Concurrent Prefix Recovery:
Performing CPR on a Database

Guna Prasaad®
University of Washington

Badrish Chandramouli
Microsoft Research

Donald Kossmann
Microsoft Research

guna@cs.washington.edu badrishc@microsoft.com donaldk@microsoft.com

ABSTRACT

This paper proposes a new recovery model based on group commit,
called concurrent prefix recovery (CPR). CPR differs from traditional
group commit implementations in two ways: (1) it provides a seman-
tic description of committed operations, of the form “all operations
until time ¢; from session ”; and (2) it uses asynchronous incremen-
tal checkpointing instead of a WAL to implement group commit in a
scalable bottleneck-free manner. CPR provides the same consistency
as a point-in-time commit, but allows a scalable concurrent imple-
mentation. We used CPR to make two systems durable: (1) a custom
in-memory transactional database; and (2) FASTER, our state-of-the-
art, scalable, larger-than-memory key-value store. Our detailed eval-
uation of these modified systems shows that CPR is highly scalable
and supports concurrent performance reaching hundreds of millions
of operations per second on a multi-core machine.

1. INTRODUCTION

The last decade has seen huge interest in building extremely scal-
able, high-performance multi-threaded data systems — both databases
and key-value stores. Main memory databases exploit multicores (up
to 1000s of cores [14]) as well as NUMA, SIMD, HTM, and other hard-
ware advances yielding orders-of-magnitude higher performance than
traditional databases. In the open-source FASTER research project[1],
we have been developing key-value store technologies that push per-
formance even further. FASTER achieves more than 150M ops/sec on
one machine for point updates and lookups, while supporting larger-
than-memory data and caching the hot working set in memory [5].

Applications using such systems generally require some form of
durability for the changes made to application state. Modern systems
can handle extremely high update rates in memory but struggle to re-
tain their high performance when durability is desired. Two broad
approaches address this requirement for durability today.

WAL with Group Commit. The traditional approach to achieve
durability in databases is to use a write-ahead log (WAL) that records ev-
ery change to the database. Group commit amortizes the cost of writ-
ing the log to disk as large chunks, but update-intensive applications

$Work started during internship at Microsoft Research.

© ACM 2019. This is a minor revision of the paper entitled “Concurrent Prefix
Recovery: Performing CPR on a Database”, published in SIGMOD’19, ISBN
978-1-4503-5643-5/19/06, June 30-July 05, 2019, Amsterdam, Netherlands.
DOI: https://doi.org/10.1145/3299869.3300090

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2019 ACM 0001-0782/08/0X00 ...$5.00.

16

still stress disk write bandwidth. Even without the I/O bottleneck,
a WAL introduces overhead - one study [7] found that 30% of CPU
cycles are spent in generating log records due to lock contention, ex-
cessive context switching, and buffer contention during logging. Re-
cent research has improved the traditional WAL algorithm along di-
mensions such as buffer allocation [9], by using thread-local REDO
logs [15], and optimizing for small I/Os on flash storage [6]. Johnson
et al. [8] propose a distributed group commit using Lamport clocks
which reduces the concurrency bottleneck but still incurs log writes.
Opverall, the overheads of WAL continue to affect scalability today.

Checkpoint-Replay. An alternate to WAL, popular in streaming
databases, is to take periodic, consistent, point-in-time checkpoints,
and use them with input replay for recovery. Cao et. al. [3] propose
asynchronous checkpointing algorithms for applications that are fre-
quently physically consistent i.e. the state of the application is transac-
tionally consistent at a physical point in time. Such a consistent state
cannot be attained without quiescing the database in most common
scenarjos. Traditionally, databases obtain a fuzzy checkpoint of its
state asynchronously and use the WAL to recover a consistent snap-
shot during recovery. However, as noted earlier, this approach limits
throughput due to the WAL bottleneck. VoltDB [10] uses an asyn-
chronous checkpointing technique which takes checkpoints by mak-
ing every database record “copy-on-write”, and this approach is shown
to be expensive in update-intensive workloads [5]. CALC [13] obtains
asynchronous consistent checkpoints using an atomic commit log (in-
stead of WAL), in which case the atomic log becomes the new bottle-
neck. To summarize, existing checkpoint-replay based durability so-
lutions are unable to support the ever growing need for scalability.

These alternatives are depicted in Figs. 1(a) and (b). Both WAL and
point-in-time checkpoints have scalability issues. To validate this point,
we augmented FASTER with a WAL. An in-memory workload that
previously achieved more than 150M ops/sec dropped to around 15M
ops/sec after the WAL was enabled, even when writing the log to mem-
ory. Creating a copy of data on the log for every update is expen-
sive and stresses contention on the log’s tail. Further, we built an in-
memory transactional database with WAL and point-in-time check-
points and found both techniques to bottleneck at around 20M single-
key txns/sec (see Sec. 6 for details). This huge performance gap has
caused many real deployments to forego durability altogether, e.g., by
disabling WAL in RocksDB, or by using workarounds such as approx-
imate recovery and quiesce-and-checkpoint [4]. These approaches in-
troduce complexity, latency, quality, and/or performance penalties.

Our Solution

In this paper, we advocate a different approach. We adopt the seman-
tics of group commit, which commits operations as a batch, as our user

SIGMOD Record, March 2020 (Vol. 49, No. 1)

CPU ops CPU ops CPU ops
<« {:—] «— <«

< EWe W

m “

< i:} « {'-3 -«

input op sequence
010,0: 0405040
03 010 06D7GE09 S
010203 0405 EIIH}

5E

b
T
L

WAL input op sequence

— v v+1

group commit

v v+1
(a) Write-Ahead (b) Point-in-time (¢) Concurrent Prefix
Logging Checkpoint Recovery

Figure 1: Approaches to Durability

model for durability. However, instead of acknowledging individual
commits, we notify commit as “all operations issued up to time t”: we
call this model prefix recovery. Clients can use this acknowledgment
to prune’ their in-flight operation log until ¢ and expose commit to
users. Based on this model, we make the following contributions:

e We argue that it is not possible to guarantee a system-wide prefix
recovery without quiescing or introducing a central bottleneck. To
address this problem, we propose concurrent prefix recovery (CPR).
In CPR (see Fig. 1(c)), the system periodically notifies each client
(or session) \S; of a commit point ¢; in its local operation timeline,
such that all operations before ¢; are committed, but none after.
We show that CPR has the same consistency as prefix recovery, but
allows a scalable asynchronous implementation.

o Traditional group commit is implemented using a WAL. Instead, we
implement CPR commits using asynchronous consistent checkpoints
that capture all changes between commits without introducing any
scalability bottleneck. However, this solution requires the ability
to take incremental checkpoints very quickly. Fortunately, systems
such as FASTER store data in an in-place-updatable log-structured
format, making incremental checkpoints very quick to capture and
commit. Our approach unifies the worlds of (1) asynchronous in-
cremental checkpoints; and (2) a WAL with group commit, aug-
mented with in-place updates on the WAL between commits.

e While CPR makes it theoretically possible to perform group com-
mit in a scalable asynchronous fashion, it is non-trivial to design
systems that achieve these properties without introducing expen-
sive runtime synchronization. To complete the proposal, therefore,
we use CPR to build new scalable, non-blocking durability solu-
tions for (1) a custom in-memory transactional database; and (2)
FASTER, our state-of-the-art larger-than-memory key-value store.
We use an extended version of epoch framework as our building
block for loose synchronization, and introduce new state-machine
based protocols to perform a CPR commit. As a result, our simple
main-memory database implementation scales linearly up to 90M
txns/sec — an order-of-magnitude higher than current solutions —
while providing periodic CPR commits. Further, our implementa-
tion of FASTER with CPR reaches up to 180M ops/sec (the higher
throughput compared to [5] is due to a better machine used in this
paper) while supporting periodic CPR commits.

To recap, we identify the scalability bottleneck introduced by durabil-
ity on update-intensive workloads, and propose CPR to alleviate this
bottleneck. We then develop solutions to realize CPR in two broad

! Prefix recovery and CPR also work with reliable messaging systems
e.g. Kafka, which prunes input messages until some point in time.

SIGMOD Record, March 2020 (Vol. 49, No. 1)

Commit 1 Commit 2

o i | |
iy | | |
Database ——
[| |

_) Transactions Issue Sequence of C4

Figure 2: Concurrent Prefix Recovery Model

classes of systems: an in-memory database and a larger-than-memory
key-value store. Our detailed evaluation shows that it is possible to
achieve very high performance in both these CPR-enabled systems,
incurring no overhead during normal runtime, and low overhead dur-
ing commit (in terms of throughput and latency).

2. CONCURRENT PREFIX RECOVERY

A database snapshot is “transactionally consistent” if it reflects all
changes made by committed transactions, and none made by uncom-
mitted or in-flight transactions. When the database fails, it can recover
to a consistent state using the snapshot, but some in-flight transac-
tions may be lost.

A stricter recovery guarantee is “prefix recovery,” where the database
- upon failure — can recover to a systemwide prefix of transactions
accepted for processing by the database. A naive method to obtain
a prefix recovery snapshot is to stop accepting new transactions un-
til we obtain a consistent snapshot. This technique, called commit-
consistent checkpointing [2], forcefully creates a physical point in time
at which the database state is consistent, but reduces availability. An
alternate method [13] achieves this asynchronously using multiver-
sioning and an atomic commit log. The commit log records every
transaction commit and is key to demarcating a prefix that determines
which transactions are part of the snapshot. However, the log intro-
duces a scalability bottleneck.

Current state-of-the-art techniques to obtain a prefix recovery snap-
shot quiesces the database or impedes scalability, neither of which is
desirable. We indeed argue that one cannot obtain such a snapshot
without these limitations. The key insight is that to obtain the snap-
shot, we must create a virtual time-point ¢ corresponding to a prefix.
Asincoming transactions are processed simultaneously, depending on
whether they are issued before or after ¢, they must be executed dif-
ferently. For example, consider two transactions: 7 that is accepted
before t and T” that is accepted after. Threads must execute 7" and 7"
differently as the effect of 7" must reflect in the snapshot, whereas that
of T should not. So, all threads must agree on a common protocol to
determine this unique ¢, when chosen. To guarantee prefix recovery,
threads must coordinate before executing every transaction, which is
not possible without introducing a serial communication bottleneck.

To circumvent this fundamental limitation, we introduce CPR. In a
prefix recovery snapshot, the database commits all transactions issued
before a time-point . CPR relaxes this requirement by eliminating the
need for a “system-wide” time across all clients. Instead, it provides a
client-local time, t¢, to each client C, such that all transactions issued
by C before tc are committed and none after t¢ are.

Definition 1 (CPR Consistency). A database state is CPR consistent
if and only if, for every client C, the state contains all its transactions com-
mitted before a unique client-local time-point tc, and none after.

Consider the example shown in Fig. 2. The database has 4 clients
issues transactions, each assigned a client-local sequence number. A
CPR commit, commit 1 (marked as curve) for instance, commits the

transactions Cy : {T1,T2}, Co : {Th, T2, T3}, Cs : {T1,T>}, and

17

Cy : {Tl, Ts, T3}. Upon failure, the database recovers the appro-
priate prefix for each client: for instance, the effects of {11, 7%, T3}
for client C5. C's : T4 cannot be recovered using commit 1. A later
commit, commit 2, persists the effects of transactions until Cy : T7
including C5 : T4, and hence C5 : Ty can then be recovered.

It is desirable to be able to commit the database state at client de-
termined time tc. For example, concurrent clients issuing update
requests as batches of transactions might want to commit at batch
boundaries. We claim that client-determined CPR commit cannot be
performed without quiescing the database. Let the client-determined
set of CPR points for a commit with k clients be s1, s2, ..., Sk. A
transaction request s’ by client C; just after s; can be executed only
when all transactions issued before each of si, s2, ..., S have been
executed. Hence, s’ is blocked till then. Extending this to all clients,
the entire database is blocked until all transactions before s1, ..., Sk
have been processed. As a result, client-determined CPR commits
are unattainable without blocking. The fundamental limitation here
is that s’ is blocked because it must read the effects of transactions
before CPR points of every client, and these are predetermined (e.g.
at a batch boundary). However, in case of CPR, we could circumvent
this problem by flipping the roles: clients request for a commit, and
the database determines the CPR points for each client collaboratively
while obtaining the snapshot.

3. EPOCH FRAMEWORK

The epoch framework helps avoid synchronization between threads
whenever possible. An epoch managed thread executes user operations
(e.g. transactions) independently most of the time. It uses thread-local
data structures to maintain system state, letting threads lazily syn-
chronize over critical systemwide events. The epoch framework is a
key building block in CPR commit protocols. We describe its abstract
function here (Refer [5, 12] for details).

We extended the standard epoch framework with custom trigger
actions. Threads can register to lazily execute arbitrary global actions,
called trigger actions, after a global event has occurred. For instance, a
thread can register to execute a global action A (e.g. close a file) after
a certain thread-local event E happens in every thread (e.g. a thread-
local done flag set after reading a partition of the file). The key guar-
antee provided by the framework is that A is executed once and only
after all thread-local events have occurred. This functionality is ex-
posed using the following interface:

e Acquire: Add the current thread to the epoch managed threads.

e Refresh: All epoch managed threads must invoke Refresh peri-
odically, but never during an user operation (e.g. only in-between
and never in the middle of a transaction).

e BumpEpoch(cond, action): Register (cond, action) with the
framework; action is executed only after cond is satisfied.

e Release: Remove the current thread from epoch managed threads.

4. CPR COMMIT PROTOCOL

We now present an asynchronous protocol for performing CPR
commit in a simple in-memory transactional database. The database
has a shared-everything architecture where any thread can access any
record. It uses strict 2-Phase Locking with No-Wait deadlock preven-
tion policy for concurrency control. We chose this setup for ease of
exposition, and we believe that our algorithm can be easily extended
for other protocols as well. We also assume memory twice the size of
the database to simplify explanation of the key benefit of CPR.

4.1 Commit Algorithm

Each record in the database has two values, stable and live, and an
integer that stores its current version. In steady state, the database is at

18

Figure 3: State Machine for CPR Commit in DB

Function Run()
phase, version = Global.phase, Global.version;
while true do
repeat

if inputQueue. TryDequeue (txn) then

if not Execute (txn, phase, version) then
if txn aborted due to CPR then
‘ break;
until k times;
Refresh();
newPhase, newVersion = Global.phase, Global.version;
if phase is PREPARE and newPhase is IN_PROGRESS then
‘ Record time ¢ for thread T7;

phase, version = newPhase, newVersion;

Procedure Execute (txn, phase, version)
foreach (record, accessType) in txn.ReadWriteSet() do
if record. TryAcquirelLock (accessType) then
lockedRecords.Add (record);
if phase is PREPARE then
if record.version > version then
Unlock all lockedRecords;
‘ Abort txn due to CPR;
else if phase is IN_PROGRESS or WAIT_FLUSH then
if record.version < version + I then
Copy record.live to record.stable;
‘ record.version = version + 1;
else
Unlock all lockedRecords;
Abort txn;
Execute txn using live values;
Add txn to thread-local staged transactions;
Unlock all lockedRecords;

Algorithm 1: Pseudo-code for Execution Threads

some version v. A CPR commit corresponds to shifting the database
version from v to (v + 1) and capturing its state as of version v.
To simplify explanation, we assume a one-to-one mapping between
threads and clients: each client C has a dedicated thread T to handle
allits transactions serially in the order it was issued as shown in Alg. 1.
A CPR commit is coordinated using the epoch framework (Sec. 3) as
shown in Alg. 2 and its global state machine is shown in Fig. 3.

A CPR Commit is lazily coordinated using the epoch framework
over three phases: Prepare, In-Progress and Wait-Flush. The protocol
state is maintained using two shared global variables, Global . phase
and Global.version. They denote the current phase and version of
the database respectively. Threads have a thread-local view of these
variables that are updated only during Refresh. Avoiding frequent
atomic synchronization over these variables is key to the scalability of
CPR-based systems and is only possible due to the epoch framework.

Rest Phase. A commit request is issued when the database is in v,
Rest. When in Rest, transactions execute normally using strict 2PL
with No-Wait policy, the default high-performance phase. The al-
gorithm is triggered by invoking the Commit function (Alg. 2). This
updates the global state to Prepare and adds an epoch trigger action

SIGMOD Record, March 2020 (Vol. 49, No. 1)

Function Commit ()
Atomically set Global.phase = PREPARE;
BumpEpoch (all threads in PREPARE, PrepareToInProg);

Procedure PrepareToInProg()

Atomically set Global.phase = IN_PROGRESS;

BumpEpoch (all threads in IN_PROGRESS,
InProgToWaitFlush);

Procedure InProgToWaitFlush()
Atomically set Global.phase = WAIT_FLUSH;
foreach record in database do
if record.version == Global.version + 1 then
‘ Capture record.stable;
else
‘ Capture record.live;
Atomically set Global.phase, Global.version = REST,
Global.version + 1;
Commit all staged transactions;

Algorithm 2: Epoch-based State Machine

PrepareToInProg, which is triggered automatically after all threads
have entered Prepare. Execution threads update their local view of the
phase during subsequent epoch synchronization and enter Prepare.

Prepare Phase. The Prepare phase ‘prepares’ threads for a CPR
Commit. A transaction is executed in Prepare only if all its instruc-
tions can be executed on version v of the database. Such transactions
are part of the commit and can be recovered on failure. To ensure
CPR consistency, they must not read the effects of transactions that
are not part of the commit. Upon encountering any record with ver-
sion greater than v, the transaction immediately aborts, and the thread
refreshes its thread-local view of system phase and version. At most
one transaction per thread is aborted this way for every commit, since
the thread advances to the next phase immediately.

In-Progress Phase. PrepareToInProg action is executed automati-
cally after all threads enter Prepare. It updates the system phase to In-
Progress and adds another trigger action, InProgToWaitFlush. When
a thread refreshes its thread-local state now, it enters In-Progress. An
In-Progress thread executes transactions in database version (v + 1);
it updates the version of records it reads/writes to (v + 1) when it
is < v. This prevents any transaction belonging to the commit from
reading the effects of those that are not. To process (v + 1) transac-
tions without blocking, and at the same time capture the record’s final
value at version v, we copy the live value to the stable value.

Wait-Flush Phase. Once all threads enter In-Progress, the epoch
framework executes trigger action InProgToWaitFlush. First, it sets
the global phase to Wait-Flush, then it captures version v: if a record’s
version is (v + 1), then its stable value is captured, else its live value
is captured as part of the commit. Meanwhile, incoming transactions
in Wait-Flush are processed similar to those in In-Progress. After all
records are captured and persisted, the global phase and version are
updated to Rest and (v + 1) respectively.

This concludes the CPR commit of version v of the database, re-
sulting in the following theorem (proof sketch in [12]).

Theorem 1 (Correctness). Algorithms 1 and 2 together produce a
transactionally consistent snapshot:
o For every thread T, the snapshot reflects all transactions committed be-
fore a time t7, and none after.

o The snapshot is conflict-equivalent to a point-in-time snapshot.

Recovery. Recovery in a CPR-based database is straightforward:
we simply load the database back into memory from the latest commit.
Unlike traditional WAL-based recovery, there is no need for UNDO
processing since the value of each record captured in Alg. 2 is trans-
actionally consistent, and it is the final value after all v transactions
have been executed. So, this corresponds to a database state when all

SIGMOD Record, March 2020 (Vol. 49, No. 1)

Time | Database State (Before) [Thread 1 | Thread2
1 A:(1,3,-),B:(1,2,—) | A=5 | B=3
2 1,Rest — 1,Prepare
3 [A:{(1,5,—),B:(1,3,—) [B=2 [®
4 A:(1,5,—),B:(1,2,—) | ® | B=1
5 1,Prepare — 1,In-Progress
6 A:(1,3,—),B:(1,1,—) A=5 ®
7 A:(1,5,—),B:(1,1,—) B=T7 A=9
8 A:(2,9,5),B:(1,7,—) | A=3 = ® | B=5
9 1,In-Progress — 1,Wait-Flush
10 A:(2,9,5),B:(2,5,7) ® [A=3
11 A:(2,3,5),B:(2,5,7) A=9 | ®
12 1,Wait-Flush — 2,Rest
13 A:(2,9,5),B:(2,5,7) ® A=1
14 A:(2,1,5),B:(2,5,7) B =4 ®
15 A:(2,1,5),B:(2,4,7)

Rest Prepare In-Progress

Wait-Flush ~ ® Epoch-Refresh key: (version, live, stable)

Figure 4: Sample Execution of CPR Algorithm

transactions issued before time ¢ for every thread 7" have been com-
mitted. Transactions issued after ¢ by thread T are lost, as per the
definition of CPR-consistency.

4.2 CPR By Example

As an example, we illustrate CPR on two threads for a database that
has two records, A and B, see Fig. 4. Each row denotes a time step
in which threads execute a 1-key write transaction: for instance A =
5 is a transaction that updates A’s value to 5. A thread updates its
thread-local state during epoch refresh (denoted using ®). Initially,
both threads are in Rest, processing transactions by updating the live
values. We receive a commit request at £ = 2, which updates the
global phase to Prepare. Threads 1 and 2 enter Prepare at t = 4 and
t = 3 respectively. Prepare threads also check if record version >
current database version (i.e. 1), before executing the transactions.

Since all threads have entered Prepare, the system advances to the
In-Progress phase at ¢ = 5. Thread 2 enters In-Progress by refresh-
ing its epoch at t = 6. This transition from Prepare to In-Progress
demarcates its CPR-point. When a record version is 1, In-Progress
threads copy its live value to stable value and update the version be-
fore processing the transaction. Att = 7, thread 2 copies 5, the live
value of A, to stable value, updates version to 2 and writes 9 to live
value. Thread 1, which is still in Prepare, tries to update A att = 8 but
aborts since its version is greater than 1 and immediately refreshes its
epoch. Thread 1 enters In-Progress now, marking its CPR-point. As
all threads are in In-Progress, the system enters the Wait-Flush phase.
We capture the stable values, A = 5 and B = 7, in the background
while threads execute transactions belonging to version 2 on the live
values. For other records with version < 1, the live value is captured
as part of the commit. Once the captured values are safely persisted
on disk, the system transits to Rest with version 2. This ends the CPR
commit of version 1 of the database with CPR-pointst = 8and¢ = 6.

S. CPRIN FASTER

We next show how CPR-based durability is added to FASTER [5],
our recent open-source concurrent latch-free hash key-value store. It
supports reads, blind upserts, and read-modify-write (RMW) opera-
tions over larger-than-memory data. In the FASTER paper, we report
a scalable in-memory throughput of more than 150M ops/sec for the
working set in memory, making it a good candidate to apply CPR.

FASTER has two main components, a hash index and a log-structured
record store called HybridLog. HybridLog defines alogical address space
that spans secondary storage and main memory. Each record contains
some metadata, a key, and a value. Records corresponding to keys that
share the same slot in the hash index are organized as a reverse linked
list: each record’s metadata contains the logical address of the previ-

19

LA=0

0 v/ ////// l Increasing
. 7 Logical Address
Disk ‘4 Stable
/AL
V777775 Head Offset
Read-Only /Rcad-Copy—Updatc
In-Memory /m Read-Only
l Mutable @ Offset
In-Place Update
LA=ow

Figure 5: HybridLog Organization in FASTER

ous record mapped to that slot. The hash index points to the logical
address of the latest (tail) record in this linked list.

The HybridLog address space (Fig. 5) is divided into an immutable
stable region (on disk), an immutable read-only region (in memory),
and a mutable region (also in memory). The head offset tracks the
smallest logical address available in memory. The read-only offset di-
vides the in-memory portion of the log into immutable and mutable re-
gions. The tail offset points to the next free address at the tail of the log.
FASTER threads perform in-place updates in the hot mutable region
for high in-memory performance. Updates to the immutable region
use read-copy-update, where a new mutable copy of the record is cre-
ated at the end of tail to update it. FASTER uses epoch protection to
control access to shared memory in a latch-free manner.

5.1 Towards Adding Durability

By default, the index and in-memory portion of HybridLog is lost
on failure. We added the ability to periodically commit in-flight op-
erations in the mutable region using CPR, by adding a session-based
persistence API to FASTER. Clients can start and end a session, iden-
tified by a unique Guid, using StartSession and StopSession. Ev-
ery operation such as Upsert on FASTER occurs within a session, and
carries a monotonic session-local serial number. On failure, a client
can re-establish a session by invoking ContinueSession with its ses-
sion Guid as parameter. This call returns the last serial number (CPR
point) that FASTER has recovered on that session. As described ear-
lier, CPR commits are session-local, and FASTER recovers to a spe-
cific CPR point for every session. The client can also register a call-
back to be notified of new CPR points whenever FASTER commits.

FASTER provides threads unrestricted access to records in the mu-
table region of HybridLog, letting user code control concurrency. As
CPR enforces a strict only and all policy, it is challenging to obtain
a CPR-consistent checkpoint without compromising on fast concur-
rent memory access.

5.2 Asynchronous I/0 and CPR

FASTER supports disk-resident data using an asynchronous model:
anl/Orequestis issued in the background, while the requesting thread
processes future requests. The user-request is executed later once the
record is retrieved from disk. FASTER supports two CPR modes. In
the strict mode, pending operations logically occur at the point they
were originally issued. We also support a relaxed mode, where pend-
ing operations are re-ordered to logically occur at the time of contin-
uation after I/O completion.

Asynchronous I/0O complicates strict CPR in a fundamental way
since some requests before a CPR point may be pending. Recall that
in CPR, arequest 71 not belonging to the commit must not be executed
before a request 2, potentially from a different session, belonging to
the commit. This requirement can lead to quiescing when handled
naively; we assume strict CPR and address the issue in our solution.

5.3 HybridLog Checkpoint

We augmented the per-record header in HybridLog to include a

20

version number v for a record. During normal processing, FASTER

is in the Rest phase and at a particular version v. HybridlLog check-

pointing involves (1) shifting the version from v to (v+1); and (2) cap-

turing modifications made during version v. We leverage our epoch

framework (Sec. 3) to loosely coordinate a global state machine (see

Fig. 6a) for CPR checkpointing without affecting user-space perfor-

mance. It consists of 5 states: Rest, Prepare, In-Progress, Wait-Pending,
and Wait-Flush; state transitions are realized by FASTER threads lazily,
when they refresh their epochs. A sample execution with 4 threads is

shown in Fig. 6b. Following is a brief overview of each phase:

e Rest: Normal processing on FASTER version v, with identical per-
formance to unmodified FASTER.

e Prepare: Requests accepted before and during the Prepare phase
for every thread are part of v commit.

e In-Progress: Transition from Prepare to In-Progress demarcates a
CPR point for a thread: requests accepted in In-Progress (or later)
phases do not belong to v commit.

e Wait-Pending: Complete pending v requests (in strict CPR only).
o Wait-Flush: Unflushed v records are written to disk asynchronously.
e Rest: Normal processing on FASTER version (v + 1).

A CPR commit request (from user or triggered periodically) first
records the current tail offset of HybridLog, say L" and updates the
global state from Rest to Prepare. Threads enter Prepare during their
subsequent epoch refresh.

Prepare. A Prepare thread 71" processes an incoming user-request
under a shared latch on the key’s bucket. When the shared-latch acqui-
sition fails or when the record version is > v, T detects that the CPR
shift has begun and refreshes its epoch immediately, entering the In-
Progress phase. If it never encounters such a scenario, the CPR shift
happens during a subsequent epoch refresh. Additionally, in strict
CPR, all pending requests are associated with a held shared latch.

In-Progress. After all threads enter the Prepare phase, the state
machine advances to In-Progress. A thread demarcates its CPR point
at its transition from Prepare to In-Progress. It now processes re-
quests as belonging to version (v + 1). Accessed records in the muta-
ble region are handled carefully. If the record version is (v + 1), the
thread modifies it in-place as usual. If the record has version < v, it
acquires an exclusive latch on the key’s bucket, performs a read-copy-
update, creating an updated (v + 1) record at the tail, and releases
the latch. If exclusive-latch acquisition fails, the request is added to a
thread-local pending list corresponding to version (v + 1).

Wait-Pending. When all threads enter In-Progress, FASTER en-
ters Wait-Pending in strict CPR, where pending I/Os in version v get
completed by all threads, releasing shared latches.

Wait-Flush. Once all v requests have been completed, we record
the tail offset of HybridLog, say L, and shift the read-only offset to
L which asynchronously flushes HybridLog until L’ to disk. Once
the asynchronous write to disk is complete, system moves back to Rest
with version (v + 1). This concludes the HybridLog checkpoint.

5.4 Index Checkpoint

In addition to the HybridLog checkpoint, we obtain a fuzzy check-
point of the hash index that maps key-hash to logical addresses on
HybridLog. The main reason for checkpointing the index is to re-
duce recovery time by replaying a smaller suffix of the HybridLog
during recovery (similar to database checkpoints for WAL truncation).
Hence, it can be done much less frequently, particularly with slower
log growth due to in-place updates in HybridLog. Since hash bucket
entries are updated only using atomic compare-and-swap instructions,
the index is always physically consistent. To obtain a fuzzy check-
point, we write the hash index pages to storage using asynchronous
1/0. We also record the tail offset of HybridLog before starting (%)

SIGMOD Record, March 2020 (Vol. 49, No. 1)

@ @ Time (or) Operation Sequence —

H] ']

/-» PREPARE Y (D User Request to commit Ty v dsh 4 | (vt
77 7. @ Whenall threads have acquired shared-latches 1 54: i

REST é IN-) on pending requests T, [V ! S & |] (v+1)

Q{OGRESS 3 When all threads have entered In-Progress phase T. |v E 83 ! ! :I:] (v+1)
@ @ When all v pending requests are processed 3 ! i —:r i

@ WAIT @ (3 When snapshot written to disk T, |V E i Syt i J (v+1)
— i i i

PENDING @

(a) Global State Machine with Transition Conditions

(b) FASTER Threads during checkpoint

Figure 6: Overview of CPR for FASTER

and after completion (%) of the fuzzy checkpoint. We use these off-
sets during recovery, which is described next.

5.5 Recovery

FASTER recovers to a CPR-consistent state using a combination
of a fuzzy hash index and HybridLog checkpoint (say of version v).
During recovery, we scan through records in a section of HybridLog,
from logical address S = min(L%, L") to E = max (L%, L"), up-
dating the hash index appropriately. The recovered index must point
to the latest record with version < v for each slot. Due to the fuzzy
nature of our index checkpoint, it could point to (v + 1) records or
records that are not the latest.

For records in the section of HybridLog between S and E: If the
version is < v, we update the index slot to point to the record’s logical
address, L . When the version is > v, we mark the record invalid as
it does not belong to v commit of FASTER. Additionally, when the ad-
dress in the slot is > L r, we update the index to point to the previous
address stored in the record header. This fix-up may be considered
the UNDO phase of our recovery in FASTER. As noted earlier, each
slot in the hash index points to a reverse linked-list of records stored
in the HybridLog. The copy-on-update scheme in FASTER ensures
that records in this list have decreasing logical addresses, while the
HybridLog checkpoint design ensures that (v+1) records occur only
before all v records in the list. Together, these two invariants result in
a consistent FASTER hash index after recovery.

6. EVALUATION

We evaluate CPR in two ways. First, we compare CPR with two
state-of-the-art asynchronous durability solutions for a main-memory
database: CALC [13] and WAL [11]. Next, we evaluate CPR on our
key-value store, FASTER. We present only the key results here and
refer the reader to our full paper [12] for a detailed evaluation.

Implementation. For the first part, we implemented a stand-alone
main-memory database, that supports three recovery techniques (CPR,
CALGC, and traditional WAL). Both CALC and CPR implementations
have two values, stable and live, for each record, while WAL only has a
single value. An optimal implementation of CPR does not require two
values for each record; we do this for a head-to-head comparison with
CALC[13]. The entire database is written to disk asynchronously dur-
ing a CPR/CALC checkpoint. We do not obtain fuzzy checkpoints for
WAL but periodically flush the log to disk. All three versions use the
main-memory version of FASTER [5] as the data store and implement
two-phase locking with NO-WAIT deadlock avoidance policy.

We added CPR to FASTER and that constitutes the second part of
our evaluation. Threads first load the key-value store with data, and
then issue a sequence of operations. Commit requests are issued pe-
riodically. We report system throughput and latency every two sec-
onds. We point FASTER to our SSD, and employ the default expira-
tion based garbage collection scheme (not triggered in these exper-
iments). The total in-memory region of HybridLog is set at 32GB,

SIGMOD Record, March 2020 (Vol. 49, No. 1)

large enough that reads never hit storage for our workloads, with the
mutable region set to 90% of memory at the start. By default, FASTER
hash index has #keys/2 hash-bucket entries. We do not directly com-
pare with existing solutions since prior work [5] has shown that other
persistent key-value stores such as RocksDB achieve an order of mag-
nitude lower performance (< 1M ops/sec) even when WAL is disabled.

Setup. The first set of experiments are conducted on a Standard D64s
v3 machine on Microsoft Azure. The machine has 2 sockets and 16
cores (32 hyperthreads) per socket, 256GB memory and runs Win-
dows Server 2018. Experiments on CPR with FASTER are carried
out on alocal Dell PowerEdge R730 machine with 2.3GHz Intel Xeon
Gold 6140 CPUs, running Windows Server 2016. The machine has
2 sockets and 18 cores (36 hyperthreads) per socket, 512GB memory
and a 3.2TB FusionlO NVMe SSD drive. The two-socket experiments
shard threads across sockets. We preload input datasets into memory.

Workloads. For our stand-alone database, we use a mix of transac-
tions based on the Yahoo! Cloud Serving Benchmark (YCSB). Trans-
actions are executed against a single table with 250 million 8 byte keys
and 8 byte values. Each transaction is a sequence of read/write re-
quests on these keys, which are drawn from a Zipfian distribution. A
request is classified as read or write randomly based on a read-write
ratio written as W:R; a read copies the existing value, and a write re-
places the value in the database with a provided value. We mainly fo-
cus on a low contention (f = 0.1) workload here since it incurs the
most performance penalty due to logging or tail contention.

For FASTER with CPR, we use an extended version of the YCSB-A
workload, with 250 million distinct 8 byte keys, and value sizes of 8
and 100 bytes. After pre-loading, records occupy 6GB of HybridLog
space and the index is 8GB. Workloads are described as R:BU for the
fraction of reads and blind updates. We add read-modify-write (RMW)
updates in addition to the blind updates supported by YCSB. Such up-
dates are denoted as 0:100 RMW in experiments (we only experi-
ment with 100% RMW updates for brevity). RMW updates increment
a value by a number from a user-provided input array with 8 entries,
to model a per-key “sum” operation. We use the standard Uniform and
Zipfian (0 = 0.99) distributions in our workloads.

6.1 Evaluation on Transactional Database

We first plot average throughput (Figs. 7a, 7b) and latency (Figs.
7¢, 7d) of the three systems against a varying number of threads for
a mixed read-write (50 : 50) workload - for 1- and 10-key transac-
tions. We also profiled the experiment; the breakdown for 1 and 64
threads are shown in Fig. 7e. "Exec" refers to the cost of in-memory
transaction processing including acquiring and releasing locks, "Tail-
Contention" is the overhead of LSN allocation (in WAL) and append-
ing to the commit log (in CALC), while "Log Write" denotes the cost
of writing WAL records on the log.

Scalability. CPR scales linearly up to 90M txns/sec on 64 threads
for 1-key transactions, whereas CALC and WAL reach a maximum of

21

Size: 1 Size: 10
1 64 1 64

: CPR)
7] = cac 7 6

Latency (us)
-

¥

Throughput (M txns/sec)
F3
Throughput (M txns/sec)

o

0 20 40 60 0 20 40 60 0 20 40

Threads Threads Threads
(a) Scalability; Size:1 (b) Scalability; Size:10

(c) Latency; Size:1

g a9
7 o
3 2 s0 VI V
% 3 /
g AV
3 = vV
0 ® O = -4 - % Q f 2 O -
Q
Edz B3f E3f B3
60 0 20 40 60 Abort © B Tail Contention
Threads EZH Exec B Log Write
(d) Latency; Size:10 (e) Analysis

Figure 7: Scalability and Latency on Low Contention (f= 0.1) YCSB workload

CPR (50:50) ---= WAL (50:50) - CALC (100:0)
—— CALC (50:50) —— CPR (100:0) —— WAL (100:0)
> 10
8 - p AN N B VA i ik i
E7s 7
g (a) Size:1 (b) Size:10
= 50
2
=
025
o
= : =
=
0 50 100 0 50 100 150
Time (secs) Time (secs)

Figure 8: Throughput during Checkpoint

10M txns/sec and 25M txns/sec respectively. The breakdown anal-
ysis reveals that tail contention in WAL and in CALC’s atomic com-
mit log are a scalability bottleneck. WAL performs better than CALC
here since every transaction is appended to the commit log, while 50%
read-only 1-key transactions do not generate any WAL records. In
case of 10-key transactions, CPR again scales linearly up to 10M txn-
s/secs, while WAL and CALC scale only up to 3.5 and 6.2M txns/sec.
Tail contention is still a bottleneck (about 30 — 40%) for both CALC
and WAL, while WAL incurs an additional 20% overhead for writ-
ing log records. Unlike the 1-key case, CALC outperforms WAL since
most transactions contain at least one write resulting ina WAL record.

Latency. 1-key transactions (Fig 7c) in CPR are executed in approx-
imately 700 nanoseconds and the latency almost remains constant
as we increase the number of threads. This is due to the highly ef-
ficient design of the underlying FASTER hash index [5]. Due to tail
contention, latency in CALC and WAL increases as we scale. CALC
results in a latency of 6us on 64 threads, while WAL incurs an aver-
age latency of only 2us due to 50% read-only transactions. In CPR,
10-key transactions (Fig 7¢) incur a cost of 7ps, which is 10x that of
a 1-key transaction. CALC latency, even though higher than CPR due
to tail contention in the atomic commit log, remains almost constant
because the cost of execution is higher in 10-key transactions. Since
most 10-key transactions resultin a WAL record, the effect of tail con-
tention and writing log records is evident from the increasing trend.

Throughput vs. Time. We now plot average throughput during the
lifetime of a run for CPR, CALC and WAL on 64 threads, with check-
points at 30, 60 and 90 secs both for mixed (50 : 50) and write-only
(100 : 0) workloads; Fig. 8a and Fig. 8b correspond to 1- and 10-key
transactions respectively. In all three systems, there is no observable
drop in throughput during checkpointing. This is due to the asyn-
chronous nature of the solutions. Even for 10-key transactions, the
effect of copying over records from live to stable values is minimal
as they are already available in upper levels of the cache. CPR de-
sign scales better overall and does not involve any serial bottlenecks,
yielding a checkpoint throughput of 90M txns/sec. As noted earlier,
WAL is better than CALC in 50 : 50 1-key transactions due to 50%
read-only transactions. The minor difference between write-only and
mixed workloads is because writes are more expensive than reads.

22

6.2 Evaluation of FASTER with CPR

Throughput and Log Size. We plot throughput vs. wall-clock time
during the lifetime of a FASTER run. We perform two “full” (index
and log) commits during the run, at the 10 sec and 40 sec mark respec-
tively, and plot results for two key distributions (Uniform and Zipf).
We evaluate both our commit techniques — fold-over and snapshot to
separate file — in these experiments.

Fig. 9a shows the result for a 90:10 workload (i.e., with 90% reads).
Overall, Zipf outperforms Uniform due to better locality of keys in
Zipf, reaching up to 180M ops/sec. After commit, both snapshot and
fold-over slightly degrade in throughput because of read-copy-updates.
It takes 6 secs to write 14GB of index and log, close to the sequential
bandwidth of our SSD. After the second commit, the Zipf through-
put of fold-over returns to normal faster than snapshot because of
its incremental nature. With a 50:50 workload, in Fig. 9b, fold-over
drops in throughput after commit, because of the overhead of read-
copy-update of records to the tail of HybridLog. Performance in-
creases as the working set migrates to the mutable region, with Zipf
increasing faster than Uniform as expected. For this workload, snap-
shot does better than fold-over as it is able to dump the unflushed log
to a snapshot file and quickly re-open HybridLog for in-place up-
dates. A 0:100 workload with only blind updates demonstrates simi-
lar effects, as shown in Fig. 9c. We also profiled execution for the time
taken in each CPR phase: each phase lasted for around 5ms, except for
Wait-Flush, which took around 6 secs as described above.

Fig. 9d depicts the size of HybridLog vs. time, for a 0:100 work-
load. We note that (1) HybridLog size grows slowly with snapshot,
as the snapshots are written to a separate file; and (2) HybridLog for
Uniform grows faster than for Zipf, because more records need to be
copied to the tail after a commit for Uniform.

We also experimented with checkpointing only the log, with more
frequent commits, since the index is usually checkpointed infrequently.
The results are in [12]; briefly, we found CPR commits to have much
lower overhead as expected, with a similar trend overall.

Varying number of threads. We plot throughput vs. time for vary-
ing number of threads from 4 to 64, for a 50:50 workload. We depicts
the results for Zipf and Uniform distributions in Figs. 10a and 10b
respectively, with full fold-over commits taken at the 10 sec and 40
sec mark. Both figures show linear throughput improvement with in-
creasing number of threads, indicating that CPR does not affect scal-
ability. In fact, normal (Rest phase) performance is unaffected by the
introduction of CPR. At lower levels of scale, the effect of CPR com-
mits is minimal due to lower Rest phase performance. Further, per-
formance recovery after a commit is faster with more threads, since
hot data migrates to mutable region faster.

End-to-End Experiment We evaluate an end-to-end scenario with

36 client threads feeding a 50:50 YCSB workload to FASTER. Each
client has a buffer of in-flight (uncommitted) requests. When a buffer

SIGMOD Record, March 2020 (Vol. 49, No. 1)

—— Fold-Over (Zipf)

—-— Fold-Over (Uniform)

F) 3
3 175 % 150
(=% =9
=) =]
= =
c o < 100
= =
=9 o
125 5
g g 50
£ 100 Y. £
0 20 40 60 0 20 40 60
Time (secs) Time (secs)

(a) Throughput; YCSB 90:10 (b) Throughput; YCSB 50:50

3

<150

a

S

Z 100

3

2

=

é“ 50

=

= I

0 20 40 60 0 20 40 60
Time (secs) Time (secs)

(c) Throughput; YCSB 0:100 (d) Log growth; YCSB 0:100

Figure 9: FASTER Throughput and Log Growth vs. Time; Full Fold-over and Snapshot Commits at 10 and 40 secs

150

100

50

Throughput (M ops/sec)

0 20 40 60
Time (secs)

() 50:50 Zipf distribution

Time (secs)

(b) 50:50 Uniform distribution
Figure 10: Throughput vs. Time; Varying #Threads

reaches 80% capacity, we issue a log-only fold-over commit request,
which allows clients to trim their buffers based on CPR points. Clients
block if their buffers are full. Each entry in the buffer takes up 16 bytes
(for the 8 byte key and value). Fig. 11 shows the results for Zipf and
Uniform workloads, as we vary the per-client buffer size. Above each
bar is the corresponding average checkpoint interval, or the latency
of CPR commit, observed for the given buffer size. We take one full
checkpoint, and report average throughput over the next 30 secs.
Increasing the buffer size allows more in-flight operations, which
improves throughput for both workloads. Even a small buffer is seen
to provide high throughput. For small buffer sizes, commits are is-
sued more frequently (e.g., every 0.5 secs for a 30KB buffer) as ex-
pected. The Zipf workload reaches a higher maximum throughput
with a larger buffer because the smaller working set reaches the muta-
ble region faster between commits. With the smallest buffer, Uniform
outperforms Zipf due to the higher contention faced in Zipf when
moving items to the mutable region after every (frequent) commit.

7. CONCLUSION

Modern databases and key-value stores have pushed the limits of
multi-core performance to hundreds of millions of operations per sec-
ond, leading to durability becoming the central bottleneck. Tradi-
tional durability solutions have scalability issues that prevent systems
from reaching very high performance. We propose a new recovery
model based on group commit, called concurrent prefix recovery (CPR),
which is semantically equivalent to a point-in-time commit, but al-
lows a scalable implementation. We present CPR commit protocols
for a custom in-memory transactional database and FASTER, our key-
value store that supports larger-than-memory data. A detailed evalu-
ation of both systems shows that CPR supports highly concurrent and
scalable performance, while providing durability. FASTER with CPR
is available as open-source software [1].

8. REFERENCES

[1] FASTER Project. https://github.com/microsoft/FASTER.
(2] P.A.Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1987.

SIGMOD Record, March 2020 (Vol. 49, No. 1)

Throughput (M ops/sec)

2 Zipfian [Nl Uniform

0.735 905

61 122 244 488 977
Per-Client Buffer Size (KB)

Figure 11: End-to-end Experiment; YCSB 50:50

[3] T.Cao, M. A. V. Salles, B. Sowell, Y. Yue, A. J. Demers, J. Gehrke,
and W. M. White. Fast checkpoint recovery algorithms for
frequently consistent applications. In SIGMOD 2011.

[4] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher,
J. C. Platt, J. F. Terwilliger, and]. Wernsing. Trill: A
high-performance incremental query processor for diverse
analytics. PVLDB, 8(4):401-412, Dec. 2014.

[5] B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski,

J. Hunter, and M. Barnett. FASTER: A Concurrent Key-Value
Store with In-Place Updates. In SIGMOD 2018.

[6] D.Florescu and D. Kossmann. Rethinking cost and performance
of database systems. SIGMOD Record, 38(1):43-48, 2009.

[7] S.Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker.
OLTP Through the Looking Glass, and What We Found There.
In SIGMOD 2008, SIGMOD ’08, pages 981-992, New York, NY,
USA, 2008. ACM.

[8] R.Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and
A. Ailamaki. Scalability of write-ahead logging on multicore
and multisocket hardware. VLDB J., 21(2):239-263, 2012.

[9] H.Jung, H. Han, and S. Kang. Scalable database logging for

multicores. PVLDB, 11(2):135-148, 2017.

N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.

Rethinking main memory OLTP recovery. In ICDE 2014.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.

Aries: A transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94-162, Mar. 1992.

G. Prasaad, B. Chandramouli, and D. Kossmann. Concurrent

Prefix Recovery: Performing CPR on a Database. In SIGMOD

2019.

K. Ren, T. Diamond, D. J. Abadi, and A. Thomson.

Low-overhead asynchronous checkpointing in main-memory

database systems. In SIGMOD 2016.

X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker.

Staring into the abyss: An evaluation of concurrency control

with one thousand cores. PVLDB, 8(3):209-220, 2014.

W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with

fast durability and recovery through multicore parallelism. In

OSDI 2014.

23

