Technical Perspective of
Concurrent Prefix Recovery:
Performing CPR on a Database

Philip A. Bernstein
Microsoft Research

philbe@microsoft.com

Where do novel database system research results come from? In
the 1970’s, most systems research papers proposed mechanisms to
support abstractions that were being explored for the first time,
such as data translation, indexing, query optimization, high perfor-
mance transactions, distributed databases, heterogeneous databases,
and replicated databases. Novelty was easy to come by. These ab-
stractions now form the core of the database systems field.

Since then, the main abstractions of database systems have not
changed much. So where do novel solutions come from now? I claim
they are driven by six trends, listed below with some recent examples:

1. New hardware mechanisms — multicore, solid-state disks, vector
processing, non-volatile RAM, RDMA, GPUs, FPGAs, enclaves.

2. New software mechanisms - log-structured storage, column
storage, transactional memory, blockchain, consensus algo-
rithms, distributed hash tables, machine learning.

3. New data models - key-value stores, XML, JSON, graphs.

4. New system platforms - cloud computing, cloud storage, large
main memories, cloud-fog-edge, serverless computing.

5. New workloads — stream processing, OLAP, map-reduce, train-
ing and serving ML models, graph algorithms over big data, data
science, stateful web services.

6. Different system-level goals — scalability, throughput, consis-
tency, latency, fault tolerance, availability, elasticity, cost, exten-
sibility, security, privacy, manageability, robustness.

There is a well-known repertoire of techniques to address these
challenges. They include access control, asynchronous operations,
batching, caching, checkpointing, compare-and-swap, compression,
cost-based optimization, encryption, function shipping, indirection,
lazy updates, locking, materialization, multi-versioning (copy-on-
write), parallelism, partitioning, pipelining, pre-fetching, replication,
speculation, state machines, timeouts, timestamping, transactional
queues, triggers, watchdogs, workflow, and those in (2) above. There
are many more of course, but probably not hundreds.

Let us use the paper I am introducing as an example. It addresses
the problem of checkpoint and recovery for a transactional key-value
store—a well-known workload. Its novelty arises from its ability to
scale throughput linearly on a large multicore server with negligible
increase of latency and from the way it attains this goal.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2020 ACM 0001-0782/08/0X00 ...$5.00.

SIGMOD Record, March 2020 (Vol. 49, No. 1)

To appreciate the significance of the paper’s novel contributions,
let us consider classical solutions to the problem it solves. A sim-
ple approach is partitioning, that is, partition the workload so that
each core is responsible for reads and writes on a distinct partition
of the database. This would ensure there is no interference between
the cores. It would enable each core to log its updates independently
of the others, thereby ensuring recoverability. However, it would not
be robust with respect to changes in the fraction of operations that
are directed to each partition. One core could be overloaded while
another has spare capacity.

If we relax the partitioning assumption, the problem becomes much
harder. For example, updates by different cores may conflict, which
creates dependencies between them. Suppose transaction 7" updates
2 in one core and a transaction 7" in another core reads z’s updated
value and updates y. Then if a checkpoint includes that updated value
of y, it must also include the updated value of x. That is, the check-
pointed state needs to be consistent with respect to updates that were
acknowledged to users and with respect to each other. In a classical
database system, these problems are addressed by locking and logging.
However, locking introduces contention among parallel operations,
which limits scalability. Logging also introduces contention, such as
the need for parallel threads to coordinate their append operations
to the shared log, plus it has many other inefficiencies. Although ef-
fective techniques have been developed for many of these problems,
logging still poses limits to multicore scalability.

This paper’s solution circumvents the scalability bottleneck by
combining several techniques: a new recovery model called concurrent
prefix recovery, the use of a 2-version data model, and a state machine.

With concurrent prefix recovery, the system defines a commit point,
in contrast to standard techniques where clients issue commit. Clients
independently synchronize with this commit request, never blocking
each other. In the Rest state (i.e., normal operation), each client runs
transactions serially on the latest active version, v. When the system
issues a commit, it moves to the Prepare state. Each client periodically
reads the system’s state. After a client moves into the Prepare state, it
continues executing normally. However, if its transaction accesses an
item already at version v + 1, the transaction aborts, the client moves
to the next state, called In-Progress, and the transaction re-executes.
After all clients have entered Prepare, the system moves its state to In-
Progress. At this point, version v of all items are immutable and can be
checkpointed without interference from clients. Now, if a transaction
wants to update an item x at version v, it creates a new version v+ 1 of
z instead of updating version v. (Another client that is still in Prepare
state might see this version v + 1, leading to an abort as explained
above.) If z is already at version v + 1, the transaction updates x in
place. After all version v items have been checkpointed, the system
returns to the Rest state with v 4 1 as the latest active version.

Voila. Simple, scalable, and novel. Read on, for details.

15

