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ABSTRACT
One of the classical tasks in information extraction is to
extract subparts of texts through regular expressions. In
the database theory literature, this approach has been
generalized and formalized as document spanners. In
this model, extraction is performed by evaluating a par-
ticular kind of automata, called a sequential variable-set
automaton (VA). The e�ciency of this task is then mea-
sured in the context of enumeration algorithms: we first
run a preprocessing phase computing a compact represen-
tation of the answers, and second we produce the results
one after the other with a short time between consecutive
answers, called the delay of the enumeration. Our goal
is to have an algorithm that is tractable in combined
complexity, i.e., in the sizes of the input document and
the VA, while ensuring the best possible data complexity
bounds in the input document size, i.e., a constant delay
that does not depend on the document. We present
such an algorithm for a variant of VAs called extended
sequential VAs and give an experimental evaluation of
this algorithm.
This article is a shortened version of the conference

article [4] published at ICDT’19, incorporating exper-
imental results from the journal version [6] currently
under review.

1. INTRODUCTION
Information extraction from text documents is an im-

portant task in data management. One of the classical
approaches is to use regular expressions (regexes) with
variables to extract subwords satisfying a pattern. For
example, to extract the emails addresses in a text, we
could extract substrings that contain an @ character,

The original version of this paper is entitled “Constant-
Delay Enumeration for Nondeterministic Document
Spanners” and was published in (22nd International
Conference on Database Theory 2019, 2019, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik). The au-
thors have been partially supported by the ANR project
EQUUS ANR-19-CE48-0019. Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) – 431183758.

contain no blank character, but are preceded and fol-
lowed by a blank character. A more general, declarative
way to define this task is the framework of document
spanners, which was first implemented by IBM in their
tool SystemT [16], and whose core semantics have then
been formalized in [8]. The spanner approach uses vari-
ants of regular expressions (namely, regex formulas with
variables) to extract substrings, and a relational query
over these extraction results to combine them. To per-
form evaluation, the first step is to evaluate the regular
expressions, which is done by compiling them to variants
of finite automata, the so-called variable-set automata,
or VAs for short. Second, we compute a plan for the
relational query, using relational algebra operators like
joins, unions and projections. Last, we evaluate this plan
over the results of the extraction. The formalization of
the spanner framework in [8] has led to a thorough in-
vestigation of its properties by the theoretical database
community, see [10, 12, 19, 11, 9, 22].

This paper focuses on the first task of e�ciently com-
puting the results of the extraction, i.e., computing with-
out duplicates all tuples of ranges of the input document
(called mappings) that satisfy the conditions described
by a VA. As many algebraic operations can in fact be
compiled directly into VAs [12], this task actually covers
the whole data extraction problem for so-called regular
spanners [8]. While the extraction task is intractable for
general VAs [10], it is known to be tractable if we impose
that the VA is sequential [12, 9], i.e., if we impose that all
accepting runs actually describe a well-formed mapping;
we make this assumption throughout our work. Even
with this restriction, however, it may still be unreason-
able in practice to materialize all mappings: if there are
k variables to extract, then mappings are k-tuples and
there can be ⇥(n2k) mappings on an input document of
size n, which is unreasonable if n is large. For this rea-
son, recent works [19, 9, 12] have studied the extraction
task in the setting of enumeration algorithms: instead
of materializing all mappings, we enumerate them one
by one while ensuring that the time spent between two
consecutive results, called delay, is always small. Specif-
ically, [12, Theorem 3.3] has shown how to enumerate
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the mappings with delay linear in the input document
and quadratic in the VA, i.e., given a document d and
a functional VA A (a subclass of sequential VAs), the
delay is O(|A|

2
⇥ |d|).

Although this result ensures tractability in both the
size of the input document and the automaton, the delay
may still be as long as |d|, which is generally very large.
By contrast, enumeration algorithms for other database
tasks often enforce stronger tractability guarantees in
data complexity [23, 26], in particular linear preprocess-
ing and constant delay (when measuring complexity in
the RAM model with uniform cost measure [1]). Such
algorithms consist of two phases: a preprocessing phase,
which precomputes an index data structure in linear data
complexity, and an enumeration phase, which produces
all results such that the delay between any two consec-
utive results is always constant, i.e., independent from
the input data. It was recently shown in [9] that this
strong guarantee could be achieved when enumerating
the mappings of VAs if we only focus on data complexity,
i.e., for any fixed VA, we can enumerate its mappings
with linear preprocessing and constant delay in the input
document. However, the preprocessing and delay in [9]
are exponential in the VA because they first determinize
it [9, Propositions 4.1 and 4.3]. This is problematic be-
cause the VAs constructed from regex formulas [8] are
generally nondeterministic and determinization can blow
up the size of the automaton exponentially.
Thus, to e�ciently enumerate the results of the ex-

traction, we would ideally want to have the best of both
worlds: ensure that the combined complexity (in the size
of the sequential VA and the document) remains poly-
nomial, while ensuring that the data complexity (in the
document size only) is as small as possible, i.e., linear
time for the preprocessing phase and constant time for
the delay of the enumeration phase. However, up to
now, there was no known algorithm that satisfies both
these requirements while working on nondeterministic
sequential VAs. Further, it was conjectured that such
an algorithm is unlikely to exist [9] because the related
task of counting the number of mappings is SpanL-hard
and thus intractable for such VAs.
The question of nondeterminism is also unsolved for

the related problem of enumerating the results of monadic
second-order (MSO) queries on words and trees: there
are several approaches for this task where the query is
given as an automaton, but they require the automaton
to be deterministic [7, 2] or their delay is not constant
in the input document [18].

Contributions. We show that nondeterminism is in fact
not an obstacle to enumerating the results of document
spanners e�ciently: we present an algorithm that enu-
merates the mappings of a nondeterministic sequential
VA in polynomial combined complexity while ensuring
linear preprocessing and constant delay in the input doc-
ument size. This answers the open question of [9], and
improves on the bounds of [12].
The existence of such an algorithm is surprising but

in hindsight not entirely unexpected: remember that, in
formal language theory, when we are given a word and a
nondeterministic finite automaton, then we can evaluate

the automaton on the word with tractable combined
complexity by determinizing the automaton “on the fly”,
i.e., computing at each position of the word the set
of states where the automaton can be. Our algorithm
generalizes this intuition, and extends it to the task
of enumerating mappings without duplicates. Here, we
present it for so-called extended sequential VAs, a variant
of sequential VAs introduced in [9]. Note that, despite
the name, extended VAs are actually more restrictive
than VAs: they can be converted in PTIME to VAs,
but the converse is not true as there are VAs for which
the smallest equivalent extended VA has exponential
size [9]. This being said, our approach also generalizes
from sequential extended VAs to sequential VAs: we do
not include this extension in this paper for lack of space,
but the result can be found in the original paper [4].

Our overall approach is to construct a kind of product
of the input document with the extended VA, similarly
to [9]. We then use several tricks to ensure the constant
delay bound despite nondeterminism; in particular, we
precompute a jump function that allows us to quickly
skip the parts of the document where no variable can
be assigned. The resulting algorithm is rather simple
and has no large hidden constants. Note that our enu-
meration algorithm does not contradict the counting
hardness results of [9, Theorem 5.2]: while our algorithm
enumerates mappings with constant delay and without
duplicates, we do not see a way to adapt it to count the
mappings e�ciently. This is similar to the enumeration
and counting problems for maximal cliques: we can enu-
merate maximal cliques with polynomial delay [24], but
counting them is #P-hard [25].

We have also implemented our algorithm and present a
short experimental evaluation using this implementation.
The implementation can be found at https://github.
com/PoDMR/enum-spanner-rs and is under the BSD 3-
clause license.
Paper structure. In Section 2, we formally define

spanners, VAs, and the enumeration problem that we
want to solve on them. We then describe our main result
in Section 3, and prove it in Sections 4 and 5. Last, we
present the experimental performance of our algorithm
in Section 6 and conclude in Section 7.

2. PRELIMINARIES
Document spanners. A document d = d0 · · · dn�1 is

just a word over ⌃. A span of d is a pair [i, ji with
0  i  j  |d|, which represents a substring (contiguous
subsequence) of d starting at position i and ending at
position j � 1. To describe the possible results of an
information extraction task, we use a finite set V of
variables, and define a result as a mapping from these
variables to spans of the input document. Following [9,
19] but in contrast to [8], we do not require mappings to
assign all variables: formally, a mapping of V on d is a
function µ from some domain V

0
✓ V to spans of d. We

define a document spanner to be a function assigning
to every input document d a set of mappings, which
denotes the set of results of the extraction task on the
document d.
Extended VAs. Document spanners are often repre-
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sented as variable-set automata (or VAs). We present
our results on a variant of VAs introduced by [9], called
sequential extended VAs. An extended VA on alphabet
⌃ and variable set V is an automaton A = (Q, q0, F, �)
where the transition relation � consists of letter tran-
sitions of the form (q, a, q0) for q, q0 2 Q and a 2 ⌃,
and of extended variable transitions (or ev-transitions)
of the form (q,M, q0) where M is a possibly empty set
of variable markers (x` or ax, x 2 V). Intuitively, on
ev-transitions, the automaton reads multiple markers at
once. A configuration of an extended VA is a pair (q, i)
where q 2 Q and i is a position of the input document d
Formally, a run � of A on d = d0 · · · dn�1 is a sequence of
configurations where letter transitions and ev-transitions
alternate:

(q0, 0)
M0
��! (q00, 0)

d0
�! (q1, 1)

M1
��! (q01, 1)

d1
�!

· · ·
dn�1
���! (qn, n)

Mn
��! (q0n, n)

where (q0i, di, qi+1) is a letter transition of A for all 0 

i < n, and (qi,Mi, q
0

i) is an ev-transition of A for all
0  i  n where Mi is the set of variable markers read
at position i.

An extended VAs is called sequential if all its accepting
runs are valid in the following sense: every variable
marker is read at most once, and whenever an open
marker x` is read at a position i then the corresponding
close marker a x is read at a position i0 with i  i0. From
each accepting run of an extended sequential VA, we
can then define a mapping where each variable x 2 V

is mapped to the span [i, i0i such that x` is read at
position i and a x is read at position i0; if these markers
are not read then x is not assigned by the mapping (i.e.,
it is not in the domain V

0). Throughout this work, we
always assume that extended VAs are sequential.

The document spanner of the VAA is then the function
that assigns to every document d the set of mappings
defined by the accepting runs of A on d: note that the
same mapping can be defined by multiple di↵erent runs.

The task studied in this paper is the following: given a
sequential extended VA A and a document d, enumerate
without duplicates the mappings that are assigned to d
by the document spanner of A. The enumeration must
write each mapping as a set of pairs (m, i) where m is a
variable marker and i is a position of d.

In the rest of the paper, we further assume that all
extended VAs are trimmed in the sense that for every
state q there is a document d and an accepting run of
the VA where the state q appears. This condition can
be enforced in linear time on any sequential VA: we
do a graph traversal to identify the accessible states
(the ones that are reachable from the initial state), we
do another graph traversal to identify the co-accessible
states (the ones from which we can reach a final state),
and we remove all states that are not accessible or not
co-accessible. We implicitly assume that all sequential
VAs have been trimmed, which implies that they cannot
contain any cycle of variable transitions.
Last, we assume that the states of our extended VAs

are partitioned between ev-states, from which only ev-
transitions originate (i.e., the qi above), and letter-states,
from which only letter transitions originate (i.e., the

q0i above); and we impose that the initial state is an
ev-state and the final states are all letter-states. Note
that transitions reading the empty set move from an
ev-state to a letter-state, like all other ev-transitions.
This requirement can be imposed in linear time on any
input extended VA; because we allow transitions labeled
with the empty set, unlike the definition of [9].

Example 2.1. The top of Figure 1 represents a se-
quential extended VA A0 to extract email addresses. To
keep the example readable, we simply define them as
words (delimited by a space or by the beginning or end of
document), which contain one at-sign “@” preceded and
followed by a non-empty sequence of non-“@” characters.
In the drawing of A0, the initial state q0 is at the left,
and the states q10 and q12 are final. The transitions
labeled by ⌃ represent a set of transitions for each letter
of ⌃, and the same holds for ⌃0, which we define as
⌃0 := ⌃ \ {@, }.

It is easy to see that, on any input document d, there is
one mapping of A0 on d per email address contained in d,
which assigns the markers x` and ax to the beginning
and end of the email address, respectively. In particular,
A0 is sequential, because any accepting run is valid. Note
that A0 happens to have the property that each mapping
is produced by exactly one accepting run, but our results
in this paper do not rely on this property.

Matrix multiplication. The complexity bottleneck for
some of our results is the complexity of multiplying two
Boolean matrices, which is a long-standing open problem,
see e.g. [13] for a recent discussion. When stating our
results, we often denote by 2  !  3 an exponent for
Boolean matrix multiplication: this is a constant such
that the product of two r-by-r Boolean matrices can be
computed in time O(r!). The best known upper bound
is currently ! < 2.3728639, see [14].

3. ENUMERATION RESULT
Our main result is the following.

Theorem 3.1. Let 2  !  3 be an exponent for
Boolean matrix multiplication. Let A be a extended se-
quential VA with variable set V and with state set Q, and
let d be an input document. We can enumerate the map-
pings of A on d with preprocessing time in O((|Q|

!+1 +
|A|)⇥ |d|) and with delay O(|V|⇥ (|Q|

2 + |A|⇥ |V|
2)),

i.e., linear preprocessing and constant delay in the input
document, and polynomial preprocessing and delay in the
input VA.

This result is extended to sequential VAs in [4]. Our
result implies analogous results for all spanner formalisms
that can be translated to sequential VAs. In particular,
spanners are not usually written as automata by users,
but instead given in a form of regular expressions called
regex-formulas, see [8] for exact definitions. As we can
translate sequential regex-formulas to sequential VAs in
linear time [8, 12, 19], our results imply that we can also
evaluate them.

Another direct application of our result is for so-called
regular spanners, which are unions of conjunctive queries
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(UCQs) posed on regex-formulas, i.e., the closure of
regex-formulas under union, projection and joins. We
again point the reader to [8, 12] for the full definitions.
As such UCQs can in fact be evaluated by VAs, our
result also implies tractability for such representations,
as long as we only perform a bounded number of joins.

4. COMPUTING A MAPPING DAG
To show Theorem 3.1, we reduce the problem of enu-

merating the mappings captured by an extended sequen-
tial VA A to that of enumerating path labels in a special
kind of directed acyclic graph (DAG), called a mapping
DAG. This DAG is intuitively a variant of the prod-
uct of A and of the document d, where we represent
simultaneously the position in the document and the
corresponding state of A. In the mapping DAG, we no
longer care about the labels of letter transitions, so we
erase these labels and call these transitions ✏-transitions.
As for the ev-transitions, we extend their labels to in-
dicate the position in the document in addition to the
variable markers. We first give the general definition of
a mapping DAG:

Definition 4.1. A mapping DAG consists of a set
V of vertices, an initial vertex v0 2 V , a final vertex
vf 2 V , and a set of edges E where each edge (s, x, t) has
a source vertex s 2 V , a target vertex t 2 V , and a label
x. There are two kinds of edges: ✏-edge, whose label x
is ✏, and marker edges, whose label x is a finite (possibly
empty) set of pairs (m, i), where m is a variable marker
and i is a position. We require that the graph (V,E) is
acyclic. We say that a mapping DAG is normalized if
every path from the initial vertex to the final vertex starts
with a marker edge, ends with an ✏-edge, and alternates
between marker edges and ✏-edges.

The mapping µ(⇡) of a path ⇡ in the mapping DAG is
the union of labels of the marker edges of ⇡: we require
of any mapping DAG that, for every path ⇡, this union
is disjoint. Given a set U of vertices of G, we write
M(U) for the set of mappings of paths from a vertex
of U to the final vertex; note that the same mapping
may be captured by multiple di↵erent paths. The set of
mappings captured by G is then M(G) := M({v0}).

Intuitively, the ✏-edges correspond to letter transitions
ofA (with the letter being erased, i.e., replaced by ✏), and
marker edges correspond to ev-transitions: their labels
are a possibly empty finite set of pairs of a variable
marker and position, describing which variables have
been assigned during the transition. We now explain
how we construct a mapping DAG from A and from a
document d, which we call the product DAG of A and d:

Definition 4.2. Let A = (Q, q0, F, �) be a sequential
extended VA and let d = d0 · · · dn�1 be an input docu-
ment. The product DAG of A and d is the normalized
mapping DAG whose vertex set is Q⇥ {0, . . . , n} [ {vf}.
Its edges are:

• For every letter-transition (q, a, q0) in �, for every
0  i < |d| such that di = a, there is an ✏-edge
from (q, i) to (q0, i+ 1);

• For every ev-transition (q,M, q0) in �, for every 0 

i  |d|, there is a marker edge from (q, i) to (q0, i)
labeled with the (possibly empty) set {(m, i) | m 2

M}.

• For every final state q 2 F , there is an ✏-edge from
(q, n) to vf .

The initial vertex of the product DAG is (q0, 0) and the
final vertex is vf .

Note that, contrary to [9], we do not contract the
✏-edges but keep them throughout our algorithm.

Example 4.3. The mapping DAG for our example
sequential extended VA A0 on the document a a@b b@c
is shown on Figure 1, with the document being written
at the left from top to bottom. The initial vertex of the
mapping DAG is (q0, 0) at the top left and its final vertex
is vf at the bottom. We draw marker edges horizontally,
and ✏-edges diagonally. To simplify the example, we only
draw the parts of the mapping DAG that are reachable
from the initial vertex. Edges are dashed when they
cannot be used to reach the final vertex.

It is clear that the notion of product DAG is a map-
ping DAG and captures the mappings that we want to
enumerate.

Example 4.4. The set of mappings captured by the
example product DAG on Figure 1 is

{{(x`, 3), (ax, 5)}, {(x`, 6), (ax, 9)}},

and this is indeed the set of mappings of the example
extended VA A0 on the example document.

Our task is to enumerate M(G) without duplicates,
and this is still non-obvious: because of nondeterminism,
the same mapping in the product DAG may be witnessed
by exponentially many paths, corresponding to exponen-
tially many runs of the nondeterministic extended VA A.
We will present in the next section our algorithm to
perform this task on the product DAG G. To do this,
we need to preprocess G by trimming it, and introduce
the notion of levels to reason about its structure.
First, we present how to trim G. We say that G is

trimmed if every vertex v is both accessible (there is
a path from the initial vertex to v) and co-accessible
(there is a path from v to the final vertex). Given a
mapping DAG, we can clearly trim it in linear time by
two linear-time graph traversals. Hence, we will always
implicitly assume that the mapping DAG is trimmed. If
the mapping DAG is empty once trimmed, then there
are no mappings to enumerate, so our task is trivial.
Hence, we assume in the sequel that the mapping DAG
is non-empty after trimming. Further, if V = ; then
the only possible mapping is the empty mapping and we
can produce it at that stage, so in the sequel we assume
that V is non-empty.

Example 4.5. For the mapping DAG of Figure 1,
trimming eliminates the non-accessible vertices (which
are not depicted) and the non-co-accessible vertices (i.e.,
those with incoming dashed edges).
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q0

start

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12
; ⌃

;

{`x}

{̀ x} ⌃0
;

⌃0

@ ;
⌃0

;

{a x}
;

⌃

a

 

a

@

b

 

b

@

c

(q0,0) (q1,0)

(q2,1)

(q2,2)

(q2,3)

(q2,4)

(q2,5)

(q2,6)

(q2,7)

(q2,8)

(q2,9)

(q1,1)

(q1,2)

(q1,3)

(q1,4)

(q1,5)

(q1,6)

(q1,7)

(q1,8)

(q1,9)

(q4,0)

(q5,1) (q6,1)

(q3,2) (q4,2)

(q5,3) (q6,3)

(q7,4) (q8,4)

(q8,5) (q9,5) (q10,5)

(q11,6)

(q11,7)

(q11,8)

(q11,9)

(q12,6)

(q12,7)

(q12,8)

(q12,9)

(q3,6) (q4,6)

(q5,7) (q6,7)

(q7,8) (q8,8)

(q8,9) (q9,9) (q10,9)

vf = (•, 10)

;
✏

;

;

;

;

;

;

;

;

;

{(x ,̀0)}

✏

;

✏

✏

✏

✏

✏

✏

✏

✏

✏

{(x`,3)}

✏

;

✏

;

✏

; {(a x,5)}

✏

;

✏

;

✏

;

✏

;

✏

✏

{(x ,̀6)}

✏

;

✏

;

✏

; {(a x,9)}

✏

Figure 1: Example sequential extended VA A0 to extract e-mail addresses (see Example 2.1) and example mapping
DAG on an example document (see Examples 4.3, 4.4, 4.5, and 4.7).

Second, we present an invariant on the structure of G
by introducing the notion of levels:

Definition 4.6. A mapping DAG G is leveled if its
vertices v = (q, i) are pairs whose second component i is
a nonnegative integer called the level of the vertex and
written level(v), and where the following conditions hold:

• For the initial vertex v0 (which has no incoming
edges), the level is 0;

• For every ✏-edge from u to v, it holds that level(v) =
level(u) + 1;

• For every marker edge from u to v, it holds that
level(v) = level(u). Furthermore, all pairs (m, i) in
the label of the edge have i = level(v).

The depth D of G is the maximal level. The width W
of G is the maximal number of vertices that have the
same level.

The product DAG of A and d is leveled, W is less
than |Q|, and D is equal to |d|+ 1.

Example 4.7. The example mapping DAG on Fig-
ure 1 is leveled, and the levels are represented as hori-
zontal layers separated by dotted lines: the topmost level
is level 0 and the bottommost level is level 10.

In addition to levels, we need the notion of a level set :

Definition 4.8. A level set ⇤ is a non-empty set of
vertices in a leveled normalized mapping DAG, that all
have the same level (written level(⇤)) and which are all
the source of some marker edge. The singleton {vf} of
the final vertex is also considered as a level set.

In particular, letting v0 be the initial vertex, the sin-
gleton {v0} is a level set. Further, if we consider a level
set ⇤, which is not the final vertex, then we can follow
marker edges from all vertices of ⇤ (and only such edges)
to get to other vertices, and follow ✏-edges from these
vertices (and only such edges) to get to a new level set ⇤0

with level(⇤0) = level(⇤) + 1.
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5. ENUMERATION ON MAPPING DAGS
In the previous section, we have reduced our enumer-

ation problem for extended VAs on documents to an
enumeration problem on normalized leveled mapping
DAGs. In this section, we describe our main enumera-
tion algorithm on such DAGs and show the following:

Theorem 5.1. Let 2  !  3 be an exponent for
Boolean matrix multiplication. Given a normalized lev-
eled mapping DAG G of depth D and width W , we can
enumerate M(G) (without duplicates) with preprocessing
O(|G|+D⇥W!+1) and delay O(W 2

⇥ (r+ 1)) where r
is the size of each produced mapping.

Remember that, as part of our preprocessing, we have
ensured that the leveled normalized mapping DAG G
has been trimmed. We also preprocess G to ensure that,
given any vertex, we can access its adjacency list (i.e.,
the list of its outgoing edges) in some sorted order on the
labels, where we assume that ;-edges come last. This
sorting can be done in linear time on the RAM model
[15, Theorem 3.1], so the preprocessing is in O(|G|).
Our general enumeration algorithm is presented as

Algorithm 1. We explain the missing pieces next. The
function Enum is initially called with ⇤ = {v0}, the level
set containing only the initial vertex, and with mapping
being the empty set.

Algorithm 1 Main enumeration algorithm

1: procedure enum(G,⇤,mapping)
2: ⇤0 := Jump(⇤)
3: if ⇤0 is the singleton {vf} of the final vertex then
4: Output(mapping)
5: else
6: for (locmark,⇤00) in NextLevel(⇤0) do
7: enum(G,⇤00, locmark [mapping)

For simplicity, let us assume for now that the Jump
function is just the identity, i.e., ⇤0 := ⇤. As for the
call NextLevel(⇤0), it returns the pairs (locmark,⇤00)
where:

• The label set locmark is an edge label such that
there is a marker edge labeled with locmark that
starts at some vertex of ⇤0

• The level set ⇤00 is formed of all the vertices w at
level level(⇤0)+1 that can be reached from such an
edge followed by an ✏-edge. Formally, a vertex w is
in ⇤00 if and only if there is an edge labeled locmark
from some vertex v 2 ⇤ to some vertex v0, and
there is an ✏-edge from v0 to w.

Remember that, as the mapping DAG is normalized, we
know that all edges starting at vertices of the level set ⇤0

are marker edges (several of which may have the same
label); and for any target v0 of these edges, all edges
that leave v0 are ✏-edges whose targets w are at the level
level(⇤0) + 1.

It is easy to see that the NextLevel function can be
computed e�ciently:

Proposition 5.2. Given a leveled trimmed normal-
ized mapping DAG G with width W , and given a level
set ⇤0, we can enumerate without duplicates all the pairs
(locmark,⇤00) 2 NextLevel(⇤0) with delay O(W 2

⇥

|locmark|) in an order such that locmark = ; comes last
if it is returned.

The design of Algorithm 1 is justified by the fact that,
for any level set ⇤0, the set M(⇤0) can be partitioned
based on the value of locmark.

It can easily be proven by induction that Algorithm 1
correctly enumerates M(G) when Jump is the identity
function. However, the algorithm then does not achieve
the desired delay bounds: indeed, it may be the case that
NextLevel(⇤0) only contains locmark = ;, and then
the recursive call to Enum would not make progress
in constructing the mapping, so the delay would not
generally be linear in the size of the mapping. To avoid
this issue, we use the Jump function to directly“jump” to
a place in the mapping DAG where we can read a label
di↵erent from ;. Let us first give the relevant definitions:

Definition 5.3. Given a level set ⇤ in a leveled map-
ping DAG G, the jump level JL(⇤) of ⇤ is the first level
j � level(⇤) containing a vertex v0 such that some v 2 ⇤
has a path to v0 and such that v0 is either the final vertex
or has an outgoing edge with a label which is 6= ✏ and
6= ;. In particular, we have JL(⇤) = level(⇤) if some
vertex in ⇤ already has an outgoing edge with such a
label, or if ⇤ is the singleton set containing only the final
vertex.

The jump set of ⇤ is then Jump(⇤) := ⇤ if JL(⇤) =
level(⇤), and otherwise Jump(⇤) is formed of all vertices
at level JL(⇤), to which some v 2 ⇤ have a directed path
whose last edge is labeled ✏. This ensures that Jump(⇤)
is always a level set.

The definition of Jump ensures that we can jump from
⇤ to Jump(⇤) when enumerating mappings, and it will
not change the result because we only jump over ✏-edges
and ;-edges.
What is more, Algorithm 1 now achieves the desired

delay bounds, as we will show. Of course, this relies
on the fact that the Jump function can be e�ciently
precomputed and evaluated. We only state this fact here,
and give the proof and more details in [4]. Intuitively,
the jump function relies on the multiplication of matrices
of size W ⇥W , hence the time bound.

Proposition 5.4. Given a leveled mapping DAG G
with width W , we can preprocess G in time O(D⇥W!+1)
such that, given any level set ⇤ of G, we can compute
the jump set Jump(⇤) of ⇤ in time O(W 2).

We can now conclude the proof of Theorem 5.1 by
showing that the preprocessing and delay bounds are
as claimed. For the preprocessing, this is clear: we do
the preprocessing in O(|G|) presented at the beginning
of the section (i.e., trimming, and computing the sorted
adjacency lists), followed by that of Proposition 5.4.
For the delay, we can show that Algorithm 1 has delay
O(W 2

⇥(r+1)), where r is the size of the mapping of each
produced path. In particular, the delay is independent
of the size of G.
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Figure 2: Preprocessing time and index structure size
for the query TTAC.{0,1000}CACC on inputs of di↵erent
lengths.

6. EXPERIMENTS
In this section, we present a very short experimental

evaluation of our implementation of the enumeration
algorithm. More results can be found in [6]. Our im-
plementation enumerates the mappings assigned to a
document by a nondeterministic sequential VA.
The tests were run in a virtual machine that had

exclusive access to two Xeon E5-2630 CPU cores. The
algorithm is single-threaded, but the additional core was
added to minimize the e↵ects of background activity of
the operating system.

Measuring the delays between outputs of the algorithm
is challenging, because the timescale for these delays is
so tiny that unavoidable hardware interrupts can make a
big di↵erence. To eliminate outliers resulting from such
interrupts, we exploited the fact that our enumeration
algorithm is fully deterministic. We ran the algorithm
twenty times and recorded all delays. Afterwards, for
each produced result, we took the median of the twenty
delays that we collected. All delay measurements use
this approach, e.g., if we compute the maximum delay for
a query, it is actually the maximum over these medians.
We benchmarked our implementation on a genetic

dataset: the first chromosome of the human genome
reference sequence GRCh38, available at https://www.
ncbi.nlm.nih.gov/genome/guide/human/. It contains
roughly 250 million base pairs, where each base pair is
encoded as a single character. We also use prefixes of this
data in the experiments, when we need to benchmark
against input documents of various sizes.
We consider the query extracting factors defined by

the regex TTAC.{0,100}CACC to illustrate the data com-
plexity of our algorithm, and consider the set of queries
extracting all substrings up to a given length k (i.e., the
regex .{0,k}) to illustrate its combined complexity.

For the first query, we give in Figure 2 the preprocess-
ing time and size of the index structure divided by the
input length, and give in Figure 3 the delay. We see that
the preprocessing speed is roughly 3 megabytes per sec-
ond and the index structure is twice as large as the input
document. The average delay is constant (around five
microseconds, amounting to 200,000 results per second),
while the maximum delay is roughly four times larger.

For the queries of the form .{0,k}, we used as input
the first 100,000 characters of the genomic data from the
previous experiment. This query does not look interest-
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Figure 3: Enumeration delay for the query
TTAC.{0,1000}CACC on inputs of di↵erent lengths.
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Figure 4: Preprocessing time for the query .{0,k} on
an input document of 100 kB, as a function of k.

ing and indeed, all resulting mappings can be computed
trivially given the length of the string. However, this
query triggers the worst case behavior of our algorithm,
as almost all levels have width k + 1. We give the pre-
processing time in Figure 4. As our implementation
uses the naive O(n3) matrix multiplication algorithm,
its running time is supposed to be ⇥(k4) in this case.
This is consistent with what we observe experimentally.
The jumps in preprocessing time that can be seen in the
figure result from the fact that our implementation pads
the matrix widths to a multiple of 64.

7. CONCLUSION
We have shown that we can e�ciently enumerate the

mappings of sequential variable-set automata on input
documents, achieving linear-time preprocessing and con-
stant delay in data complexity, while ensuring that pre-
processing and delay are polynomial in the input VA
even if it is not deterministic. This result was previously
considered as unlikely by [9], and it improves on the
algorithms in [12]: with our algorithm, the delay be-
tween outputs does not depend on the input document,
whereas it had a linear dependency on the size of the
input document in [12].
Since the publication of our original paper [4], we

have extended our results in several ways. First, our
algorithm has been implemented and we have evaluated
its performance experimentally; we summarized these
results in Section 6, with the full results being given
in [6]. Secondly, we have studied the problem of e�cient
enumeration on dynamic documents, i.e., maintaining
the index structures that we use for enumeration when
the input document is updated. Our results in this
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direction are presented in [5], in the more general setting
of enumerating queries over trees. Specifically, relative
to [4], we study enumeration for nondeterministic tree
automata (rather than word automata), and achieve the
same theoretical complexity bounds. Moreover, we can
update our index structure in logarithmic time in the size
of the tree when performing atomic updates on the input
tree, i.e., relabeling a node, deleting or adding a leaf.
Our results in [5] thus achieve the same data complexity
bounds as the previously proposed algorithms for e�cient
enumeration of such queries on trees, e.g., those of [3, 18,
17, 20, 21], while supporting a more expressive update
language, and while additionally ensuring tractability in
the nondeterministic tree automaton.

One remaining open problem for e�cient enumeration
on dynamic data is to have an e�cient support for more
general updates. Specifically, in the context of words,
our update language from [5] only allows single letter
changes in the input documents. We do not know how
to deal e�ciently with more complex update operators,
e.g., bulk update operations that modify large parts
of the text at once like cutting and pasting parts of
the text, splitting or joining strings, etc. We also do
not know how to handle the complexity of updates to
avoid the logarithmic dependency in the input document:
while we show a lower bound in [5] on the update time,
it may be possible to achieve constant-time updates
for the case of strings for specific updates, e.g., at the
beginning or end of the word, as in the case of rotating
a log file, or for more restricted queries than the class
of regular spanners. Last, an interesting open question
is whether our methods allow for e�cient support for
other operations, e.g., testing if an input mapping is an
answer to the query: such testing queries are e�ciently
supported in [17] (which has no support for updates), and
we do not know if we can handle such queries with our
methods (and especially in combination with updates).
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