
TECHNICAL PERSPECTIVE:
Checking Invariant Confluence, In Whole or In Parts

Johannes Gehrke
Microsoft Research
Redmond, WA; USA

johannes@acm.org

Never make a promise - you may have to keep it. — Neil
Jordan

Database systems were known to provide strong consis-
tency guarantees. As an example, database textbook de-
fines the ACID guarantees as “four important properties of
transactions to maintain data in the face of concurrent ac-
cess and system failures” [2]. Beyond atomicity, consistency,
and durability, the “I” in ACID is loosely defined as “Users
should be able to understand a transaction without consider-
ing the e↵ects of other concurrently executing transactions,
even if the DBMS interleaves the actions of several trans-
actions for performance reasons” [2]. In the resulting model
called serializable execution, each transaction operates like
it has the database to itself, and the result of running a set
of transactions is equivalent to some serial execution of these
transactions.

Serializable execution implies an ordering of transactions
based on conflicts, where a conflict means that we have two
transactions that are accessing the same database record,
and at least one of them is a write. To ensure a serial order-
ing of the transactions, the conflicts must be totally ordered
across transactions. In other words, if two transactions con-
flict, they need to coordinate. However, coordination has a
price. If the database system is located within a single data
center, coordination across nodes costs a few hundred mi-
croseconds, but if the system is wide-area distributed across
several data centers, the delay between nodes may be in the
10s of milliseconds, restricting throughput to 10s of opera-
tions in the worst case. And in case the network is parti-
tioned, the system may not be available at all.

For a while, most distributed systems dealt with this trade-
o↵ in one of two ways. One popular option was to focus on
high availability and low latency and perform the coordi-
nation asynchronously. Unfortunately this approach only
provides weak consistency guarantees, so applications must
use additional mechanisms such as compensation transac-
tions or custom conflict resolution strategies, or they must
restrict the programming model to eliminate the possibility
of conflicts, for example by only allowing updates of a single
record. Another approach was to insist on strong consis-
tency and to accept slower response times because of coor-
dination between nodes. It seemed like consistent semantics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

was not such a good idea after all.
In a recent landmark paper, Bailis et al asked the intrigu-

ing question: Are there cases where we may not need coordi-
nation between transactions at all, and thus we can achieve
both high availability and low latency while maintaining
application-level constraints [1]? The somewhat surprising
answer is that in many practical scenarios the answer is yes.
The paper introduced invariant confluence, a criterion that
determines whether a set of transactions requires coordina-
tion for correct execution while maintaining integrity con-
straints. The framework requires developers to state the in-
tegrity constraints of the application on the database state
a priori, but then it provides a necessary and su�cient con-
dition for coordination-free execution. The resulting system
only needs to coordinate in cases where the framework in-
dicates that coordination is necessary; if it is possible, the
framework guarantees that transactions do not violate any
of the stated integrity constraints even if transactions do not
coordinate. Analyzing TPC-C with invariant confluence by
manually extracting the inherent constraints enabled Bailis
et al. to show that only two of the twelve TPC-C constraints
are not invariant confluent, and when applying the result-
ing insights to scaling TPC-C, they outperformed the previ-
ous best result of scaling TPC-C New-Order performance by
factor of 25! However, coming up with the constraints and
analyzing them is challenging as the authors admit them-
selves in the paper: “We have found the process of invariant
specification to be non-trivial but feasible in practice;” [1].

The following paper is automating this manual process.
The task of determining invariant confluence for an object
given a set of transactions is no longer an exercise for the
reader; instead, the paper provides an automatic way of
checking for invariant confluence — a leap forward towards
making the concept practical. The paper also goes a step
further by taking objects that are not invariant confluent
and in some cases allowing at least only occasional coor-
dination instead of requiring coordination all the time. A
beautiful set of results that is an important step towards
scaling distributed database systems — with consistent se-
mantics after all.

1. REFERENCES
[1] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.

Hellerstein, and I. Stoica. Coordination avoidance in
database systems. Proc. VLDB Endow., 8(3):185–196,
2014.

[2] R. Ramakrishnan and J. Gehrke. Database
management systems (3. ed.). McGraw-Hill, 2003.

6 SIGMOD Record, March 2020 (Vol. 49, No. 1)

