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ABSTRACT
Fairness is increasingly recognized as a critical component
of machine learning systems. However, it is the underlying
data on which these systems are trained that often reflect
discrimination, suggesting a database repair problem. Ex-
isting treatments of fairness rely on statistical correlations
that can be fooled by anomalies, such as Simpson’s para-
dox. Proposals for causality-based definitions of fairness can
correctly model some of these situations, but they rely on
background knowledge of the underlying causal models. In
this paper, we formalize the situation as a database repair
problem, proving su�cient conditions for fair classifiers in
terms of admissible variables as opposed to a complete causal
model. We show that these conditions correctly capture sub-
tle fairness violations. We then use these conditions as the
basis for database repair algorithms that provide provable
fairness guarantees about classifiers trained on their train-
ing labels. We demonstrate the e↵ectiveness of our proposed
techniques with experimental results.

1. INTRODUCTION
Fairness is increasingly recognized as a critical component

of machine learning (ML) systems. These systems are now
routinely used to make decisions that a↵ect people’s lives [7],
with the aim of reducing costs, reducing errors, and improv-
ing objectivity. While this is a positive trend, there is also
enormous potential for harm. The functionality of ML sys-
tems are defined by their parameters as dictated by the data
used for training them. More often than not, the available
data reflects societal inequities and historical biases, and, as
a consequence, the models trained on such data will there-
fore reinforce and legitimize discrimination and opacity.

There has been a steady stream of reports of discrimina-
tory ML systems, due to biased data, across many di↵erent
domains. In 2014, a team of machine learning experts from
Amazon Inc. began work on an automated system to review
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job applicants’ resumes. According to a recent Reuters arti-
cle [8], the experimental system gave job candidates scores
ranging from one to five and was trained on 10 years of re-
cruiting data from Amazon. However, by 2015 the team
realized that the system showed a significant gender bias
towards male candidates over females due to historical dis-
crimination in the training data. Amazon edited the system
to make it gender agnostic, but there was no guarantee that
discrimination did not occur through other means, and the
project was totally abandoned in 2017.

In another example, in 2016, a team of journalists from
ProPublica analysed COMPAS, one of the many widely used
commercial risk assessment algorithms for predicting recidi-
vism, and revealed that it overpredicts recidivism for African-
Americans and underpredicts it for Caucasians [20]. In the
context of predicting recidivism (which is itself a question-
able application!), fairness issue arise because these systems
are trained using data on arrested individuals, as opposed to
data on individuals who commit crime. Because of historical
racial biases in arrest data, probabilities produced by these
systems are racially biased as well.

Mitigating Bias. These examples underpin the importance
of understanding and accounting for historical bias in data.
A näıve (and ine↵ective) approach sometimes used in prac-
tice is to simply omit the protected attribute (say, race or
gender) when training the classifier. However, since the pro-
tected attribute is frequently represented implicitly by some
combination of proxy variables, the classifier still learns the
discrimination present in training data. For example, zip
code tends to predict race due to a history of segregation [13,
34]; answers to personality tests identify people with disabil-
ities [37]; and keywords can reveal gender on a resume [8].
As a result, a classifier trained without regard to the pro-
tected attribute not only fails to remove discrimination, but
it can complicate the detection and mitigation of discrimi-
nation downstream via existing techniques [29, 6, 5, 18, 17,
24, 36], such as those we describe next.

The two main approaches to reduce or eliminate sources of
discrimination are summarized in Fig. 1. The most popular
is in-processing, where the ML algorithm itself is modified to
account for fairness during the training time; this approach
must be reimplemented for every ML application. The alter-
native is to process either the training data (pre-processing)
or the output of the classifier itself (post-processing). We
advocate for the pre-processing strategy, which can be de-
signed to be agnostic to the choice of ML algorithm and
instead interprets the problem as a database repair task.
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Fairness Definitions. One needs a quantitative measure
of discrimination in order to remove it. A large number of
fairness definitions have been proposed, which we broadly
categorize in Fig. 1. The best-known measures are based on
statistical (i.e., associative) relationships between the pro-
tected attribute and the outcome. For example, demo-
graphic parity requires that, for all groups of the protected
attribute, the overall probability of a positive prediction of
an outcome should be the same. However, it has been shown
that associative definitions of fairness can be mutually ex-
clusive [5] and fail to distinguish between discriminatory,
non-discriminatory, and spurious association between a pro-
tected attribute and the outcome of an algorithm [17, 24, 9].
The following example highlights the pitfalls of associative
fairness:

Example 1.1. In 1973, UC Berkeley was sued for dis-
crimination against females in graduate school admissions
when it was found that 34.6% of females were admitted in
1973 as opposed to 44.3% of males, hence demographic par-
ity was violated. However, analysis revealed that the e↵ect
occurred because females tended to apply to departments with
lower overall acceptance rates [30]. When broken down by
department, a slight bias toward female applicants was ob-
served, a result that did not constitute evidence for gender-
based discrimination.

Such situations have recently motivated a search for a more
principled measure of fairness and discrimination based on
causality [17, 24, 18, 29, 31]. These approaches assume ac-
cess to background knowledge on the underlying causal mod-
els that usually visualised as directed graphs, consisting of
nodes (representing variables) and directed edges between
the nodes (representing potential causal relations). These
approaches, then, measure discrimination as the causal in-
fluence of the protected attribute on the outcome of an al-
gorithm, through certain causal paths that deemed to be
socially unacceptable. For instance, in Example 1.1, the
direct causal influence of gender on admission decisions as
well as its indirect e↵ect through applicants’ hobbies might
be considered as discriminatory. In terms of causal models,
the former is expressed by prohibiting the directed edge from
gender to admission decision, and the latter is expressed by
prohibiting any directed path from gender to hiring deci-
sion that is intercepted by applicant’s hobbies. However,
causal approaches to fairness assume access to a complete
causal model, and no existing proposals describe compre-
hensive systems for pre-processing data to mitigate causal
discrimination.

Fairness via Database Repair. This paper describes a
new approach to removing discrimination by repairing the
training data. Our proposal is based on the following key
observations: 1) In causal models, a missing arrow between
two variables X and Y encodes the assumption that there
exists a set of variables Z such that X and Y are statisti-
cally independent given Z; denoted as the conditional in-
dependence statement (X??Y | Z). Consequently, causal
fairness constraints (expressed as requirements about the
absence of certain causal paths from protected attributes to
an outcome) can be compiled into conditional independence
statements. Therefore, to enforce causal fairness, we can
intervene on the data and enforce the corresponding con-
ditional independence statements instead of intervening on
the causal models over which we have no control. 2) There is

Statistical Causal
In-processing [15, 41, 3, 24, 17] [24, 17, 29]

(Modify Algorithm)
Pre/post-processing [10, 4, 12, 39] Capuchin

(Modify input/output Data) (this paper)

Figure 1: Fairness metrics and enforcement methods.

a clear connection between conditional independence state-
ments and well-studied integrity constraints in data manage-
ment such as Multivalued Dependencies (MVDs) [1]. Our
paper leverages these connections to frame algorithmic fair-
ness as a database repair problem for Multivalued Depen-
dencies. The problem of database repair has been studied
for various types of constraints, for example the complex-
ity of repairing for functional dependencies (FD) has been
completely solved in [21]. However, the problem of database
repairs for MVDs has received less attention and is still open.
Recently, the problem of mining MVDs from data is studied
in [16].

Capuchin. Our system, Capuchin, accepts a dataset con-
sisting of a protected attribute (e.g., gender, race, etc.), an
outcome attribute (e.g., college admissions, loan application,
or hiring decisions), and a set of admissible variables through
which it is permissible for the protected attribute to influ-
ence the outcome. For instance, the applicant’s choice of
department in Example 1.1 may be considered as admissi-
ble despite being correlated with gender. The system re-
pairs the input data by inserting or removing tuples to re-
move the influence of the protected attribute on the outcome
through any directed causal paths that includes inadmissible
attributes, by means of enforcing the corresponding MVDs.
That is, the repaired training data can be seen as a sample
from a counterfactual fair world.

Unlike previous measures of fairness based on causality [24,
17, 29], which require the presence of the underlying causal
model, our definition is based solely on the notion of inter-
vention [25] and can be guaranteed even in the absence of
causal models. The user needs only distinguish admissible
and inadmissible attributes; we prove that this information
is su�cient to mitigate discrimination.

We use this interventional approach to derive in Sec. 3.1
a new fairness definition, called justifiable fairness. Justi-
fiable fairness subsumes and improves on several previous
definitions and can correctly distinguish fairness violations
and non-violations that would otherwise be hidden by sta-
tistical coincidences, such as Simpson’s paradox. We prove
next, in Sec. 3.2, that, if the training data satisfies a sim-
ple saturated conditional independence, then any reasonable
algorithm trained on it will be fair.

Our core technical contribution consists of a new approach
to repair training data in order to enforce the saturated con-
ditional independence that guarantees fairness. In Sec. 4 we
first define the problem formally and then present a new
technique to reduce it to a multivalued functional depen-
dency MVD [1]. Then, we introduce new techniques to re-
pair a dataset for an MVD. In Sec. 5 we evaluate our algo-
rithms on real data and show that they meet our goals.

2. PRELIMINARIES
This section reviewers the basic background on database

repair, algorithmic fairness and causal inference, the build-
ing blocks of our paper.

We denote variables (i.e., dataset attributes) by upper-
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case letters, X,Y, Z, V ; their values with lowercase letters,
x, y, z, v; and denote sets of variables or values using boldface
(X or x). The domain of a variable X is Dom(X), and the
domain of a set of variables is Dom(X) =

Q
Y 2X Dom(Y ).

In this paper, all domains are discrete and finite; contin-
uous domains are assumed to be binned, as is typical. A
database instance D is a relation whose attributes we de-
note as V. We assume set semantics (i.e., no duplicates)
unless otherwise stated, and we denote the cardinality of D
as n = |D|. Given a partition X [Y [ Z = V, we say that
D satisfies the multivalued dependency (MVD) Z ⇣ X if
D = ⇧XZ(D) 1 ⇧ZY(D).

Typically, training data for ML is a bag B. We convert
it into a set D (by eliminating duplicates) and a probability
distribution Pr, which accounts for multiplicities; We call D
the support of Pr. We say that Pr is uniform if all tuples
have the same probability. We say X and Y are condition-
ally independent (CI) given Z, written (X??PrY|Z), or just
(X??Y|Z), if Pr(x|y, z) = Pr(x|z) whenever Pr(y, z) > 0.
When V = XYZ, then the CI is said to be saturated. A
uniform Pr satisfies a saturated CI i↵ its support D satis-
fies the MVD Z ⇣ X. Training data usually does not have
a uniform Pr, and in such cases the equivalence between
the CI and MVD fails [38]. This issue can be addressed by
converting a bag to a corresponding set; see [32] for details.

The database repair problem is the following: we are given
a set of constraints � and a database instance D, and we
need to perform a minimal set of updates on D such that
the new database D0 satisfies � [2].

2.1 Background on Algorithmic Fairness
Algorithmic fairness considers a protected attribute S, a re-

sponse variable Y , and a prediction algorithmA : Dom(X) !
Dom(O), where X ✓ V, and the prediction of A is denoted
O (some references denote it Ỹ ) and called outcome. For
simplicity, we assume S classifies the population into pro-
tected S = 1 and privileged S = 0, for example, female and
male. Fairness definitions can be classified as statistical or
causal.

Statistical Fairness. This family of fairness definitions is
based on statistical measures on the variables of interest;
a summary is shown in Fig. 2. Demographic Parity (DP)
[3, 14, 42, 35, 9], requires an algorithm to classify both the
protected and the privileged group with the same proba-
bility. As we saw in Example 1.1, the lack of statistical
parity cannot be considered as evidence for gender-based
discrimination; this has motivated the introduction of Con-
ditional Statistical Parity (CSP) [6], which controls for a set
of admissible factors A. Another popular measure used for
predictive classification algorithms is Equalized Odds (EO),
which requires that both protected and privileged groups to
have the same false positive (FP) rate, and the same false
negative (FN) rate. Finally, Predictive Parity (PP) requires
that both protected and unprotected groups have the same
predicted positive value (PPV) It has been shown that these
measures are inconsistent [5].

Causal Fairness. Causal notions of fairness were moti-
vated by the need to address di�culties generated by statis-
tical fairness and assumes an underlying causal model [18,
17, 24, 29, 11]. We first discuss causal DAGs before review-
ing causal fairness.

Fairness Metric Description
Demographic Parity (DP) [9, 35] S??O

Conditional Statistical parity [6] S??O|A
Equalized Odds (EO) [12, 40] S??O|Y
Predictive Parity (PP)[5, 35, 5, 12] S??Y |O

Figure 2: Common statistical definitions of fairness.

2.2 Background on Causal DAGs
Causal DAG. A causal DAG G over set of variables V
is a directed acyclic graph that models the functional in-
teraction between variables in V. Each node X represents
a variable in V that is functionally determined by: (a) its
parents Pa(X) in the DAG, and (b) some set of exogenous
factors that need not appear in the DAG, as long as they are
mutually independent. This functional interpretation leads
to the same decomposition of the joint probability distribu-
tion of V that characterizes Bayesian networks [25]:

Pr(V) =
Y

X2V

Pr(X|Pa(X)) (1)

d-Separation and Faithfulness. A common inference ques-
tion in a causal DAG is how to determine whether a CI
(X??Y|Z) holds. A su�cient criterion is given by the no-
tion of d-separation, a syntactic condition (X??Y|dZ) that
can be checked directly on the graph. Pr and G are called
Markov compatible if (X??Y|dZ) implies (X??PrY|Z); if the
converse implication holds, then we say that Pr is faithful
to G. If G is a causal DAG and Pr is given by Eq.(1), then
they are Markov compatible [26].

Counterfactuals and do Operator. A counterfactual is
an intervention where we actively modify the state of a set
of variables X in the real world to some value X = x and
observe the e↵ect on some output Y . Pearl [25] described the
do operator that allows this e↵ect to be computed on a causal
DAG, denoted Pr(Y |do(X = x)). To compute this value, we
assume that X is determined by a constant function X =
x instead of a function provided by the causal DAG. This
assumption corresponds to a modified graph with all edges
into X removed, and values of X are set to x. The Bayesian
rule Eq.(1) for the modified graph defines Pr(Y |do(X = x));
the exact expression is in [25, Theorem 3.2.2]. We proved
and illustrated the following in [32]:

Theorem 2.1. Given a causal DAG G and a set of vari-
ables X ✓ V, suppose X = {X0, X1 . . . , Xm} are ordered
such that Xi is a non-descendant of Xi+1 in G. The e↵ect
of a set of interventions do(X = x) is given by the following
extended adjustment formula:

Pr(y|do(X = x)) =

X

z2Dom(Z)

Pr(y|x, z)

0

B@
mY

i=0

Pr

0

@pa(Xi)

����
i�1[

j=0

pa(Xj),
i�1[

j=0

xj

1

A

1

CA

(2)

where Z =
S

X2X Pa(X) and j � 0.

2.3 Causal Fairness
Counterfactual Fairness. Kusner et al. [18, 19] (see also
the discussion in [22]) define a classifier as counterfactu-
ally fair if the protected attribute of an individual is not a
cause of the outcome of the classifier for that individual, i.e.,
had the protected attributes of the individual been di↵erent,
and other things being equal, the outcome of the predictor

36 SIGMOD Record, March 2020 (Vol. 49, No. 1)



would have remained the same. However, it is known that
individual-level counterfactuals can not be estimated from
data in general [26].

Proxy Fairness. To avoid individual-level counterfactuals,
a common approach is to study population-level counterfac-
tuals or interventional distributions that capture the e↵ect
of interventions at the population level rather than an indi-
vidual level [26, 27, 28]. Kilbertus et. al. [17] defined proxy
fairness as follows:

P (Ỹ = 1|do(P = p)) = P (Ỹ = 1|do(P = p0)) (3)

for any p,p0
2 Dom(P), where P consists of proxies to

a sensitive variable S (and might include S). Intuitively, a
classifier satisfies proxy fairness in Eq 3, if the distribution of
Ỹ under two interventional regimes in which P set to p and
p0 is the same. Thus, proxy fairness is not an individual-
level notion. The next example shows that proxy fairness
fails to capture group-level discrimination in general.

Example 2.2. To illustrate the di↵erence between coun-
terfactual and proxy fairness, consider the following college
admission example. Both departments make decisions based
on students’ gender and qualifications, O = f(G,D,Q),
where, O stands for admission decision and G, D and Q
are binary variables that respectively stands for applicants’
gender, their choice of department and qualifications. The
causal DAG is G ! O,D ! O,Q ! O. Let D = UD and
Q = UQ, where UD and UQ are exogenous factors that are
independent and that are uniformly distributed, e.g., P (UQ =
1) = P (UQ = 0) = 1

2 . Further suppose f(G, ’A’, Q) = G^Q
and f(G, ’B’, Q) = (1�G)^Q, i.e., dep. A admits only qual-
ified males and dep. B admits only qualified females. This
admission process is proxy-fair, because P (O = 1|do(G =
1)) = P (O = 1|do(G = 0)) = 1

2 . On the other hand, it
is clearly individually-unfair, in fact it is group-level unfair
(for all applicants to the same department).

Path-Specific Fairness. These definitions are based on
graph properties of the causal graph, e.g., prohibiting spe-
cific paths from the sensitive attribute to the outcome [24,
22]; however, identifying path-specific causality from data
requires very strong assumptions and is often impractical.

3. DEFINING AND ENFORCING FAIRNESS
In this section we introduce a new definition of fairness,

which, unlike proxy fairness [17], correctly captures group-
level fairness, and unlike counterfactual fairness [18, 19] is
based on the standard notion of intervention and hence is
testable from the data. In the next section we will describe
how to repair an unfair training dataset to enforce fairness.

3.1 Interventional Fairness
In this section we assume that the causal graph is given.

The algorithm computes an output variable O from input
variables X (Sec. 2.1). We begin with a definition describing
when an outcome O is causally independent of the protected
attribute S for any possible configuration of a given set of
variables K.

Definition 3.1 (K-fair). Fix a set of attributes K ✓

V� {S,O}. We say an algorithm A : Dom(X) ! Dom(O)
is K-fair w.r.t. a protected attribute S if, for any context
K = k and every outcome O = o, the following holds:

Here D is not a proxy to G, because D??G by assumption.

Pr(O = o|do(S = 0), do(K = k)) = Pr(O = o|do(S = 1), do(K = k)) (4)

We call an algorithm interventionally fair if it is K-fair
for every set K. Unlike proxy fairness, this notion correctly
captures group-level fairness, because it ensures that S does
not a↵ect O in any configuration of the system obtained by
fixing other variables at some arbitrary values. Unlike coun-
terfactual fairness, it does not attempt to capture fairness at
the individual level, and therefore it uses the standard def-
inition of intervention (the do-operator). In fact, we argue
that interventional fairness is the strongest notion of fairness
that is testable from data, yet correctly captures group-level
fairness. We illustrate with an example (see also Ex 3.6).

Example 3.2. In contrast to proxy fairness, interventional
fairness correctly identifies the admission process in Ex. 2.2
as unfair at department-level. This is because the admission
process fails to satisfy {D}-fairness since, P (O = 1|do(G =
0), do(D = ’A’)) = 0 but P (O = 1|do(G = 1), do(D =
’A’)) = 1

2 . Therefore, interventional fairness is a more
fine-grained notion than proxy fairness. We note however
that, interventional fairness does not guarantee individual
fairness in general. To see this suppose the admission de-
cisions in both departments are based on student’s gender
and an unobserved exogenous factor UO that is uniformly
distributed, i.e., O = f(G,UO), such that f(G, 0) = G and
f(G, 1) = 1 � G. Hence, the causal DAG is G ! O. Then
the admission process is ;-fair because, P (O = 1|do(G =
1)) = P (O = 1|do(G = 0)) = 1

2 . Therefore, it is interven-
tionally fair (since V � {O,G} = ;). However, it is clearly
unfair at individual level. If the variable Uo were endogenous
(i.e. known to the algorithm), then the admission process is
no longer interventionally fair, because it is not {Uo}-fair:
P (O = 1|do(G = 1), do(Uo = 1)) = P (O = 1|G = 1, Uo =
1) = 0, while P (O = 1|do(G = 1), do(Uo = 1)) = P (O =
1|G = 0, Uo = 1) = 1.

In practice, interventional fairness is too restrictive, as we
show below. To make it practical, we allow the user to clas-
sify variables into admissible and inadmissible. The former
variables through which it is permissible for the protected
attribute to influence the outcome. In Example 1.1, the user
would label department as admissible since it is considered
a fair use in admissions decisions, and would (implicitly) la-
bel all other variables such as hobby as inadmissible. Only
users can identify this classification, and therefore admissi-
ble variables are part of the problem definition:

Definition 3.3 (Fairness application). A fairness ap-
plication over a domain V is a tuple (A, S,A, I), where
A : Dom(X) ! Dom(O) is an algorithm mapping input
variables X ✓ V to an outcome O 2 V, S 2 V is the pro-
tected attribute, and A[I = V�{S,O} is a partition of the
variables into admissible and inadmissible.

We can now introduce our definition of fairness:

Definition 3.4 (Justifiable fairness). A fairness ap-
plication (A, S,A, I) is justifiably fair if it is K-fair w.r.t.
all supersets K ◆ A.

Notice that interventional fairness corresponds to the case
where no variable is admissible, i.e., A = ;.

We give next a characterization of justifiable fairness in
terms of the structure of the causal DAG:
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b) College II

College I
Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 16 20 16 80 32 100
Female 16 80 16 20 32 100

College II
Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 10 10 40 90 50 100
Female 40 50 10 50 50 100

Figure 3: Admission process representation in two colleges
where the associational notions of fairness fail (see Ex.3.6).

Theorem 3.5. If all directed paths from S to O go through
an admissible attribute in A, then the algorithm is justifiably
fair. If the probability distribution is faithful to the causal
DAG, then the converse also holds.

To ensure interventional fairness, a su�cient condition is
that there exists no path from S to O in the causal graph
(because A = ;). Hence, under faithfulness, interventional
fairness implies fairness at individual-level, i.e., intervening
on the sensitive attribute does not change the counterfactual
outcome of individuals. Since this is too strong in most
scenarios, we adopt justifiable fairness instead. We illustrate
with an example.

Example 3.6. Fig 3 shows how fair or unfair situations
may be hidden by coincidences but exposed through causal
analysis. In both examples, the protected attribute is gen-
der G, and the admissible attribute is department D. Sup-
pose both departments in College I are admitting only on
the basis of their applicants’ hobbies. Clearly, the admis-
sion process is discriminatory in this college because de-
partment A admits 80% of its male applicants and 20% of
the female applicants, while department B admits 20% of
male and 80% of female applicants. On the other hand,
the admission rate for the entire college is the same 32%
for both male and female applicants, falsely suggesting that
the college is fair. Suppose H is a proxy to G such that
H = G (G and H are the same), then proxy fairness classi-
fies this example as fair: indeed, since Gender has no par-
ents in the causal graph, intervention is the same as condi-
tioning, hence Pr(O = 1|do(G = i)) = Pr(O = 1|G = i)
for i = 0, 1. Of the previous methods, only conditional
statistical parity correctly indicates discrimination. We il-
lustrate how our definition correctly classifies this examples
as unfair. Assuming the user labels the department D as
admissible, {D}-fairness fails because, by Eq.(2), Pr(O =
1|do(G = 1), do(D = ’A’)) =

P
h Pr(O = 1|G = 1, D =

’A’, h)Pr(h|G = 1) = Pr(O = 1|G = 1, D = ’A’) = 0.8,
and, similarly Pr(O = 1|do(G = 0), do(D = ’A’)) = 0.2.
Therefore, the admission process is not justifiably fair.

Now, consider the second table for College II, where both
departments A and B admit only on the basis of student
qualifications Q. A superficial examination of the data sug-
gests that the admission is unfair: department A admits 80%
of all females, and 100% of all male applicants; department
B admits 20% and 44.4% respectively. Upon deeper exam-
ination of the causal DAG, we can see that the admission

process is justifiably fair because the only path from Gender
to the Outcome goes through department, which is an ad-
missible attribute. To understand how the data could have
resulted from this causal graph, suppose 50% of each gender
have high qualifications and are admitted, while others are
rejected, and that 50% of females apply to each department
but more qualified females apply to department A than to B
(80% v.s. 20%). Further, suppose fewer males apply to de-
partment A, but all of them are qualified. The algorithm sat-
isfies demographic parity and proxy fairness but fails to sat-
isfy conditional statistical parity since Pr(A = 1|G = 1, D =
’A’) = 0.8 but Pr(A = 1|G = 0, D = ’A’) = 0.2). Thus, con-
ditioning on D falsely indicates discrimination in College II.
One can check that the algorithm is justifiably fair, and thus
our definition also correctly classifies this example; for ex-
ample, {D}-fairness follows from Eq.(2): Pr(O = 1|do(G =
i), do(D = d)) =

P
q Pr(O = 1|G = i, d, q))Pr(q|G = i) = 1

2 .
To summarize, unlike previous definitions of fairness, justi-
fiable fairness correctly identifies College I as discriminatory
and College II as fair.

3.2 Testing Fairness on the Training Data
In this section we introduce a su�cient condition for test-

ing justifiable fairness, which uses only the training data
D,Pr (Sec. 2) and does not require access to the causal graph
G. We assume only that G and Pr are Markov compatible
(Sec. 2.2). The training data has an additional response
variable Y . As before, we assume a fairness application (A,
S,A, I) is given and that the algorithm is a good prediction
of the response variable, i.e. Pr(Y = 1|X = x) ⇡ Pr(O =
1|X = x); we call the algorithm a reasonable classifier to
indicate that it satisfies this condition. Note that this is
a typical assumption in pre-processing approaches such as
[4] and is needed to decouple the the issues of model accu-
racy and fairness. If the distributions of Pr(Y = 1|X = x)
and Pr(O = 1|X = x) could be arbitrarily far apart, no
fairness claims can be made about a classifier that, for ex-
ample, imposes a pre-determined distribution on the out-
come predictions rather than learning an approximation of
Pr(Y = 1|X = x) from the training data.

We first establish a technical condition for fairness based
on the Markov boundary, and then simplify it. Recall that
given a probability distribution Pr, theMarkov boundary of a
variable Y 2 V, denotedMB(Y ), is a minimal subset ofV�

{Y } that satisfies the saturated conditional independence
(Y??PrV � (MB(Y ) [ {Y })|MB(Y )). Intuitively, MB(Y )
shields Y from the influence of other variables. We prove:

Theorem 3.7. A su�cient condition for a fairness ap-
plication (A, S,A, I) to be justifiably fair is MB(O) ✓ A.

The condition in Theorem 3.7 can be checked without know-
ing the causal DAG, but requires the computation of the
Markov boundary; moreover, it is expressed in terms of the
outcome O of the algorithm. We derive from here a su�-
cient condition that refers only to the response variable Y
present in the training data.

Colollary 3.8. Fix a training data D,Pr, where Y 2 V
is the training label, and A, I are admissible and inadmissible
attributes. Then any reasonable classifier trained on a set of
variables X ✓ V is justifiably fair w.r.t. a protected attribute
S, if either: (a) Pr satisfies the CI (Y??X \ I|X \ A), or
(b) X ◆ A and Pr satisfies the saturated CI (Y??I|A).
While condition (a) is the weaker assumption, condition (b)
has the advantage that the CI is saturated. Our method
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D: X Y Z Pr
t1 a a c 3/8
t2 a b c 2/8
t3 b a c 2/8
t4 b b d 1/8

D1 : X Y Z
t1 a a c
t2 a b c
t3 b a c
t4 b b c
t5 b b d

D2 : X Y Z
t1 a a c
t2 a b c
t4 b b d

Figure 4: A simple database repair: D does not satisfy the MVD
Z ⇣ X. In D1, we inserted the tuple (b, b, c) to satisfy the MVD,
and in D2 we deleted the tuple (b, a, c) to satisfy the MVD.

for building a fair classifier is to repair the training data in
order to enforce (b).

3.3 Building Fair Classifiers
A naive way to satisfy Corollary 3.8(a) is to set X = A,

in other words to train the classifier only on admissible at-
tributes This method guarantees fairness, but it is imprac-
tical and can negatively a↵ect the accuracy of the classifier
[32]. Instead, our approach is to repair the training data to
enforce the condition in Corollary 3.8(b). We consider the
saturated CI (Y??I|A) as an integrity constraint that should
always hold in training data D,Pr. Capuchin performs a
sequence of database updates (insertions and deletions of
tuples) to obtain another training database D0 to satisfy
(Y??I|A). We describe this repair problem in Sec. 4. In
terms of the causal DAG, this approach can be seen as mod-
ifying the underlying causal model to enforce the fairness
constraint. However, instead of intervening on the causal
DAG, over which we have no control, we intervene on the
data to ensure fairness. Note that minimal repairs are cru-
cial for preserving the utility of data.

4. DATA REPAIR TO ENSURE FAIRNESS
We have shown in Corollary 3.8 that, if the training data

D satisfies a certain saturated conditional independence (CI),
then a classification algorithm trained on D,Pr is justifiably
fair. We show here how to modify (repair) the training data
to enforce the CI and thus ensure that any reasonable clas-
sifier trained on it will be justifiably fair.

4.1 Minimal Repair for MVD and CI
We first consider repairing an MVD. Fix an MVD Z ⇣ X

and a database D that does not satisfy it. The minimal
database repair problem is this: find another database D0

that satisfies the MVD such that the distance between D
and D0 is minimized. In this section, we restrict the distance
function to the symmetric di↵erence, i.e, |�(D,D0)|.

Example 4.1. Consider the database D in Fig. 4 (ignor-
ing the probabilities for the moment), and the MVD Z ⇣ X.
D does not satisfy the MVD. The figure shows two minimal
repairs, D1, D2, one obtained by inserting a tuple, and the
other by deleting a tuple.

However, our problem is to repair for a saturated CI, not
an MVD, since that is what is required in Corollary 3.8. The
repair problem for a database constraint is well-studied in
the literature, but here we need to repair to satisfy a CI,
which is not a database constraint. We first formally define
the repair problem for a CI and then show how to reduce
it to the repair for an MVD. More precisely, our input is a
database D and a probability distribution Pr, and the goal
is to define a “repair”D0,Pr0 that satisfies the given CI.

We assume that all probabilities are rational numbers. Let
the bag associated to D,Pr be the smallest bag B such that
Pr is the empirical distribution on B. In other words, B is

B: X Y Z
a a c
a a c
a a c
a b c
a b c
b a c
b a c
b b d

DB : K X Y Z
1 a a c
2 a a c
3 a a c
1 a b c
2 a b c
1 b a c
2 b a c
1 b b d

D0
B : K X Y Z

1 a a c
2 a a c
1 a b c
2 a b c
1 b a c
1 b b c
1 b b d

D0 : X Y Z Pr0

a a c 2/7
a b c 2/7
b a c 1/7
b b c 1/7
b b d 1/7

Figure 5: Repairing a conditional independence (CI).

obtained by replicating each tuple t 2 D a number of times
proportional to Pr(t). If Pr is uniform, then B = D.

Definition 4.2. The minimal repair of D,Pr for a sat-
urated CI (X;Y|Z) is a pair D0,Pr0 such that Pr0 satisfies
the CI and |�(B,B0)| is minimized, where B and B0 are the
bags associated with D,Pr and D0,Pr0, respectively.

Recall that V denotes the set of attributes of D. Let Pr
be any probability distribution on the variables {K} [ V,
where K is a fresh variable not in V.

Lemma 4.3. If Pr satisfies (KX;Y|Z), then it also sat-
isfies (X;Y|Z).

We now describe our method for computing a minimal
repair of D,Pr for some saturated CI. First, we compute the
bag B associated to D,Pr. Next, we add the new attribute
K to the tuples in B and assign distinct values to t.K to
all duplicate tuples t, thus converting B into a set DB with
attributes K[V. Importantly, we use as few distinct values
for K as possible, i.e., we enumerate the instances of each
unique tuple. More precisely, we define:

DB =
�
(i, t) | t 2 B, i = 1, . . . , |tB |

 
(5)

were |tB | denotes the number of occurrences (or multiplicity)
of a tuple t in the bag B. Then, we repair DB w.r.t. to
the MVD Z ⇣ KX, obtaining a repaired database D0

B .
Finally, we construct a new training set D0 = ⇧V(D0

B),
with the probability distribution obtained by marginalizing
the empirical distribution on D0

B to the variables V.

Example 4.4. Fig 4 shows two repairs D1 and D2 of the
database D, in Example 4.1, w.r.t the MVD Z ⇣ X. Con-
sider now the probability distribution, Pr shown in the figure.
Suppose we want to repair it for the CI (X;Y |Z). Clearly,
both D1 and D2, when endowed with the empirical distri-
bution do satisfy this CI, but they are very poor repairs be-
cause they completely ignore the probabilities in the original
training data, which are important signals for learning. Our
definition captures this by insisting that the repaired bag B0

be close to the bag B associated to D,Pr (see B in Fig. 5),
but the sets D1 and D2 are rather far from B. Instead,
our method first converts B into a set DB by adding a new
attribute K (see Fig. 5) then, it repairs DB for the MVD
Z ⇣ KX, obtaining D0

B. The final repair D0,Pr0 consists
of the empirical distribution on D0

B, but with the attribute
K and duplicates removed.

The problem of computing minimal repairs for MVDs and
CIs, as introduced in this section, is essentially an optimiza-
tion problem. A suit of techniques for addressing these prob-
lems has been introduced in [33, 32] that exploit reduction
to the MaxSAT and Matrix Factorization.
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5. EXPERIMENTAL RESULTS
This section presents experiments that evaluate the fea-

sibility and e�cacy of Capuchin. We aim to evaluate the
end-to-end performance of Capuchin in terms of utility and
fairness, with respect to our repair method. We refer the
reader to [32] for more experiments.

5.1 Setup
We report the empirical utility of each classifier using Ac-

curacy (ACC) via 5-fold cross-validation. We evaluate using
three classifiers: Linear Regression (LR), Multi-layer Per-
ceptron (MLP), and Random Forest (RF).

To assess the e↵ectiveness of the proposed approaches,
we used the ratio of observational discrimination (ROD) de-
fined in [32] as follows: Given a fairness application (A,
S,A, I), let Ab = MB(O)� I. We quantify the ratio of ob-
servational discrimination (ROD) of A against S in a con-

text Ab = ab as �(S;O|ab)
def
= Pr(O=1|S=0,ab)Pr(O=0|S=1,ab)

Pr(O=0|S=0,ab)Pr(O=1|S=1,ab)
.

Intuitively, ROD calculates the e↵ect of membership in a
protected group on the odds of the positive outcome of A
for subjects that are similar on Ab = ab (Ab consists of
admissible attributes in the Markov boundary of the out-
come). ROD is sensitive to the choice of a context Ab = ab

by design. The overall ROD denoted by �(S,O|Ab) can be
computed by averaging �(S,O|ab) for all ab 2 Ab.

5.2 End-To-End Results
In the following experiments, a fairness constraint was en-

forced on training data using Capuchin repair algorithms
(cf. Sec 4). Specifically, each dataset was split into five
training and test datasets. All training data were repaired
separately using Matrix Factorization (MF), Independent
Coupling (IC) and two versions of the MaxSAT approach
(see [32] for details of MF and IC methods): MS(Hard),
which feeds all clauses of the lineage of a CI into MaxSAT,
and MS(Soft), which only feeds small fraction of the clauses.
We tuned MaxSAT to enforce CIs approximately. We then
measured the utility and discrimination metrics for each re-
pair method as explained in Sec 5.1. For all datasets, the
chosen training variables included the Markov boundary of
the outcome variables, which were learned from data using
the Grow-Shrink algorithm [23] and permutation test [30].

Figure 6: Performance of Capuchin on Adult data.

Adult data. This data reflects historical income inequal-
ity that can be reinforced by ML algorithms. We used Ca-
puchin to remove the mentioned sources of discrimination
from Adult data. Specifically, we categorized the attributes
in the Adult dataset as follows: (S) sensitive attributes:
gender (male, female); (A) admissible attributes: hours per

week, occupation, age, education, etc.; (N) inadmissible at-
tributes: marital status; (Y ) binary outcome: high income.
As is common in the literature, we assumed that the po-
tential influence of gender on income through some or all of
the admissible variables was fair; However, the direct influ-
ence of gender on income, as well as its indirect influence on
income through marital status, were assumed to be discrimi-
natory. To remove the bias, we enforced the CI (Y??S,N|D)
on training datasets using the Capuchin repair algorithms.
Then, we trained the classifiers on both original and repaired
training datasets using the set of variables A [N [ S. We
also trained the classifiers on original data using only A, i.e.,
we dropped the sensitive and inadmissible variables.

Fig. 6 compares the utility and bias of Capuchin repair
methods on Adult data. As shown, our repair methods de-
livered surprisingly good results: when partially repairing
data using the MaxSAT approach, i.e, using MS(Soft), al-
most 50% of the bias was removed while accuracy decreased
by only 1%.

Figure 7: Performance of Capuchin on COMPAS data.

COMPAS. For the second experiment, we used the ProP-
ublica COMPAS dataset [20]. This dataset contains records
for all o↵enders in Broward County, Florida in 2013 and
2014. We categorized the attributes in COMPAS data as
follows: (S) protected attributes: race (African American,
Caucasian); (A) admissible attributes: number of prior con-
victions, severity of charge degree, age; (Y) binary outcome:
a binary indicator of whether the individual is a recidivist.
As is common in the literature, we assumed that it was fair
to use the admissible attributes to predict recidivism even
though they can potentially be influenced by race, and our
only goal in this experiment was to address the direct in-
fluence of race. We pursued the same steps as explained in
the first experiment. Fig. 7 compares the bias and utility
of Capuchin repair methods to original data. As shown,
all repair methods successfully reduced the ROD. However,
we observed that MF and IC performed better than MS on
COMPAS data (as opposed to Adult data).

6. CONCLUSIONS
We considered a causal approach for fair ML, reducing

it to a database repair problem. We showed that conven-
tional associational and causal fairness metrics can over-
and under-report discrimination. We defined a new notion
of fairness, called justifiable fairness, that addresses short-
comings of the previous definitions and argued that it is the
strongest notion of fairness that is testable from data. We
then proved su�cient properties for justifiable fairness and
use these results to translate the properties into saturated
conditional independence that we can be seen as multivalued
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dependencies with which to repair the data. We then pro-
posed multiple algorithms for implementing these repairs.
Our experimental results show that our algorithms success-
fully mitigate discrimination due to biased training data, are
robust to unseen test data.
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