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Never make a promise - you may have to keep it. — Neil
Jordan

Database systems were known to provide strong consis-
tency guarantees. As an example, database textbook de-
fines the ACID guarantees as “four important properties of
transactions to maintain data in the face of concurrent ac-
cess and system failures” [2]. Beyond atomicity, consistency,
and durability, the “I” in ACID is loosely defined as “Users
should be able to understand a transaction without consider-
ing the e↵ects of other concurrently executing transactions,
even if the DBMS interleaves the actions of several trans-
actions for performance reasons” [2]. In the resulting model
called serializable execution, each transaction operates like
it has the database to itself, and the result of running a set
of transactions is equivalent to some serial execution of these
transactions.

Serializable execution implies an ordering of transactions
based on conflicts, where a conflict means that we have two
transactions that are accessing the same database record,
and at least one of them is a write. To ensure a serial order-
ing of the transactions, the conflicts must be totally ordered
across transactions. In other words, if two transactions con-
flict, they need to coordinate. However, coordination has a
price. If the database system is located within a single data
center, coordination across nodes costs a few hundred mi-
croseconds, but if the system is wide-area distributed across
several data centers, the delay between nodes may be in the
10s of milliseconds, restricting throughput to 10s of opera-
tions in the worst case. And in case the network is parti-
tioned, the system may not be available at all.

For a while, most distributed systems dealt with this trade-
o↵ in one of two ways. One popular option was to focus on
high availability and low latency and perform the coordi-
nation asynchronously. Unfortunately this approach only
provides weak consistency guarantees, so applications must
use additional mechanisms such as compensation transac-
tions or custom conflict resolution strategies, or they must
restrict the programming model to eliminate the possibility
of conflicts, for example by only allowing updates of a single
record. Another approach was to insist on strong consis-
tency and to accept slower response times because of coor-
dination between nodes. It seemed like consistent semantics
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was not such a good idea after all.
In a recent landmark paper, Bailis et al asked the intrigu-

ing question: Are there cases where we may not need coordi-
nation between transactions at all, and thus we can achieve
both high availability and low latency while maintaining
application-level constraints [1]? The somewhat surprising
answer is that in many practical scenarios the answer is yes.
The paper introduced invariant confluence, a criterion that
determines whether a set of transactions requires coordina-
tion for correct execution while maintaining integrity con-
straints. The framework requires developers to state the in-
tegrity constraints of the application on the database state
a priori, but then it provides a necessary and su�cient con-
dition for coordination-free execution. The resulting system
only needs to coordinate in cases where the framework in-
dicates that coordination is necessary; if it is possible, the
framework guarantees that transactions do not violate any
of the stated integrity constraints even if transactions do not
coordinate. Analyzing TPC-C with invariant confluence by
manually extracting the inherent constraints enabled Bailis
et al. to show that only two of the twelve TPC-C constraints
are not invariant confluent, and when applying the result-
ing insights to scaling TPC-C, they outperformed the previ-
ous best result of scaling TPC-C New-Order performance by
factor of 25! However, coming up with the constraints and
analyzing them is challenging as the authors admit them-
selves in the paper: “We have found the process of invariant
specification to be non-trivial but feasible in practice;” [1].

The following paper is automating this manual process.
The task of determining invariant confluence for an object
given a set of transactions is no longer an exercise for the
reader; instead, the paper provides an automatic way of
checking for invariant confluence — a leap forward towards
making the concept practical. The paper also goes a step
further by taking objects that are not invariant confluent
and in some cases allowing at least only occasional coor-
dination instead of requiring coordination all the time. A
beautiful set of results that is an important step towards
scaling distributed database systems — with consistent se-
mantics after all.
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