49, No. 1)

2.  ORGANIZING BLOCKCHAIN STATES

In this section, we discuss how the global states are or-
ganized in blockchains. [8] provides a comprehensive survey
of blockchain design. There are three key requirements for
building an index over the global states of a blockchain. We
explain how they are met in Ethereum and Hyperledger Fab-
ric. LineageChain also meets these requirements.

Tamper evidence. A user may read some states without
downloading and executing all the transactions. Thus, the
index structure must be able to generate an integrity proof
for any state. The index must provide a unique digest for
the global states, so that blockchain nodes can quickly check
if their states are the same.

Incremental update. Whereas the size of global states
may be large, one block only updates a small portion of
states. For example, some states may be updated at every
block, whereas others may be updated much more infre-
quently. Because the index must be updated at every block,
it must be efficient at handling incremental updates.

Snapshot. A snapshot of the index, as well as of the global
states, must be made at every block. This is necessary be-
cause of the immutability property of the blockchain which
allows users to read any historical states. It is also impor-
tant for block verification: when a new block is received that
creates a fork, an old snapshot of the state is used for verifi-
cation. Even when the blockchain allows no forks, snapshots
enable roll-back when the received block is found to be in-
valid after execution.

Existing blockchains use indices that are based on Merkle
trees. In particular, Ethereum implements Merkle Patri-
cia Trie (MPT), and Hyperledger Fabric v0.6 implements
Merkle Bucket Tree (MBT). In a Merkle tree, content of
the parent node is recursively defined by those of the child
nodes. A proof of integrity can be efficiently constructed
without reading the entire tree. The Merkle tree meets the
first requirement. It also meets the second requirement, be-
cause only the tree nodes affected by the update need to be
changed. It meets the third requirement, because an update
in the block recursively creates new tree nodes in the path
affected by the change. And the new root then serves as
index of the new snapshot, and is then included in the block
header.

3. FINE-GRAINED PROVENANCE

In this section, we describe how we capture provenance,
and the smart contract APIs for accessing it. We use a run-
ning example of the token smart contract shown in Figure 1.
Figure 2 depicts how the global states are modified by the
contract. In particular, the contract is deployed at block
L in the blockchain. Two accounts (or addresses), Addril
and Addr2, are initialized with 100 tokens. Two transac-
tions Tznl and Txn2 transferring tokens between the two
addresses are committed at blocks M and N respectively.
The value of Addr! is 100 from block L to block M — 1, 90
from block M to N — 1, and 70 from block N. The global
state gState is essentially a map of addresses to their values.

3.1 Capturing Provenance

In LineageChain, every contract method can be made
provenance-friendly via a helper method. In particular, dur-
ing transaction execution, LineageChain collects the identi-
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balance[Addr1]=100
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Figure 2: Content of the blockchain and gState.

contract Token {
method Transfer(...){...} // as above
method prov_helper(name, reads, writes) {
if name == "Transfer" {
for (id,value) in writes {
if (reads[id] < value) {
recipient = id;

} else {sender = id; }

X

// dependency list with a
// single element.

dep = [sender];

return {recipient:dep};

Figure 3: The provenance helper method for To-
ken contract, which defines dependency between the
sender identifier and recipient identifier.

fiers and values of the accessed states, i.e., those used in read
and write operations. The results are a read set reads and
write set writes. For Tznl, reads = {Addrl : 100, Addr2 :
100}, and writes = {Addrl : 90, Addr2 : 110}. After
the execution finishes, these sets are passed to prov_helper
method, together with the name of the contract method.
prov_helper has the following signature:

method prov_helper(name: string,
reads: map(string, bytell),
writes: map(string, byte[]))
returns map(string, string[]l);

prov_helper is defined by the contract developer, and it
returns a set of dependencies based on the input read and
write sets. Figure 3 shows an implementation of the helper
method for the Token contract. It first computes the identi-
fier of the sender and recipient from the read and write sets.
Specifically, the identifier whose value in writes is lower
than that in reads is the sender, and the opposite is true for
the recipient. It then returns a dependency set of a single
element: the recipient-sender dependency. In our example,
for Tznl1, this method returns {Addr2 : [Addrl]}.

3.2 Smart Contract APIs

Current smart contracts can only access the latest states.
LineageChain provides access to the captured provenance
via three additional smart contract APIs.

e Hist(stateID, [blockNum]): returns the tuple (val,
blkStart, txnID) where val is the value of stateID
at block blockNum. If blockNum is not specified, the
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balance[Addr1]=70
balance[Addr2]=130

contract Token {

method Blacklist(addr) {
blk := last block in the ledger
blacklisted = false;
iterate 5 times {
val, startBlk, txnID = Hist(addr, blk);
for (depAddr, depBlk)
in (Backward(addr, startBlk)
or Forward(addr, startBlk)) {
if depAddr in gState["blacklist"] {
gState["blacklist"] .append(addr) ;
return;
}
¥
blk = startBlk - 1;

}
}

Figure 4: Smart contract with the new APIs.

latest block is used. txnID is the transaction that sets
stateID to val, and blkStart is the block number at
which txnID is executed.

e Backward(stateID, blkNum): returns a list of tuples
(depStateID, depBlkNum) where depStatelID is the
dependency state of stateID at block blkNum. dep-
BlkNum is the block number at which the value of dep-
StatelID is set. In our example, Backward (Addr2, N)
returns (Addri, M).

e Forward(stateID, blkNum): similar to the Backward
API, but returns the states of which stateID is a de-
pendency. For example, Forward(Addrl, L) returnss
(Addr2, M).

Figure 4 illustrates how the above APIs are used to ex-
press smart contract logics that are currently impossible, as
shown in the Blacklist method. This will mark an ad-
dress as blacklisted if one of its last 5 transactions is with a
blacklisted address.

4. PROVENANCE STORAGE AND QUERY

In this section, we describe the design for storing and
querying the captured provenance.

4.1 Storage

LineageChain enhances existing blockchain storage layer
to provide efficient tracking and tamper evidence for the
captured provenance. The key idea is to reorganize the flat
leaf nodes in the original Merkle tree into a Merkle DAG.

Merkle DAG. Let k£ be the unique identifier of a
blockchain state, whose evolution history is expected to be
tracked. Let v be the unique version number that identifies
the state in its evolution history. When the state at version
v is updated, the new version v’ is strictly greater than v.
In LineageChain, we directly use the block number as its
version v. Let sk, denote the value of the state with iden-
tifier k£ at version v. We drop the subscripts if the meaning
of k and v are trivial. For any k # k" and v # v’, sk, and
Sk’ represent the values of two different states at different
versions. sb represents the state value with identifier & at its
latest version before block b. In our example, for k = Addrl
and v = M, Sk,» = 90.
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Figure 5: A Merkle DAG for storing provenance.
Sko,wy and sp; ., updated by the same transaction
(tids), block b contains two transactions, tid; and
tids. Its latest states are represented by the Merkle
root.

DEFINITION 1. A transaction, identified by tid which is
strictly increasing, consumes a set of input states S, and
produces a set of output states Sty. A wvalid transaction sat-
isfies the following properties:

VSky 01, Skawe € Stia- k1 # k2 Avi = w2 (1)

VSki,v1 € Stia, Skava € Sha- 11 <2 (2)

Vsko € Stigy Skt € Sty tid < tid = v <. (3)

tid # tid = SN Spy =0 (4)

Property (1) means that the versions of all output states
of a transaction are identical, because they are updated by
the same transaction in the same block. Property (2) implies
the version of any input state is strictly lower than that of
the output version. This makes sense because the blockchain
establishes a total order over the transactions, and because
the input states can only be updated in previous transac-
tions. Property (3) specifies that, for all the states with
the same identifier, the input of later transactions can never
have an earlier version. This ensures the input state of any
transaction must be up-to-date during execution. Finally,
Property (4) means that every state update is unique.

DEFINITION 2. The dependency of state s is a subset of
the input states of the transaction that outputs s. More
specifically:

dep(s) C Sk where s € S5y

Note that dep, which is returned by prov_helper method,
is only a subset of the read set.

DEFINITION 3. The entry Es, ., of the state sp» s a tu-
ple containing the current version, the state value, and the
hashes of the entries of its dependent state. More specifi-
cally:

Buy, = (0,510, {hash(E,)|s' € dep(si..)})
An entry uniquely identifies a state. In LineageChain, we

associate each entry with its corresponding hash.
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DEFINITION 4. The set of latest states at block b, denoted
as Slatest,b, 15:

Slatest,b = U{SZ}
k

Let Uy be the updated states in block b. We can compute
Siatest,p Dy recursively combining U, with Sigtest,p—1 \ Us-

DEFINITION 5. X is the root of a Merkle tree built on the
map Sy where

={k: hash(EsZ)Nsi € Slatest,b}-

LineageChain stores xp, as the state digest in the block
header.

Forward tracking. One problem with the above DAG
model is that it does not support forward tracking, be-
cause the hash pointers only reference backward dependen-
cies. When a state is updated, these backward dependencies
are permanently established, so that they belong to the im-
mutable history of the state. However, the state can be read
by future transactions, and as a consequence its forward de-
pendencies cannot be determined at the time of update.

Fortunately, an important observation is that only forward
dependencies of the latest state are mutable. Once the state
is updated, due to the execution model of blockchain smart
contract, in which the latest state is always read, forward
dependencies of the previous state version become perma-
nent. As a result, they can be included into the history.
Figure 5 illustrates an example, in which forward depen-
dencies of sy, ., become fixed when the state is updated to
Sky,us- This is because when the transaction that outputs
Sko,vy 1S €xecuted, it reads sk, v, instead of sk, v, -

In LineageChain, for each state sy . at its latest version,
we buffer a list of forward pointers to the entries whose de-
pendencies include s,,. We refer to this list as Fsk .» Where

Fyy., = {hash(Ey)|sk.. € dep(s')}

When the state is updated to sy, for v' > v, we store Fy,
at the entry of sy ..

4.2 Efficient Query Processing

The Merkle DAG structure supports efficient access to the
latest state version, since the state index at block b contains
pointers to all the latest versions at this block. To read the
latest version of s, one simply reads xs, follows the index to
the entry for s, and then reads the state value from the entry.
However, querying an arbitrary version in the DAG is ineffi-
cient, because one has to start at the DAG root and traverse
the edges towards the requested version. Supporting fast
version queries is important when a user wants to examine
the state history only from a specific version (for auditing,
for example). It is also important for provenance-dependent
smart contracts because such queries directly affect contract
execution time.

Deterministic Append-only Skip List. We propose to
build an index, called Deterministic Append-only Skip List
(or DASL), on top of a state DAG to support fast version
queries. The index has a skip list structure. It is designed
for blockchains, exploiting the fact that the blockchain is
append-only, and randomness is not well supported [5]. A
DASL has two distinct properties compared to a normal skip
list. First, it is append-only; that is, the index keys of the

73



struct Node {
Version v;
Value val;
List<Version> pre_versions;
List<Node*> pre_nodes;

Figure 6: A Node structure that captures a state
Sk,» With value val

Le(13]{5}{10) L1
L1

1
L35 Hm0]
, (1) (10} 16)
Lz-[ﬂ [5@ ¥3 78 1516 23
L.O 34 78 11 |_4;[O_E 15%]
s )10 B s
0 78 15 0 3

(a) (b)

Figure 7: (a) A DASL containing versions 1, 3, 5
and 10. The base b is 2. The intervals for L, and
L3 are shown in blue lines. (b) The new DASL after
appending versions 12 and 16. L, is created when
appending version 16. Ls is created, then discarded.

appended entries, which are state versions, are strictly in-
creasing. Second, it is deterministic; that is, the index struc-
ture is uniquely determined by the values of the appended
items, unlike a stochastic skip list.

DEFINITION 6. Let Vi = (vo,v1,...) be the sequence of
version numbers of states with identifier k, in which v; < vj
for all i < j. A DASL index for k consists of N linked
lists Lo, L1, ..,Ln—1. Let U;_l and v;- be the versions in the
(j—1)™ and j™ node of list L;. Let b be the base number, a
system-wide parameter. The content of L; is constructed as
follows:

1) Vo S Lq_

2) Given v;-_l, v;- is the smallest version in Vi, such that:

B

Figure 6 shows how DASL is stored with the state in a
data structure called Node. This structure (also referred
to as node) contains the state version and value. A node
belongs to multiple lists (or levels), hence it maintains a list
of pointers to other nodes in each level as well as a list of
the version numbers of pointed nodes. Both lists are of size
N, and the i entry of a list points to the previous version
(or the previous node) of this node in level L;. For the same
key, the version number uniquely identifies the node, and
hence we use version numbers to refer to the corresponding
nodes.

We can view a list as consisting of continuous, non-
overlapping intervals of certain sizes. In particular, the j%
interval of L; represents the range R = [5b%, (j+1)b%). Only
the smallest version in Vj that falls in this range is included
in the list. Figure 7(a) gives an example of a DASL structure
with b = 2. It can be seen that when the version numbers
are sparsely distributed, the lists at lower levels are identi-
cal. In this case, b can be increased to create larger intervals
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Algorithm 1: DASL Append

Input: version v and last node last
Output: previous versions and nodes

1 level=0; // list level

2 pre_versions = [|;

3 pre_nodes = [|;

4 finish = false ;

5 cur = last ;

6 while not finish do

7 l = cur->pre_versions.size() ;
8 if [ > 0 then
9 for j=level; j<l; ++j do
10 if cur->version /b < v /b then
11 pre_versions.append (cur->version);
12 pre_nodes.append(cur);
13 else
14 finish = true;
15 break;
16 if not finish then
17 cur = cur->pre_versions[l-1];
18 level =1
19 else
/* We have reached the last level */
20 finish = true;
21 while cur->version /b < v /b’ do
22 ++level;
23 pre_versions.append (cur->version);
24 pre_nodes.append(cur);

25 return pre_version, pre_nodes;

in order to reduce the overlapping among lower-level lists.
A DASL and a skip list share two properties. First, if a
version number appears in L;, it also appears in L; where
j <. Second, with b = 2, suppose the last level that a ver-
sion appears in is ¢, then this version’s preceding neighbour
in L; appears in L; where j > i. Given these properties,
a query for a version in the DASL is executed in the same
way as in the skip list. More specifically, the query traverses
a high-level list as much as possible, starting from the last
version in the last list. It moves to a lower level only if the
preceding version in the current list is strictly smaller than
the requested version. In DASL, the query for version v,
returns the largest version v € Vi such that v < v, (the
inequality occurs when v, does not exist). This result rep-
resents the value of the state which is visible at the time of
Vg.
We now describe how a new node is appended to DASL.
The challenge is to determine the lists that should include
the new node. Algorithm 1 details the steps that find the
lists, and subsequently the previous versions, of the new
node. The key idea is to start from the last node in Lo, and
then keep moving up the list level until the current node and
the new node belong to the same interval (line 9 - 18). Figure
7(b) shows the result of appending a node with version 12
to the original DASL. The algorithm starts at node 10 and
moves up to lists L; and Ls. It stops at Lz because in
this level nodes 10 and 12 belong to the same interval, i.e.,
[8,16). Thus, the new node is appended to lists Lo to La.
When the algorithm reaches the last level and is still able to
append, it creates a new level where node 0 is the first entry
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and repeats the process (line 21 - 24). In Figure 7(b), when
appending version 16, all existing lists can be used. The
algorithm then creates L4 with node 1 and appends node
16 to it. It also creates a new level Ls, but subsequently
discards it because node 16 will not be appended since it
belongs to same interval of [0, 32) with node 1.

4.3 Discussion

Our new Merkle DAG can be easily integrated to exist-
ing blockchain index structures. It meets the three require-
ments listed in Section 2. In particular, existing Merkle in-
dices such as MPT store state values directly at the leaves,
whereas the Merkle DAG in LineageChain stores the entry
hashes of the latest state versions at the leaves. By adding
one more level of indirection, we preserve the three proper-
ties of the index (tamper evidence, incremental update and
snapshot), while enhancing it with the ability to traverse the
DAG to extract fine-grained provenance information. Recall
that the state entry hash captures the entire evolution his-
tory of the state. Since this hash is protected by the Merkle
index for tamper evidence, so is the state history. In other
words, we add integrity protection for provenance without
any extra cost to the index structure. For example, suppose
a client wants to read a specific version of a state, it first
reads the state entry hash at the latest block. This read
operation can be verified against tampering, as in existing
blockchains. Next, the client traverses the DAG from this
hash to read the required version. Because the DAG is tam-
per evident, the integrity of the read version is guaranteed.

DASL and Merkle DAG integration. Adding DASL
to the Merkle DAG is straightforward. The node structure
(Figure 6) is stored in the state entry (Definition 3). The
node pointers are implemented as entry hashes. The Merkle
tree structure remains unchanged.

Speed vs. storage. As a skip list variant, DASL shares
the same space complexity and logarithmic query time com-
plexity. Suppose there are v number of versions and the
base of DASL is b. There are at most [log, v™] levels and
the i-th level takes at most [2—1] — 1 pointers. Suppose the
queried version is v? and the query distance d = v* — v9,
the maximum number of hops in such query is capped at
2b[log, d]. This is because a typical query consists of two
stages: one going towards the lower levels, and the other go-
ing towards the upper level. Each stage involves traversing
at most b hops on the same list before moving to the next
level, and there are at most [log, d] levels. It can be seen
that b determines the tradeoff between the space overhead
and query latency. Furthermore, DASL queries are more
efficient for more recent versions, i.e. d are small, which
is useful for smart contracts that rely on recent rather than
old versions. Finally, the performance of such recent-version
queries does not change as the state history grows.

S.  PERFORMANCE EVALUATION

We implement LineageChain on top of Hyperledger Fab-
ric v1.3. More details of the implementation can be found
in [13]. Figure 8 shows the software stack, highlighting the
changes to the original Fabric’s stack. We completely re-
place Fabric’s storage layer with our implementation of the
Merkle DAG and DASL index on top of ForkBase [14], a
state-of-the-art blockchain storage system with efficient sup-
port for versioning. We instrument Fabric’s execution engine

SIGMOD Record, March 2020 (Vol. 49, No. 1)

Application

Original Provenance @
Handler '.' Query Handler

Provenance Helper E’l“

Method Specification

Execution Layer

te) Accessed States Provenane
Execution Engine *‘O —_— * Engine

@ Provenance

Storage Layer

DAG Model with DASL Index
ASOTS

\

e N

- & - &
S S SFrBse ST S S
Figure 8: LineageChain’s software stack. The

original storage layer is replaced with the imple-
mentation that supports fine-grained provenance.
The original execution layer is instrumented with a
provenance capture engine. The application layer
contains the new helper method and provenance
query APIs. The consensus layer is unchanged.

to record read and write sets during contract execution. At
the application layer we add a new helper method and three
provenance APIs. The execution engine invokes the helper
method after every successful contract execution.

5.1 Methodologies

We evaluate LineageChain against two baselines. In the
first baseline, called Fabric-plus, we directly store prove-
nance information to Fabric’s original storage and rely on its
internal index to support provenance query. In the second
baseline, called LineageChain-lite, we use ForkBase for stor-
ing state versions. This baseline has no support for multi-
state dependency, and no DASL index. We use this to un-
derstand the index’s performance.

We perform three sets of experiments. First, we eval-
uate the performance of LineageChain for provenance-
dependent blockchain applications. We compare it against
the approach that queries provenance offline before issuing
blockchain transactions. Second, we evaluate the perfor-
mance of provenance queries in LineageChain on a single
machine. For single-state version queries, we use the YCSB
benchmark provided in BLOCKBENCH [9] to populate the
blockchain states with key-value tuples. We then measure
the latencies of two queries: one retrieves a state at a spe-
cific block, and the other iterates over the state history.
For multi-state dependency tracking, we implement a con-
tract for a supply chain application. In this application, a
phone is assembled from intermediary components which are
made from other components or raw material. The supply
chain creates a DAG representing the derivation history of a
phone. The maximum depth of the DAG is 6. We generate
synthetic data for this contract, and examine the latency of
the operation that uses Backtrack to retrieve dependencies
of a given phone.

In the third set of experiments, we evaluate the impact
of provenance on the overall blockchain performance. For
this, we run the Smallbank benchmark on multiple nodes.
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We measure the overall throughput, and analyze the cost
breakdown to understand the overhead of provenance sup-
port.

Our experiments are run on a local cluster of 16 nodes.
Each node is equipped with E5-1650 3.5GHz CPU, 32GB
RAM, and 2TB hard disk. The nodes are connected via
1Gbps Ethernet.

5.2 Experimental Results

Provenance-dependent Applications

We implement a simple provenance-dependent blockchain
application by modifying the YCSB benchmark in BLOCK-
BENCH such that the update operation depends on his-
torical values. With LineageChain, the contract has direct
access to the provenance information, and the client remains
the same as in the original YCSB. Without LineageChain,
the client is modified such that it reads B latest blocks be-
fore issuing transactions. B represents how far behind the
client is to the latest states.

Figure 9(a) shows transaction latency with varying B. It
can be seen that with LineageChain, the latency remains
almost constant because the client does not have to fetch
any block for the provenance query. In contrast, without
LineageChain, the latency increases linearly with B. This
demonstrates the performance gain brought by Lineage Chain
for having access to provenance information at runtime.

Provenance Queries

We first create 500 key-value tuples and then continuously is-
sue update transactions until there are more than 10k blocks
in the ledger. Each block contains 500 transactions. We
then execute a query for the values of a key at different
block numbers. Figure 10(a) illustrates the query latency
with increasing block distance from the last block. It can be
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seen that when the distance is small, LineageChain-lite has
the lowest latency. LineageChain-lite does not have DASL
index, and as a consequence for this query it has to scan
linearly from the latest version. As expected, the query
is fast when the requested version is very recent because
the number of reads is small, but degrades the performance
quickly as the distance increases. In particular, when the
block distance reaches 128, the query is 4x slower than Lin-
eageChain. We observe that the query latency in Fabric-
plus is independent of the block distance, because the query
uses flat storage index directly. LineageChain outperforms
both LineageChain-lite and Fabric-plus. Because of DASL,
the query latency in LineageChain is low when the block
distance is small. When the block distance increases, the la-
tency increases only logarithmically, as opposed to linearly
in LineageChain-lite.

We repeat the experiment above while fixing the block
distance to 64 and varying the total number of blocks.
Figure 10(b) shows the results for the version query with
increasing number of blocks. It can be seen that the
query latency in both LineageChain and Fabric-plus re-
mains roughly the same. In other words, the performance
of version queries in these systems are independent of the
block numbers, which is due to the DAG data model that
tracks state versions. LineageChain outperforms Fabric-
plus, thanks to the index that reduces the number of entries
needed to be read.

Next, we measure the latency for the operation that scans
the entire version history of a given key. Figure 10(c) shows
the scan latency with increasing number of blocks. For
Fabric-plus, we first construct the key range and rely on the
storage iterator for scanning. LineageChain-lite and Lin-
eageChain both use ForkBase iterator, and therefore they
have the same performance. As the number of blocks in-
creases, the version history becomes longer which accounts
for the linear increase in latency in both systems. However,
LineageChain outperforms Fabric-plus by a constant factor.
We attribute this difference to ForkBase’s optimizations for
version tracking.

Finally, we evaluate the query performance with multi-
state dependency. We populate the blockchain states and
issue transactions that produce new phones. We perform
a breadth-first search to retrieve all the dependencies of a
phone. For this experiment, we only compare Fabric-plus
and LineageChain, because LineageChain-lite does not sup-
port multi-state dependencies. Figure 9(b) shows the per-
formance with varying search depths. The latency of both
Fabric-plus and LineageChain grow exponentially with in-
creasing depths, but Lineage Chain outperforms the baseline.
It is because the index in LineageChain directly captures the
dependencies, whereas each backtrack operation in Fabric-
plus requires traversing the storage index. As the number
of queries increases with the search level, their performance
gap widens.

Performance Overhead

Finally, we evaluate LineageChain overhead on Hyperledger
Fabric v1.3. We use 16 nodes and vary the offer load by
increasing the client’s transaction rate. Figure 11 shows
the performance overhead. At saturation, LineageChain-lite
and LineageChain add less than 200ms in latency, compared
to the original Fabric that has no provenance support. In
contrast, Fabric-plus adds more than 1s. LineageChain-lite
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and LineageChain reach similar throughput as the original
Hyperledger, which is around 350tps. Fabric-plus peaks
at around 330tps. These results demonstrate that Lin-
eageChain’s overhead over the original Fabric is small.

6. CONCLUSIONS

In this paper, we presented LineageChain, a fine-grained,
secure and efficient provenance system for blockchains. The
system efficiently captures provenance information during
runtime, and exposes simple APIs to smart contracts,
which enables provenance-dependent blockchain applica-
tions. Provenance is stored securely, and queries are efficient
thanks to a novel skip list index. We implemented Lin-
eageChain on top of Hyperledger Fabric and benchmarked
it against several baselines. The results show the benefits
of LineageChain in supporting rich, provenance-dependent
applications. They demonstrate that provenance queries are
efficient, and LineageChain incurs small runtime overhead.
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