
Declarative Recursive Computation on an RDBMS

or, Why You Should Use a Database For Distributed Machine Learning

Dimitrije Jankov†, Shangyu Luo†, Binhang Yuan†, Zhuhua Cai*, Jia Zou‡, Chris Jermaine†, Zekai J. Gao†

Rice University †* Arizona State University ‡

{dj16, sl45, by8, cmj4, jacobgao}@rice.edu †

jia.zou@asu.edu ‡ caizhua@gmail.com *

ABSTRACT
We explore the close relationship between the tensor-based compu-
tations performed during modern machine learning, and relational
database computations. We consider how to make a very small set
of changes to a modern RDBMS to make it suitable for distributed
learning computations. Changes include adding better support for
recursion, and optimization and execution of very large compute
plans. We also show that there are key advantages to using an
RDBMS as a machine learning platform. In particular, DBMS-
based learning allows for trivial scaling to large data sets and espe-
cially large models, where different computational units operate on
different parts of a model that may be too large to fit into RAM.

1. INTRODUCTION
Modern machine learning (ML) platforms such as TensorFlow

[6] have primarily been designed to support data parallelism, where
a set of almost-identical computations (such as the computation of a
gradient) are executed in parallel over a set of computational units.
The only difference among the computations is that each operates
over different training data (known as “batches”). After each com-
putation has finished, the local gradients are either loaded to a pa-
rameter server (in the case of asynchronous data parallelism [17])
or are globally aggregated and used to update the model (in the case
of synchronous data parallelism [10]).

Unfortunately, data parallelism has its limits. For example, data
parallelism implicitly assumes that the model being learned (as well
as intermediate data produced when a batch is used to update the
model) can fit in the RAM of a computational unit (which may be
a server machine or a GPU). This is not always a reasonable as-
sumption, however. For example, a state-of-the-art NVIDIA Tesla
V100 Tensor Core GPU (a $10,000 data center GPU) has 32GB of
RAM. 32GB of RAM cannot store the matrix required for a fully-
connected layer to encode a vector containing entries from 200,000
categories into a vector of 50,000 neurons. Depending upon the
application, 50,000 neurons may not be a lot [19].

The original version of this paper is entitled “Declarative recursive
computation on an RDBMS: or, why you should use a database for
distributed machine learning" and was published in (Proceedings
of the VLDB Endowment, 2019, VLDB Endowment.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

Handling such a model requires model parallelism—where the
statistical model being learned is not simply replicated at different
computational units, but is instead partitioned and operated over in
parallel, in a series of bulk-synchronous operations. As discussed
in the related work section, systems for distributed ML offer limited
support for model parallelism.

Re-purposing relational technology for ML. We argue that if re-
lational technology is used, distinctions such as model vs. data
parallelism become unimportant. Relational database management
systems (RDBMSs) provide a declarative programming interface,
which means that the programmer (or automated algorithm genera-
tor, if a ML algorithm is automatically generated via automatic dif-
ferentiation) only needs to specify what he/she/it wants, but does
not need to write out how to compute it. The computations will
be automatically generated by the system, and then be optimized
and executed to match the data size, layout, and the compute hard-
ware. The code is the same whether the computation is run on a
local machine or in a distributed environment, over a small or large
model. In contrast, systems such as TensorFlow provide relatively
weak forms of declarativity, as each logical operation in a com-
pute graph (such as a matrix multiply) must be executed on some
physical compute unit, like a GPU.

Our Contributions. We explore the close relationship between the
tensor-based computations performed during modern ML, and re-
lational database computations. We argue that it is easy to express
such computations relationally, and detail some of the changes that
need to be made to relational systems to support such computations.
We show that a lightly-modified (and low-performance) research-
prototype relational system can support declarative codes that scale
to large model sizes, past those that a platform such as TensorFlow
can easily support, and sometimes even outperform TensorFlow on
those computations. As larger and larger models and data sets be-
come more prevalent in deep learning (consider the current empha-
sis on learning huge transformer models [21]), this suggests that
tomorrow’s high-performance deep learning systems might ideally
be based upon relational technology.

2. DEEP LEARNING ON AN RDBMS

2.1 Imperative Programming is Problematic
Imperative programming has been the dominant programming

paradigm since the 1950’s. In imperative programming, a program-
mer gives a sequence of commands that incrementally update the
state of the program’s data. In contrast, since the 1980’s relational
database codes are almost always written declaratively, in SQL.

SIGMOD Record, March 2020 (Vol. 49, No. 1) 43

...

...

...

...

...

...

hidden layers

input
layer

output
layer

neuron !, layer "

Figure 1: Structure of a feed-forward neural network.

That is, the programmer describes the desired result, ignoring pro-
gram state, data movement and access, and control flow. Declara-
tive programming is particularly important in databases because if
computations are executed suboptimally—if the wrong join order
is chosen, for example—they have the potential to produce huge
intermediate results that can result in long runtimes or system fail-
ure. Before declarative database programming became common-
place, programmers writing imperative database codes proved un-
able to consistently write programs that would choose the correct
data access path. And, even if they wrote the perfect code, the data,
storage, or hardware would change, and the code would quickly
become obsolete.

Crucially, the tensor-based ML computations performed in deep
learning are similar to database computations, in that the same
computation can be executed in different ways, and those differ-
ent execution choices can result in radically different costs. In fact,
relations are closely related to tensors—a relation can be viewed
as a possible implementation of a tensor—and it is easy to trans-
late computations expressed in standard tensor calculus, such as
the Einstein notation [22], into relational joins and aggregations.
The key benefit of expressing such computations relationally is that
then, in theory, the same code can be executed using a relational op-
timization and execution engine, regardless of model and data sizes
or hardware.

In the remainder of this section, we describe via an example how
a simple deep learner can be expressed relationally, and use this
example to illustrate the danger of asking a programmer to provide
control flow.

2.2 A Simple Deep Learner
A deep neural network is a differentiable, non-linear function,

typically conceptualized as a directed graph. Each node in the
graph (often called a “neuron”) computes a continuous activation
function over its inputs (sigmoid, ReLU, etc.).

One of the simplest and most commonly used artificial neural
networks is a so-called feed-forward neural network [11]. Neurons
are organized into layers. Neurons in one layer are connected only
to neurons in the next layer, hence the name “feed-forward". Con-
sider the feed-forward network in Figure 1. To compute a func-
tion over an input (such as a text document or an image), the in-
put vector is fed into the first layer, and the output from that layer
is fed through one or more hidden layers, until the output layer
is reached. If the output of layer l � 1 (or “activation”) is repre-
sented as a vector al�1, then the output of layer l is computed as
al = � (al�1Wl + bl) Here, bl and Wl are the the bias vector and
the weight matrix associated with the layer l, respectively, and �(·)
is the activation function.

Learning. Learning is the process of customizing the weights for a
particular data set and task. Since learning is by far the most com-
putationally intensive part of using a deep network, and because the
various data structures (such as the Wl matrix) can be huge, this is

the part we would typically like to distribute across machines.
Two-pass mini-batch gradient descent is the most common learn-

ing method used with such networks. Each iteration takes as input
the current set of weight matrices {W(i)

1 ,W(i)
2 , ...} and bias vec-

tors {b(i)
1 , b(i)

2 , ...} and then outputs the next set of weight matrices
{W(i+1)

1 ,W(i+1)
2 , ...} and bias vectors {b(i+1)

1 , b(i+1)
2 , ...}. This

process is repeated until convergence.
In one iteration of the gradient descent, each batch of inputs is

used to power two passes: the forward pass and the backward pass.

The forward pass. In the forward pass, at iteration i, a small subset
of the training data are randomly selected and stored in the matrix
X(i). The activation matrix for each of these data points, A1, is
computed as A(i)

1 = �
⇣

X(i)W(i)
1 + B(i)

1

⌘
(here, let the bias ma-

trix B(i)
1 be the matrix formed by replicating the bias vector b(i)

1

n times, where n is the size of the mini-batch). Then, this activa-
tion is pushed through the network by repeatedly performing the
computation A(i)

l = �
⇣

A(i)
l�1W(i)

l + B(i)
l

⌘
.

The backward pass. At the end of the forward pass, a loss (or
error function) comparing the predicted set of values to the actual
labels from the training data are computed. To update the weights
and biases using gradient descent, the errors are fed back through
the network, using the chain rule. Specifically, the errors back-
propagated from hidden layer l + 1 to layer l in the i-th backward
pass is computed as

E(i)
l =

✓
E(i)

l+1

⇣
W(i)

l+1

⌘T
◆
� �0

⇣
A(i)

l

⌘
,

where �0(·) is the derivative of the activation function. After we
have obtained the errors (that serve as the gradients) for each layer,
we update the weights and biases:

W(i)
l = W(i�1)

l � ↵ · A(i�1)
l�1 E(i�1)

l ,

b(i)
l = b(i�1)

l � ↵ ·

X

n

e(i�1)
l ,

where ↵ is the learning rate, and el is the row vector of El.

2.3 A Mixed Imperative/Declarative Approach
Perhaps surprisingly, a model parallel computation of this algo-

rithm is possible on top of an RDBMS. We begin by assuming an
RDBMS that has been lightly augmented to handle matrix and
vector data types as described in [16], and assume that the var-
ious matrices and vectors have been “chunked”. The following
database table that stores the chunk of W(ITER)

LAYER
at the given row

and column:

W (ITER, LAYER, ROW, COL, MAT)

MAT is of type matrix (1000, 1000) and stores one “chunk”
of W(ITER)

LAYER
. A 105 ⇥ 105 matrix chunked in this way would have

104 entries in the W table, with one sub-matrix for each of the
100 = 105/103 possible ROW values combined with each of the
100 = 105/103 possible COL values.

Also, the activations A(ITER)
LAYER

are stored chunked as matrices hav-
ing 1000 columns in the following table:

A (ITER, LAYER, COL, ACT)

A final table AEW stores the values needed to compete W(ITER+1)
LAYER

:
A(ITER-1)
LAYER-1

(as ACT), E(ITER-1)
LAYER

(as ERR), and W(ITER-1)
LAYER

(as MAT):

AEW (LAYER, ROW, COL, ACT, ERR, MAT)

44 SIGMOD Record, March 2020 (Vol. 49, No. 1)

--First, issue a query that computes the errors
--being backpropagated from the top layer in
--the network.
SELECT 9, W.ROW, W.COL, A.ACT, E.ERR, W.MAT

BULK COLLECT INTO AEW

FROM A, W,

--Note: we are using cross-entropy loss
(SELECT A.COL,

crossentropyderiv(A.ACT, DO.VAL) AS ERR

FROM A, DATA_OUTPUT AS DO

WHERE A.LAYER=9) AS E

WHERE A.COL=W.ROW AND W.COL=E.COL

AND A.LAYER=8 AND W.LAYER=9

AND A.ITER=i AND W.ITER=i;

--Now, loop back through the layers in the network
for l = 9, ..., 2:

--Use the errors to compute the new weights
--connecting layer l to layer l + 1; add to
--result for learning iteration i + 1
SELECT i+1, l, ROW, COL,

MAT - matmul(t(ACT), ERR) * 0.00000001

BULK COLLECT INTO W

FROM AEW WHERE LAYER=l;

--Issue a new query that uses the errors from the
--previous layer to compute the errors in this
--layer. reluderiv takes the derivative of the
--activation.
SELECT l-1, W.ROW, W.COL, A.ACT, E.ERR, W.MAT

BULK COLLECT INTO AEW FROM A, W,

(SELECT ROW AS COL,

SUM(matmul(ERR, t(MAT))
* reluderiv(ACT)) AS ERR

FROM AEW WHERE LAYER=l

GROUP BY ROW) AS E

WHERE A.COL=W.ROW AND W.COL=E.COL

AND A.LAYER=l-2 AND W.LAYER=l-1;

AND A.ITER=i AND W.ITER=i;

end for

--Update the first set of weights (on the inputs)
SELECT i+1, 1, ROW, COL,

MAT - matmul(t(ACT), ERR) * 0.00000001

BULK COLLECT INTO W

FROM AEW WHERE LAYER=1;

Figure 2: SQL code to implement the backward pass for itera-
tion i of a feed-forward deep network with eight hidden layers.

ROW and COL again identify a particular matrix chunk. Given this,
a fully model parallel implementation of the backward pass can be
implemented using the SQL code in Figure 2.
crossentropyderiv() and reluderiv() are user-de-

fined functions implementing the derivatives of cross-entropy and
ReLU activation, respectively. The entire model parallel backward-
pass code is around twenty lines long and could be generated by an
auto-differentiation tool.

2.4 So, What’s the Catch?
This code illustrates both the promise of expressing such tensor-

based computations relationally, but also the pitfalls of asking the
user to provide control flow. While the core computation is declara-
tive, an imperative loop has been used to loop backward through the
layers. The SQL programmer used a database table to pass state be-
tween iterations. In our example, this is done by utilizing the AEW
table, which stores the error being back-propagated through each of
the connections from layer l + 1 to layer l in the network, for each
of the data points in the current learning batch. If there are 100,000
neurons in two adjacent layers in a fully-connected network and
1,000 data points in a batch, then there are (100,000)2 such con-

nections for each of the 1,000 data points, or 1013 values stored in
all. Using single-precision floating point value, a debilitating 40TB
of data must be materialized.

Storing the set of per-connection errors is a very intuitive choice
as a way to communicate among loops iterations, especially since
the per-connection errors are subsequently aggregated in two ways
(one to compute the new weights at a layer, and one to compute
the new set of per-connection errors passed to the next layer). But
forcing the system to materialize this table can result in a very
inefficient computation. This could be implemented by pipelin-
ing the computation creating the new data for the AEW table di-
rectly into the two subsequent aggregations, but this possibility has
been lost when the programmer asked that the new data be BULK
COLLECTed into AEW.

Note that this is not merely a case of a poor choice on the part
of the programmer. In order to write a loop, state has to be passed
from one iteration to another, and it is this state that made it impos-
sible for the system to realize an ideal implementation.

3. EXTENSIONS TO SQL
In this section, we consider a couple of extensions to SQL that

make it possible for a programmer (either a human or a deep-learning
toolchain) to declaratively specify recursive computations such as
back-propagation, without control flow.

3.1 The Extensions
We introduce these SQL extensions in the context of a classic in-

troductory programming problem: implementing Pascal’s triangle,
which recursively defines binomial coefficients. Specifically, the
goal is to build a matrix such that the entry in row i and column j
is
�
i
j

�
(or i choose j). The triangle is defined recursively so that for

any integers i � 0 and j 2 [1, i� 1],
�
i
j

�
=

�
i�1
j�1

�
+

�
i�1
j

�
:

i
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

0 1 2 3 4
j

Our extended SQL allows for multiple versions of a database table;
versions are accessed via array-style indices. For example, we can
define a database table storing the binomial coefficient

�
0
0

�
as:

CREATE TABLE pascalsTri[0][0] (val) AS
SELECT val FROM VALUES (1);

The table pascalsTri[0][0] can now be queried like any other
database table, and various versions of the tables can be defined re-
cursively. For example, we can define all of the cases where j = i
(the diagonal of the triangle) as:
CREATE TABLE pascalsTri[i:1...][i] (val) AS
SELECT * FROM pascalsTri[i-1][i-1]

And all of the cases where j = 0 as:
CREATE TABLE pascalsTri[i:1...][0] (val) AS
SELECT * FROM pascalsTri[i-1][0]

Finally, we can fill in the rest of the cells in the triangle via one
more recursive relationship:
CREATE TABLE pascalsTri[i:2...][j:1...i-1](val) AS
SELECT pt1.val + pt2.val AS val

FROM pascalsTri[i-1][j-1] AS pt1,

pascalsTri[i-1][j] AS pt2;

SIGMOD Record, March 2020 (Vol. 49, No. 1) 45

Note that this differs quite a bit from classical, recursive SQL,
where the goal is typically to compute a fix-point of a set. Here,
there is no fix-point computation. In fact, this particular recurrence
defines an infinite number of versions of the pascalsTri table.
Since there can be an infinite number of such tables, those tables
are materialized on-demand. A programmer can issue the query:
SELECT * FROM pascalsTri[56][23]

In which case the system will unwind the recursion, writing the
required computation as a single relational algebra statement. A
programmer may ask questions about multiple versions of a table
at the same time (without having each one be computed separately):
EXECUTE (

FOR j IN 0...50:

SELECT * FROM pascalsTri[50][j])

By definition, all of the queries/statements within an EXECUTE

command are executed as part of the same query plan. Thus, this
would be compiled into a single relational algebra statement that
produces all 51 of the requested tables, under the constraint that
each of those 51 tables must be materialized (without such a con-
straint, the resulting physical execution plan may pipeline one or
more of those tables, so that they exist only ephemerally and can-
not be returned as a query result). If a programmer wished to ma-
terialize all of these tables so that they could be used subsequently
without re-computation, s/he could use:
EXECUTE (

FOR j IN 0...50:

MATERIALIZE pascalsTri[50][j])

which materializes the tables for later use. Finally, we introduce
a multi-table UNION operator that merges multiple, recursively-
defined tables. This makes it possible to define recursive relation-
ships that span multiple tables. For example, a series of tables stor-
ing the various Fibonacci numbers (where Fib(i) = Fib(i� 1) +
Fib(i� 2) and Fib(1) = Fib(2) = 1) can be defined as:
CREATE TABLE Fibonacci[i:0...1] (val) AS

SELECT * FROM VALUES (1)

CREATE TABLE Fibonacci[i:2...] (val) AS
SELECT SUM (VAL) FROM UNION Fibonacci[i-2...i-1]

In general, UNION can be used to combine various subsets of re-
cursively defined tables. For example, one could refer to UNION

pascalsTri[i:0...50][0...i]which would flatten the first
51 rows of Pascal’s triangle into a single multiset.

3.2 Learning Using Recursive SQL
With our SQL extensions, we can rewrite the aforementioned

forward-backward passes to eliminate imperative control flow by
declaratively expressing the various dependencies among the acti-
vations, weights, and errors.

Forward pass. The forward pass is concerned with computing the
level of activation of the neurons at each layer. The activations
of all neurons in layer j at learning iteration i are given in the ta-
ble A[i][j]. Activations are computed using the weighted sum
of the outputs of all of the neurons at the last level; the weighted
sums input into layer j at learning iteration i is given in the table
WI[i][j]. The corresponding SQL code is as follows. The for-
ward pass begins by loading the first layer of activations with the
input data:
CREATE TABLE A[i:0...][j:0](COL, ACT) AS

SELECT DI.COL, DI.VAL

FROM DATA_INPUT AS DI;

We then send the activation across the links in the network:

CREATE TABLE WI[i:0...][j:1...9](COL, VAL) AS
SELECT W.COL, SUM(matmul(A.ACT, W.MAT))

FROM W[i][j] AS w, A[i][j-1] AS A

WHERE W.ROW = A.COL

GROUP BY W.COL;

Those links are then used to compute activations:
CREATE TABLE A[i:0...][j:1...8](COL, ACT) AS
SELECT WI.COL, relu(WI.VAL + B.VEC)

FROM WI[i][j] AS WI, B[i][j] AS B

WHERE WI.COL = B.COL;

And finally, at the top layer, the softmax function is used to per-
form the prediction:
CREATE TABLE A[i:0...][j:9](COL, ACT) AS
SELECT WI.COL, softmax(WI.VAL + B.VEC)

FROM WI[i][j] AS WI, B[i][j] AS B

WHERE WI.COL = B.COL;

Backward pass. In the backward pass, the errors are pushed back-
ward through the network. The error being pushed through layer j
in learning iteration i are stored in the table E[i][j]. These er-
rors are used to update all of the network’s weights (the weights di-
rectly affecting layer j in learning iteration i are stored in W[i][j])
as well as biases (stored in B[i][j])).

We begin the SQL code for the backward pass with the initial-
ization of the error:
CREATE TABLE E[i:0...][j:9](COL, ERR) AS
SELECT A.COL, crossentropyderiv(A.ACT, DO.VAL)

FROM A[i][j] AS A, DATA_OUTPUT AS DO;

At subsequent layers, the error is:
CREATE TABLE E[i:0...][j:1...8](COL, ERR) AS
SELECT W.ROW, SUM(matmul(E.ERR, t(W.MAT))

* reluderiv(A.ACT))
FROM A[i][j] AS A, E[i][j+1] AS E,

W[i][j+1] AS W

WHERE A.COL = W.ROW AND W.COL = E.COL

GROUP BY W.ROW;

Now we use the error to update the weights:
CREATE TABLE W[i:1...][j:1...9](ROW, COL, MAT) AS
SELECT W.ROW, W.COL,

W.MAT - matmul(t(A.ACT), E.ERR) * 0.00000001

FROM W[i-1][j] AS W, E[i-1][j] AS E,

A[i-1][j-1] AS A

WHERE A.COL = W.ROW AND W.COL = E.COL;

And the biases:
CREATE TABLE B[i:1...][j:1...9](COL, VEC) AS
SELECT B.COL,

B.VEC - reducebyrow(E.ERR) * 0.00000001

FROM B[i-1][j] AS B, E[i-1][j] AS E

WHERE B.COL = E.COL;

We now have a fully declarative implementation of neural net-
work learning.

4. EXECUTING RECURSIVE PLANS
The recursive specifications of the last section address the prob-

lem of how to succinctly and declaratively specify complicated re-
cursive computations. Yet the question remains: How can the very
large and complex computations associated with such specifica-
tions be compiled and executed by an RDBMS without significant
modification to the system?

4.1 Frame-Based Execution
Our possibility for compiling and executing computations writ-

ten recursively in this fashion is to first compile the recursive com-
putation into a single monolithic relational algebra computation,

46 SIGMOD Record, March 2020 (Vol. 49, No. 1)

and then partition the computation into frames, or sub-plans. Those
frames are then optimized and executed independently, with inter-
mediate tables materialized to facilitate communication between
frames.

Frame-based computation is attractive because if each frame is
small enough that an existing query optimizer and execution en-
gine can handle the frame, the RDBMS optimizer and engine need
not be modified in any way. Further, this iterative execution results
in an engine that resembles engines that perform re-optimization
during runtime [12], in the sense that frames are optimized and exe-
cuted only once all of their inputs have been materialized. Accurate
statistics can be collected on those inputs—specifically, the number
of distinct attribute values can be collected using an algorithm like
Alon-Matias-Szegedy [1]—meaning that problems associated with
errors propagating through a query plan can be avoided.

4.2 Heuristic vs. Full Unrolling
One could imagine two alternatives for implementing a frame-

based strategy. The first is to rely on a heuristic, such as choosing
the outer-most loop index, breaking the computation into frames
using that index. However, there are several problems with this ap-
proach. First off, we are back to the problem described in Section
3.3, where we are choosing to materialize tables in an ad-hoc and
potentially dangerous way (we may materialize a multi-terabyte ta-
ble). Second, we cannot control the size of the frame. Too many
operations can mean that the system is unable to optimize and ex-
ecute the frame, while too few can mean a poor physical plan with
too much materialized data. Third, if we allow the recursion to go
up as well as down, or skip index values, this will not work.

Instead, we opt for an approach that performs a full unrolling
of the recursive computation into a single, monolithic computa-
tion, which may in practice consist of hundreds of thousands of
relational operations, and then define an optimization problem that
attempts to split the computation into frames so as to minimize the
likelihood of materializing a large number of tables.

4.3 Optimization Problem: Intuition
The cost incurred when utilizing frames is twofold. First, the use

of frames restricts the ability of the system’s logical and physical
optimizer to find optimization opportunities. For example, if the
logical plan ((R 1 S) 1 T) is optimal but the input plan ((R 1
T) 1 S) is cut into frames f1 = (R 1 T) and f2 = (f1 1 S) it
is impossible to realize this optimal plan. In practice, we address
this by placing a minimum size on frames as larger frames make it
more likely that high-quality join orderings will still be present in
the frame.

More significant is the requirement that the contents of already-
executed frames be saved, so that later frames may utilize them.
This can introduce significant I/O cost compared to a monolithic
execution. Thus we we may attempt to cut into frames to mini-
mize the number of bytes traveling over cut edges. Unfortunately,
this is unreasonable as it is well-understood that estimation errors
propagate through a plan; in the upper reaches of a huge plan, it
is going to be impossible to estimate the number of bytes traveling
over edges.

Instead, we find that spitting the plan into frames so as to reduce
the number of pipeline breakers induced is a reasonable goal. A
pipeline breaker occurs when the output of one operator must be
materialized to disk or transferred over the network, as opposed to
being directly communicated from operator to operator via CPU
cache, or, in the worst case, via RAM. An induced pipeline breaker
is one that would not have been present an optimal physical plan,
but was forced by the cut.

4.4 Quadratic Assignment Formulation
Given a query plan, it is unclear whether a cut that separates two

operators into different frames will induce a pipeline breaker. We
model this uncertainty using probability, and seek to minimize the
expected number of pipeline breakers induced by the set of chosen
frames.

This is “probability” in the Bayesian rather than frequentist sense,
in that it represents a level or certainty or belief in the pipelineabil-
ity of various operators. For the ith and jth operators in the query
plan, let Nij be a random variable that takes the value 1 if operator
i is pipelined into operator j were the entire plan optimized and
executed as a unit, and 0 otherwise.

Let the query plan to be cut into frames be represented as a di-
rected graph having n vertices, represented as a binary matrix E,
where eij is one (that is, there is an edge from vertex i to vertex j)
if the output of operator i is directly consumed by operator j. eij
is zero otherwise. We would like to split the graph into m frames.
We define the split of a query plan to be a matrix X = (xij)n⇥n,
where each row would be one frame so that xij = 1 if operator i
is in a different frame from operator j (that is, they have been cut
apart) and 0 otherwise. Given this, the goal is to minimize:

cost(X) = E

2

4
nX

i=1

nX

j=1

eijxijNij

3

5 =
nX

i=1

nX

j=1

eijxijE [Nij]

This computes the expected number of pipeline breakers induced,
as for us to induce a new pipeline breaker via the cut, (a) operator
j must consume the output from operator i, (b) operator i and j
must be separated by the cut, and (c) operator i should have been
pipelined into operator j in the optimal execution.

We can re-write the objective function by instead letting the ma-
trix X = (xij)n⇥m be an assignment matrix, where

P
i xij = 1,

and each xij is either one ore zero. Then, xij is one if operator i is
put into frame j and we have:

cost(X) =

0

@
nX

i=1

nX

j=1

mX

a=1

mX

b=1

eijxiaxjbE [Nij]

1

A�

0

@
nX

i=1

nX

j=1

mX

a=1

eijxiaxjaE [Nij]

1

A

Letting cijab = eijE [Nij]��abeijE [Nij] = eijE [Nij] (1��ab)
where �ab is the Kronecker delta function, we then have:

cost(X) =
nX

i=1

nX

j=1

mX

a=1

mX

b=1

cijabxiaxjb

The trivial solution to choosing X to minimize this cost function is
to put all or most operators in the same frame, but that would result
in a query plan that is not split in a meaningful way. Therefore we
need to add a constraint on the upper bound of operators in each
frame: min 

P
j xij  max for some maximum frame size.

The resulting optimization problem is not novel: it is an instance
of the problem popularly known as the generalized quadratic as-

signment problem, or GQAP [14], where the goal is to map tasks
or machinery (in this case, the various operations we are executing)
into locations or facilities (in this case, the various frames). GQAP
generalizes the classical quadratic assignment problem by allow-
ing multiple tasks or pieces of machinery to be mapped into the
same location or facility (in the classical formulation, only one task
is allowed per facility). Unfortunately, both GQAP and classical
quadratic assignment are NP-hard, and inapproximable.

SIGMOD Record, March 2020 (Vol. 49, No. 1) 47

In our instance of the problem, we actually have one additional
constraint that is not expressible within the standard GQAP frame-
work. A simple minimization of the objective function could result
in a sequence of frames that may not be executable because they
contain circular dependencies. In order to ensure that we have no
circular dependencies, we have to make the intermediate value that
a frame uses available before it is executed. To do this, we take the
natural ordering of the frames to be meaningful, in the sense that
frame a is executed before frame b when a < b, and for each edge
eij in the computational graph, we introduce the constraint that for
a, b where xia = 1 and xjb = 1, it must be the case that a  b.

4.5 Cost Model
So far, we have not discussed the precise nature of the vari-

ous Nij variables that control whether the output of operator i is
pipelined into operator j in a single, uncut, optimized and executed
version of the computation. Specifically, we need to compute the
value of E [Nij] required by our GQAP instance. Since each Nij

is a binary variable, E [Nij] is simply the probability that Nij eval-
uates to one. Let pij denote this probability. In keeping with our
view, we define the various pij values as follows:

(1) If the output of operator i has one single consumer (operator
j) and operator j is a selection or an aggregation, then pij is 1.
The reason for this is that in the system we are building on (Sim-
SQL [2]), it is always possible to pipeline into a selection or an
aggregation. Selections are always pipelineable, and in SimSQL, if
operator j is an aggregation, then a corresponding pre-aggregation
will be added to the end of the pipeline executing operation j. This
pre-aggregation maintains a hash table for each group encountered
in the aggregation, and as new data are encountered, statistics for
each data object are added to the corresponding group. As long
as the number of groups is small and the summary statistics com-
pact, this can radically reduce the amount of data that needs to be
shuffled to implement the aggregation.

(2) If the output of operator i has one single consumer (operator
j) but operator j is not a selection or an aggregation, then pij is
estimated using past workloads. That is, based off of workload
history, we compute the fraction of the time that operator i’s type
of operation is pipelined into the type of operator j’s operation, and
use that for pij .

(3) In SimSQL, if operator i has multiple consumers, then the out-
put of operator i can be pipelined into only one of them (the output
will be saved to disk and then the other operators will be executed
subsequently, reading the saved output). Hence, if there are k con-
sumers of operator i, and operator j is a selection or an aggregation,
then pij = 1

k . Otherwise, if, according to workload history, the
traction of the time that operator i’s type of operation is pipelined
into the type of operator j’s operation is f , then pij = f

k .

5. EXPERIMENTS

5.1 Overview
In this section, we detail a set of experiments aimed at answering

the following questions:

Can the ideas described in this paper be used to re-purpose an

RDBMS so that it can be used to implement scalable, performant,

model parallel ML computations?

We implement the ideas in this paper on top of SimSQL, a research-
prototype, distributed database system [2]. SimSQL has a cost-
based optimizer, an assortment of implementations of the standard

relational operations, the ability to pipeline those operations and
make use of “interesting” physical data organizations. It also has
native matrix and vector support [16].

Scope of Evaluation. We stress that this is not a “which system
is faster?” comparison. SimSQL is implemented in Java and runs
on top of Hadoop MapReduce, with the high latency that implies.
Hence a platform such as SimSQL is likely to be considerably
faster than SimSQL, at least for learning smaller models (when
SimSQL’s high fixed costs will dominate).

Rather than determining which system is faster, the specific goal
is to study whether an RDBMS-based, model-parallel learner is a
viable alternative to a system such as TensorFlow, and whether it
has any obvious advantages.

Experimental Details. In all of our experiments, all implementa-
tions run the same algorithms over the same data. Thus, a configu-
ration that runs each iteration 50% faster than another configuration
will reach a given target loss value (or log-likelihood) 50% faster.
Hence, rather than reporting loss values (or log-likelihoods) we re-
port per-iteration running times.

All implementations are fully synchronous, for an apples-to-ap-
ples comparison. We choose synchronous learning as there is strong
evidence that synchronous learning for large, dense problems is the
most efficient choice [3, 9].

In the first set of FFNN experiments, EC2 r5d.2xlarge CPU
machines with 8 cores and 64GB of RAM were used. In the second
set, at various cost levels, we chose sets of machines to achieve the
best performance. For TensorFlow, this was achieved using GPU
machines; for SimSQL, both CPU and GPU machines achieved
around the same performance.

We use the data parallel, synchronous, feed-forward network im-
plementation that ships with TensorFlow as a comparison with the
FFNN implementation described in this paper. We use a Wikipedia
dump of 4.86 million documents as the input to the feed-forward
learner. The goal is to learn how to predict the year of the last edit
to the article. There are 17 labels in total. We process the Wikipedia
dump, representing each document as a 60,000-dimensional feature
vector. In most experiments, we use a size 10,000 batch.

5.2 Results
To examine the necessity of actually using a frame-based execu-

tion, we use ten machines to perform FFNN learning on a relatively
small learning task (10,000 hidden neurons, batch size 100). We
unroll 60 iterations of the learning, and compare the per-iteration
running time using the full cutting algorithm along with the cost
model of Section 6.3 with a monolithic execution of the entire, un-
rolled plan. The resulting graph has 12,888 relational operators.
The monolithic execution failed during the second iteration. The
per-iteration running time of the frame-based execution is com-
pared with monolithic execution in Figure 3.

We evaluate both the RDBMS and TensorFlow with a variety
of cluster sizes (five, ten, and twenty machines) and a wide vari-
ety of hidden layer sizes—up to 160,000 neurons. onnecting two
such layers requires a matrix with 26 billion entries (102 GB). Per-
iteration execution times are given in Figure 4. “Fail” means that
the system crashed.

In addition, we ran a set of experiments where we attempted to
achieve the best performance at a $3-per-hour, $7-per-hour, and
$15-per-hour price point using Amazon AWS. For TensorFlow, at
$3, this was one p3.2xlargeGPU machine and a r5.4xlarge
CPU machine; at $7, it was two p3.2xlarge GPU machines
and two r5.4xlarge CPU machines, and at $15, it was four
p3.2xlarge GPU machines and four r5.4xlarge CPU ma-

48 SIGMOD Record, March 2020 (Vol. 49, No. 1)

Graph Type FFNN per-iteration time
Whole Graph 05:53:29
Frame-Based 00:12:53

Figure 3: Frame-based vs. monolithic execution.

FFNN
Hidden Layer Neurons RDBMS TensorFlow

Cluster with 5 workers
10000 05:39 01:36
20000 05:46 03:38
40000 08:30 09:02
80000 24:52 Fail

160000 Fail Fail
Cluster with 10 workers

10000 04:53 00:54
20000 05:32 02:00
40000 07:41 04:59
80000 17:46 Fail

160000 44:21 Fail
Cluster with 20 workers

10000 04:08 00:32
20000 05:40 01:12
40000 06:13 02:56
80000 12:55 Fail

160000 25:00 Fail

Figure 4: Average iteration time for FFNN learning, using var-
ious CPU cluster and hidden layer sizes.

chines. SimSQL did about the same using one, two or four c5d.18
xlarge CPU machines (at $3, $7, and $15, respectively) as it
did using two, five or ten c5d.18xlarge GPU machines. Per-
iteration execution times are given in Figure 5.

5.3 Discussion
SimSQL was unable to handle the 12,888 operators in the FFNN

plan, resulting in a running time that was around 100⇥ longer than
frame-based execution (see Figure 3).

On the CPU clusters (Figure 4), the RDBMS was slower than
TensorFlow in most cases, but it scaled well, whereas TensorFlow
crashed (due to memory problems) on a problem size of larger than
40,000 hidden neurons.

Micro-benchmarks showed that for the 40,000 hidden neuron
problem, all of the required matrix operations required for an it-
eration of FFNN learning took 6 minutes, 17 seconds on a single
machine. Assuming a perfect speedup, on five machines, learn-
ing should take just 1:15 per iteration. However, the RDBMS took
8:30, and TensorFlow took 9:30. This shows that both systems
incur significant overhead, at least at such a large model size. Sim-
SQL, in particular, requires a total of 61 seconds per FFNN iter-
ation just starting up and tearing down Hadoop jobs. As the sys-
tem uses Hadoop, each intermediate result that cannot be pipelined
must be written to disk, causing a significant amount of I/O. A
faster database could likely lower this overhead significantly.

On a GPU (Figure 5) TensorFlow was very fast, but could not
scale past 10,000 neurons. The problem is that when using a GPU,
all data in the compute graph must fit on the GPU; TensorFlow
is not designed to use CPU RAM as a buffer for GPU memory.
The result is that past 10,000 neurons (where one weight matrix is
4.8GB in size) GPU memory is inadequate and the system fails.

Our GPU support in SimSQL did not provide much benefit, for
a few reasons. First, the AWS GPU machines do not have attached

FFNN
Hidden Layer RDBMS RDBMS TensorFlow

Size (CPU) (GPU) (GPU)
$3 per hour budget

10000 04:50 06:25 00:24
20000 07:07 07:12 Fail
40000 11:52 11:48 Fail
80000 16:30 Fail Fail

160000 Fail Fail Fail
$7 per hour budget

10000 04:53 04:58 00:15
20000 05:54 06:08 Fail
40000 09:32 08:26 Fail
80000 12:03 17:50 Fail

160000 Fail Fail Fail
$15 per hour budget

10000 05:12 5:00 00:12
20000 05:36 06:30 Fail
40000 09:08 08:39 Fail
80000 12:24 12:20 Fail

160000 39:40 Fail Fail

Figure 5: Average iteration time for FFNN learning, maximiz-
ing performance at a specific dollar cost.

storage, which means that moving to GPU machines meant that
all of the disk read/writes incurred by Hadoop had to happen over
network attached storage (compare with the CPU hardware, which
had a fast, attached solid-state drive). Second, as discussed above,
SimSQL’s overhead above and beyond pure CPU time for matrix
operations is high enough that reducing the matrix time further us-
ing a GPU was ineffective.

6. BACKGROUND AND RELATED WORK
During learning, we are given a data set T with elements tj . The

goal is to learn a d-dimensional vector (d � 1) of model parameters
⇥ = (⇥(1), ⇥(2), . . . ,⇥(d)) that minimize a loss function of the
form

P
j L(tj |⇥). To this end, learning algorithms such as gradi-

ent descent perform a simple update repeatedly until convergence:

⇥i+1 ⇥i � F (⇥i,T)

If it is possible to store ⇥i in the RAM of each machine, decom-
posable learning algorithms can be made data parallel. One can
broadcast ⇥i to each site, and then compute F (⇥i, tj) for data tj
stored locally. All of these values are then aggregated using stan-
dard, distributed aggregation techniques.

However, data parallelism of this form is often ineffective. Let
Ti be a small sample of T selected during epoch i. Since for de-
composable algorithms, F (⇥i,T) ⇡ |T|

|Ti|
F (⇥i,Ti), in practice

only a small subsample of the data are used during each epoch (for
example, in the case of gradient descent, mini-batch gradient de-

scent [18] is typically used). Adding more machines can either
distribute this sample so that each machine gets a tiny amount of
data (which is typically not helpful because for very small data
sizes, the fixed costs associated with broadcasting ⇥i dominate) or
else use a larger sample. This is also not helpful because the esti-
mate to F (⇥i,T) with a relatively small sample is already accurate
enough. The largest batches advocated in the literature consist of
around 10,000 samples [9].

One idea to overcome this is to use asynchronous data paral-

lelism [17], where recursion of the form ⇥i+1 ⇥i � F (⇥i,T)
is no longer used. Rather, each site j is given a small sample

SIGMOD Record, March 2020 (Vol. 49, No. 1) 49

Tj of T; it requests the value ⇥cur , computes ⇥new ⇥cur �

F (⇥cur,Tj) and registers ⇥new at a parameter server. All requests
for ⇥cur happen to obtain whatever the last value written was, lead-
ing to stochastic behavior. The problem is that data parallelism of
this form can be ineffective for large computations as most of the
computation is done using stale data [3]. An alternative is model

parallelism. In model parallelism, the idea is to stage F (⇥i,T)
(or F (⇥i,Ti)) as a distributed computation without assuming that
each site has access to (or stores) all of ⇥i (or Ti).

The parameter server architecture [20, 15] was proposed to pro-
vide scalable, parallel training for machine learning models. It
is favored by most existing Big Data ML systems (such as Ten-
sorFlow [6, 7] and Petuum [23]). A parameter server consists of
two components: a parameter server (or key-value store) and a set
of workers who repeatedly access and update the model parame-
ters. Model parallelism is enabled in TensorFlow by distributing
the nodes of a neural network across different machines. Although
it provides some functions (e.g., tf.nn.embedding_lookup)
that allow parallel model updates, support for more complex par-
allel model updates is limited. Petuum [23] considers to speed up
distributed training, using ideas such as sending weights as soon
as they are updated during backpropagation. MXNet [4] is anther
system that employs a parameter server to train neural networks.
MXNet claims to support model parallelism. However, its model
parallelism support is similar to TensorFlow. Complex, model-
parallel computations require using low-level APIs and manual man-
agement of the computations and communications.

There are several other systems providing model parallelism [13].
AMPNet [8] adds control flow to the execution graph, and supports
dynamic control flow by introducing a well-defined intermediate
representation. This framework proves to be efficacy for asyn-
chronous model-parallel training by the experiments. Coates et al.
[5] built a distributed system on a cluster of GPUs based on the
COTS HPC technology. This system achieved model parallelism
by carefully assigning the partial computations of the whole model
to each GPU, and utilized MPI for the communication.

7. CONCLUSIONS
We have argued that a parallel/distributed RDBMS has promise

as a backend for implementing and executing large scale ML com-
putations. We have considered unrolling recursive computations
into a monolithic compute plan, which is broken into frames that
are optimized and executed independently. We have expressed the
frame partitioning problem as an instance of the GQAP. When im-
plemented on top of an RDBMS, these ideas result in ML com-
putations that are model parallel—that is, able to handle large and
complex models that need to be distributed across compute units.

8. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency moments. In STOC, pages
20–29. ACM, 1996.

[2] Z. Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas, and
C. Jermaine. Simulation of database-valued markov chains
using simsql. In SIGMOD 2013, pages 637–648. ACM,
2013.

[3] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz.
Revisiting distributed synchronous sgd. arXiv preprint

arXiv:1604.00981, 2016.
[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. MXNet: A Flexible and

Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.

[5] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and
B. Catanzaro. Deep learning with cots hpc systems. In ICML

2013, ICML’13, pages III–1337–III–1345. JMLR.org, 2013.
[6] M. A. et. al. Tensorflow: A system for large-scale machine

learning. In OSDI 16, pages 265–283, GA, 2016. USENIX
Association.

[7] M. A. et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv preprint

arXiv:1603.04467, 2016.
[8] A. L. Gaunt, M. A. Johnson, M. Riechert, D. Tarlow,

R. Tomioka, D. Vytiniotis, and S. Webster. AMPNet:
Asynchronous Model-Parallel Training for Dynamic Neural
Networks. arXiv preprint arXiv:1705.09786, 2017.

[9] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch sgd: training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

[10] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms.
Commun. ACM, 29(12):1170–1183, Dec. 1986.

[11] K. Hornik, M. Stinchcombe, and H. White. Multilayer
feedforward networks are universal approximators. Neural

networks, 2(5):359–366, 1989.
[12] N. Kabra and D. J. DeWitt. Efficient mid-query

re-optimization of sub-optimal query execution plans. In
ACM SIGMOD Record, volume 27, pages 106–117. ACM,
1998.

[13] A. Krizhevsky. One weird trick for parallelizing
convolutional neural networks. arXiv preprint

arXiv:1404.5997, 2014.
[14] C.-G. Lee and Z. Ma. The generalized quadratic assignment

problem. 01 2004.
[15] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,

V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. In OSDI,
pages 583–598, Berkeley, CA, USA.

[16] S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine.
Scalable linear algebra on a relational database system. In
ICDE 2017, pages 523–534. IEEE, 2017.

[17] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In
NIPS, pages 693–701, 2011.

[18] S. Ruder. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

[19] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le,
G. E. Hinton, and J. Dean. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
CoRR, abs/1701.06538, 2017.

[20] A. Smola and S. Narayanamurthy. An architecture for
parallel topic models. Proc. VLDB Endow., 3(1-2):703–710,
Sept. 2010.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. In Advances in neural information processing

systems, pages 5998–6008, 2017.
[22] E. W. Weisstein. Einstein summation. 2014.
[23] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,

X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A new
platform for distributed machine learning on big data. IEEE

Transactions on Big Data, 1(2):49–67, June 2015.

50 SIGMOD Record, March 2020 (Vol. 49, No. 1)

