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Editor’s Notes

Welcome to the December 2019 issue of the ACM SIGMOD Record!

This issue starts with the Database Principles column featuring an article by Cuenca Grau, Horrocks,
Kaminski, Kostylev, and Motik that discusses Limit Datalog, query language that could be appropri-
ate for data-analysis applications. The language extends the well-known declarative language Data-
log in ways that make the result powerful enough to naturally capture important data-analysis
tasks on complex data sets, while keeping the reasoning no harder than in the case of Datalog. The
importance of the language being declarative is that in specifying queries, data analysts can focus
on the goals to be achieved in the analysis, rather than on the procedural implementations of the
needed tasks. The article details the construction and complexity considerations in designing the
language, and supplies illustrations via examples motivated by practical applications. The authors
also discuss how the language can be used as a basis for understanding the expressive power of key
data-analysis constructs, and outline directions of future work.

The Surveys column features an article by Zhang, Zhang, Wu, Johns, and He that studies the prob-
lem of improving the utilization of modern hardware in data-stream processing systems (DSPSs).
The article discusses the challenges of optimizing system latency and throughput toward achieving
real-time data analytics on large-scale streaming data, in presence of underutilization of the availa-
ble hardware resources. Toward addressing the challenges, the authors present a systematic study
of recent works in the field, organized along the axes of computational optimization, stream 1/0
optimization, and query deployment. The article also summarizes how hardware-conscious optimi-
zation techniques mitigate the gap between DSPSs and the requirements of real-time stream pro-
cessing that were formulated by Stonebraker and colleagues in their 2005 SIGMOD Record paper.
The article concludes by formulating major open issues and proposing directions of future research
in the area.

The Research Articles column presents an article by Papadakis, Tsekouras, Thanos, Giannakopou-
los, Palpanas, and Koubarakis that introduces the Java gEneric Data Integration (JedAl) toolkit. The
focus of the toolkit is on addressing two major challenges in end-to-end entity resolution: develop-
ment of extensible open-source tools and provision of solutions that apply not only to structured,
but also to semi- or even unstructured data. The article details the composition and functionalities
of JedAl, outlines its user-friendly interface, and reports the results of the experimental perfor-
mance comparisons of the toolkit with three state-of-the-art packages described in the literature,
using six real data sets. The JedAl code is available from the authors of the article.

The Distinguished Profiles column features Anastasia Ailamaki, professor at the Swiss Federal Insti-
tute of Technology (EPFL), and former professor at Carnegie Mellon. Natassa is an ACM Fellow and
a Sloan Fellow; she has received the European Young Investigator Award, the 2018 Nemitsas Prize
in Computer Science from the President of the Republic of Cyprus, and the 2019 Edgar F. Codd In-
novation Award from ACM SIGMOD, as well as ten Best Paper awards for her research papers. Her
Ph.D. is from the University of Wisconsin, Madison. In this interview, Natassa talks about her re-
search in two very different systems areas, about merit-based hiring, and about how she approach-
es working with students and staff in her large research group. She also discusses challenges and
tradeoffs in hardware/software codesign, including potential opportunities for both database re-
searchers and database users. Natassa outlines ideas for emerging applications, such as just-in-time
access to data, and shares her views on research in energy efficiency for database-management
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systems. She also provides insights on a range of other topics, including the additional things that
she could work on if she had the time, and gives advice on database research and mentorship.

This issue features two reports. First, it is our pleasure to include the 2018 Seattle Report on data-
base research. Every few years a group of database researchers meets to discuss the state of data-
base research, its impact in practice, and important new directions. This report summarizes the
discussion and conclusions of the ninth such meeting, held October 9-10, 2018 in Seattle. The meet-
ing identified the changes that have taken place in the last five plus years, for reasons that include
recent technological breakthroughs in a number of areas, including machine learning and artificial
intelligence, the rise of interdisciplinary data science, and new trends in the hardware landscape.
These changes have given rise to an unprecedented opportunity for the database-research commu-
nity to have a transformative impact on today’s world. The report details specific research chal-
lenges and opportunities in the areas of data science, data governance, cloud services, and database
engines. The article also outlines community challenges, including those particular to end-to-end
solutions in the hands of users, the data-science software ecosystem, and the impact on university
campuses stemming from the rise of data science on the curricula. The second article in the Reports
column, by Manghi, Candela, Lazzeri, and Silvello, focuses on the Italian Research Conference on
Digital Libraries (IRCDL), annual Italian forum for research topics revolving around digital libraries.
The 2019 IRCDL conference took place in Pisa; its theme was “Digital Libraries: Supporting Open
Science.” Science is increasingly becoming digital, and research results are no longer just traditional
scientific publications, but are represented by digital artifacts as well, including data sets, software,
and experiments. In this landscape, Digital Libraries are an integral part of the evolution of the re-
search outputs. The 2019 IRCDL conference focused on the topics related to findability, preserva-
tion, interlinking, and reuse of the research products via Digital Libraries. The article summarizes
the ideas presented and discussed in the conference, and outlines key observations and emerging
research directions.

On behalf of the SIGMOD Record Editorial board, [ hope that you enjoy reading the December 2019
issue of the SIGMOD Record!

Your submissions to the SIGMOD Record are welcome via the submission site:
https://mc.manuscriptcentral.com/sigmodrecord

Prior to submission, please read the Editorial Policy on the SIGMOD Record’s website:
https://sigmodrecord.org/sigmod-record-editorial-policy/

Rada Chirkova

December 2019
Past SIGMOD Record Editors:
Yanlei Diao (2014-2019) Ioana Manolescu (2009-2013) Alexandros Labrinidis (2007-2009)
Mario Nascimento (2005-2007)  Ling Liu (2000-2004) Michael Franklin (1996-2000)
Jennifer Widom (1995-1996) Arie Segev (1989-1995) Margaret H. Dunham (1986-1988)
Jon D. Clark (1984-1985) Thomas J. Cook (1981-1983) Douglas S. Kerr (1976-1978)
Randall Rustin (1974-1975) Daniel O’Connell (1971-1973) Harrison R. Morse (1969)
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Limit Datalog:
A Declarative Query Language for Data Analysis

Bernardo Cuenca Grau
University of Oxford

Egor V. Kostylev
University of Oxford

ABSTRACT

Motivated by applications in declarative data analysis,
we study Datalog,—an extension of Datalog with strat-
ified negation and arithmetics over integers. Reasoning
in this language is undecidable, so we present a frag-
ment, called limit Datalog,, that is powerful enough
to naturally capture many important data analysis tasks.
In limit Datalogy, all intensional predicates with a nu-
meric argument are limit predicates that keep only the
maximal or minimal bounds on numeric values. Rea-
soning in limit Datalog, is decidable if multiplication
is used in a way that satisfies our linearity condition.
Moreover, fact entailment in limit-linear Datalog, is
AEXP_complete in combined and AF-complete in data
complexity, and it drops to coNEXP and coNP, respec-
tively, if only (semi-)positive programs are considered.
We also propose an additional stability requirement, for
which the complexity drops to EXP and P, matching the
bounds for usual Datalog. Limit Datalog,, thus provides
us with a unified logical framework for declarative data
analysis and can be used as a basis for understanding the
expressive power of the key data analysis constructs.

1. INTRODUCTION

Analysing complex datasets is a hot topic in infor-
mation systems. The term ‘data analysis’ covers a
broad range of tasks such as data aggregation, prop-
erty verification, and query answering. Such tasks
are usually realised in practice using imperative pro-
gramming languages. However, there has recently
been considerable interest in declarative solutions,
where the definition of the task is clearly separated
from its implementation [1, 18, 25, 26, 29]. The
main idea is that users should describe what the
desired output is, rather than how to compute it.
For example, instead of computing shortest paths
in a graph using a concrete algorithm, one first de-
scribes what a path length is and then selects the
paths of minimum length. Such a specification is in-
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dependent of evaluation details, allowing analysts to
focus on their task at hand. An evaluation strategy
can be selected independently, typically by reusing
efficient general algorithms ‘for free’.

An essential ingredient of declarative data analy-
sis is a suitable logic-based language for represent-
ing the relevant analysis tasks. Datalog [8] is a
prime candidate due to its support for recursion,
which is needed to express common analysis prob-
lems such as shortest path. However, in addition to
standard features of Datalog, even basic data anal-
ysis tasks often require integer arithmetic or aggre-
gation to capture quantitative aspects of data (e.g.,
the length of a shortest path). Research on extend-
ing recursive rule languages with means for captur-
ing numeric computations dates back to the *90s [3,
6, 12, 16, 20, 22, 28], and is currently experiencing
arevival [11, 19, 31]. This large body of work, how-
ever, focuses primarily on integrating recursion with
arithmetic and aggregation in a coherent seman-
tic framework, where technical difficulties arise due
to nonmonotonicity. Surprisingly, little is known
about the computational properties of languages in-
tegrating recursion with arithmetic, other than the
fact that a straightforward combination is undecid-
able [8]. This result applies also to the languages
of existing Datalog-based tools such as BOOM [1],
DeALS [30], LogicBlox [2], Myria [29], SociaLite [25],
Overlog [17], Dyna [9], and Yedalog [4].

The aim of this article is to lay the foundation for
Datalog-based declarative data analysis by develop-
ing new extensions of Datalog that are powerful and
flexible enough to naturally capture many impor-
tant analysis tasks, and that yet exhibit favourable
computational properties of reasoning. These lan-
guages can provide a formal basis for the develop-
ment of reasoning engines that support complex an-
alytical tasks and provide correctness, robustness,
scalability, and extensibility guarantees. They can
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also serve as a unified logical framework providing a
basis for understanding the expressive power of the
key data analysis constructs.

We take as a starting point Datalog,—a well-
known extension of Datalog with stratified negation
as failure, integer arithmetic, and comparisons. Af-
ter reviewing basic definitions in Section 2, in Sec-
tion 3.1 we present limit Datalog,, which can be
equivalently seen as either a semantic or a syntactic
restriction of Datalog,. In limit Datalogy, all inten-
sional predicates with numeric arguments are limit
predicates that keep maximal or minimal bounds on
the numeric value for each tuple of the other argu-
ments. For example, if we encode a directed graph
with edge lengths using a ternary predicate E, then
Rules (1) and (2), where dst is a min limit predi-
cate, compute the length of a shortest path from a
source node a, to each node in the graph.

— dst(as,0) (1)
dst(x,m) A\ E(z,y,n) — dst(y,m+mn) (2)

Rule (2) intuitively says that, if « is reachable from
as with length at most m and (z,y) is an edge of
length n, then y is reachable from as with length
at most m 4+ n. If these rules and a dataset entail
dst(a,?), then the length of a shortest path from
as to a is at most ¢; thus, dst(a, k) holds for each
k > £ since the length of a shortest path is also at
most k. This is different from ordinary Datalogy,
where dst(a,?) and dst(a,k) are not semantically
connected. In Section 3.2, we show that fact entail-
ment remains undecidable for limit Datalog; pro-
grams. To ensure decidability, we introduce limit-
linear Datalog,, which disallows multiplication of
numeric variables that are used in the same stra-
tum. In Section 3.3, we present several examples
that show how limit-linear Datalog, can capture
many practically relevant data analysis tasks.

In Section 4, we establish decidability of fact en-
tailment for limit-linear Datalog, and design worst-
case optimal algorithms for positive (i.e., negation-
free), semi-positive (i.e., with negation only in front
of extensional atoms), and arbitrary (i.e., with strat-
ified negation) limit-linear programs. Our results
are obtained by a reduction to the evaluation prob-
lem for sentences of a specific shape in Presburger
arithmetic. In particular, in Section 4.1 we first de-
sign a fact entailment algorithm for positive limit-
linear programs with coNEXP and coNP upper com-
plexity bounds in combined and data complexity,
respectively, and then show that these bounds are
worst-case optimal. In Section 4.2, we first show
that fact entailment for semi-positive programs can
be reduced in polynomial time to the positive case
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and then design a fact entailment algorithm for ar-
bitrary limit-linear programs that materialises the
input stratum by stratum, by relying at each stage
on an oracle computing the materialisation of a
semi-positive program corresponding to the previ-
ous strata. This algorithm provides AE*P and AF
upper complexity bounds, and we show that these
bounds are also worst-case optimal.

The results of Section 4 establish intractability of
reasoning over limit-linear programs. In Section 5,
we identify fragments of our language for which rea-
soning is tractable in data complexity, and which
are therefore well-suited for data-intensive applica-
tions. In particular, using the idea of cyclic depen-
dency detection, in Section 5.1 we introduce sta-
ble programs that allow reasoning to become EXP-
complete in combined complexity and P-complete
in data complexity (i.e., no harder than for ordi-
nary Datalog). Stability, however, is a semantic
condition that is hard to check; thus, in Section 5.2,
we identify a syntactic type-consistency condition,
which implies stability and can be easily checked
rule by rule. We then argue that all analysis tasks
discussed in our examples can be captured using
type-consistent Datalog, programs.

Finally, in Section 6, we compare our language
with the formalisms underpinning several existing
rule-based systems for data analysis.

This paper summarises the results reported in
two conference publications [14, 15], and we refer
to them for further details.

2. DATALOG,

We first recapitulate the well-known definition of
Datalog with stratified negation and arithmetic over
the set of integers Z, which we call Datalog,. Our
formalism is standard and closely related to con-
straint logic programming (CLP) over the structure
(Z,<,<,+,—, x,0,£1,42,...) [7, 8].

We assume countably infinite and mutually dis-
joint sets of objects, object variables, numeric vari-
ables, and predicates. Each predicate has a nonneg-
ative integer arity, and each position of a predicate
is of object or numeric sort. We call predicates <
and < with two numeric positions comparison pred-
icates, and we call all remaining predicates stan-
dard. An object term is an object or an object vari-
able. A numeric term is an integer, a numeric vari-
able, or an expression of the form s; + s2, 1 — s or
$1 X Sg, where s; and sy are numeric terms, and +,
— and X are the usual arithmetic functions. A con-
stant is an object or an integer. A standard atom is
an expression of the form A(ty,...,t,), where Ais a
standard predicate of arity v and each t; is a term of



the sort of position 7 in A. A comparison atom is an
expression of the form (s1 < s2) or (s1 < s2), where
s1 and s are numeric terms. We use (s; > s3) for
(s2 < 81), (81 = $2) for (51 < s2) A (s2 < s1), and
so on. A positive literal is a standard or a compar-
ison atom, a megative literal is an expression of the
form not « for a a standard atom, and a literal is a
positive or a negative literal.

A rule p is of the form ¢ — «, where the head
a of p is a standard atom and the body ¢ of p is a
conjunction of literals. We consider only safe rules,
where each variable occurs in a positive body lit-
eral. A fact is a rule with the empty body and in
which all terms are constants (i.e., it mentions nei-
ther variables nor arithmetic functions); we usually
omit ‘—’ in facts. A dataset is a finite set of facts.

We use the usual stratification condition [8] to en-
sure that negation is ‘well-behaved’. A finite set P
of rules is stratifiable if it can be partitioned into dis-
joint subsets P[1],...,P[h] called strata such that,
for each i € [1, h], each predicate occurring in PJ[i]
does not occur in the head of a rule in any P[j]
with j > 4, and each predicate occurring in a nega-
tive body literal of a rule in P[i] does not also occur
in the head of a rule in P[i]. When such a stratifi-
cation exists, we say that P admits h strata.

A (Datalogy) program P is a finite stratifiable
set of rules. A standard predicate A is intensional
(IDB) in P if it occurs in P in the head of a rule that
is not a fact; otherwise, A is extensional (EDB) in
P. Program P is positive if it does not use negative
literals (so P admits a single stratum), and it is
semi-positive if the predicate of each negative literal
is EDB in P (thus, P admits two strata).

We discuss the semantics of Datalog, only infor-
mally as it is the same as for usual Datalog with
stratified negation [8]. An interpretation T is a (not
necessarily finite) set of facts. If all the rules of a
program P are satisfied in Z (under the usual se-
mantics of first-order logic with integer arithmetic,
assuming that all variables in rules are universally
quantified), then Z is a model of P and we write
Z = P. Since P is stratified, there exists a unique
model M(P) of P that is the smallest with respect
to set inclusion, which we call the materialisation of
P. This name is justified by the fact that M(P) can
be constructed by iteratively applying the rules of
P stratum by stratum. Specifically, to apply a rule
p to an interpretation Z, we evaluate the body of p
as a query over Z, and, for each query answer, we in-
stantiate the head of p and add the resulting fact to
Z. Then, we can compute M (P) bottom-up as fol-
lows: after initialising M(P) by the empty set, we
consider the strata of P one by one so that, for each

1 in the increasing order, we first apply the rules of
the stratum P[i] to M(P) as long as possible (i.e.,
until no new facts can be derived) and then move
on to the next stratum P[i + 1]. Program P entails
a fact -y, written P =+, if v € M(P) holds. Given
such P and ~, checking whether P |= v holds is a
key problem in Datalog and Datalog, applications,
and it is the main subject of this paper.

If program P does not use arithmetic functions,
then such construction of M(P) always terminates,
and this procedure is used for checking fact entail-
ment in many practical Datalog engines. This, how-
ever, no longer holds if P uses arithmetic.

ExXAMPLE 2.1. Let P be a Datalog, program con-
taining a fact B(0) and rule B(m)— B(m+ 1),
where predicate B has a single numeric position.
Applying P iteratively derives B(1), B(2),... with-
out stopping. As a result, the materialisation M (P)
contains B(k) for each k > 0 and is thus infinite. <

Despite Example 2.1, the construction of M(P) is
still well defined if we consider the possibly infinite
‘limit” of rule application for each P[i]. However,
such a ‘computation’ of M(P) does not give us an
algorithm for checking fact entailment in Datalogy,
with full arithmetic. Moreover, one can exploit the
fact that M(P) can be infinite to show that check-
ing fact entailment is undecidable even for posi-
tive programs without multiplication and subtrac-
tion that use standard predicates with at most one
numeric position [8, 14]. Our goal is thus to identify
restrictions that, on the one hand, provide us with
languages rich enough to capture interesting data
analysis problems and, on the other hand, support
decidable or even tractable fact entailment.

3. LIMIT-LINEAR DATALOG;

In this section, we first introduce limit Datalog,,
which can be seen as either a semantic or a syntactic
restriction of Datalog,. To overcome the undecid-
ability of entailment, we then restrict the use of mul-
tiplication and thus arrive to limit-linear programs.
Finally, we present several application examples.

3.1 Limit Programs

As illustrated in Example 2.1, one of the main
problems in Datalog, is that the materialisation of
a program can be infinite. Towards a decidable frag-
ment of Datalog,, we first introduce limit programs.
As we shall see, the materialisations of such pro-
grams can be represented using finite structures.

DEFINITION 3.1. A predicate is object if it has
only object positions, and it is numeric if its last
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position is numeric and all its other positions are
object; moreover, each numeric predicate is either
exact or limit, and each limit predicate is either min
or max. A limit (Datalog,) program is a program
that uses only object and numeric predicates, and
where all exact predicates are EDB.

The notions in Definition 3.1 transfer to atoms
and literals in the obvious way; for example, a stan-
dard atom is max if its predicate is max.

The intuition behind limit predicates is that they
keep only the upper, in case of max, or only the
lower, in case of min, bounds on the numeric values
for each tuple of object arguments. For example, as-
sume that a program P consists only of facts C'(a, 5)
and C(a,7), where C is a numeric predicate and a
is an object. If P is an ordinary Datalog, program,
then the materialisation M (P) coincides with P. If,
however, P is limit and C is max, then the seman-
tics of limit Datalog, ensures that every model of P
contains the fact C'(a, k) for each k¥ < 7, and more-
over M(P) consists precisely of these facts. Thus,
7 is the limit value of C' on a in M(P), and we can
finitely represent M(P) as just C(a, 7).

The semantics of a limit program P is defined
model theoretically by considering only limit-closed
interpretations—that is, interpretations Z that, for
each fact C(a,?) € T with C' a max predicate (in
P), contain C(a, k) for each k < ¢; and analogously
for min predicates. Alternatively, the semantics of
limit predicates can be axiomatised in Datalog, by
extending the program with Rule (3) for each max
predicate C' and analogously for min predicates.

C(x,m) A (n<m)— C(x,n) (3)

We introduce a useful syntactic shortcut: for C
a limit predicate, t a tuple of object terms of ap-
propriate size, and s a numeric term, the least up-
per bound (LUB) expression [C(t,s)] abbreviates
C(t,s) AnotC(t,s + k), where k = 1 if C' is max
and k = —1 if C is min. Since LUB expressions
contain negative literals, [C(t, s)] can be used in a
stratum P[i] of a limit program P only if C' does
not occur in a rule head in P[j] for each j > 1.

The following example illustrates the intuitions
of the definitions we presented thus far.

ExXaMPLE 3.2. Let P be the program containing
Rules (1) and (2) from Section 1, and the facts that
describe a directed graph with edge lengths using
predicate E. When computing the lengths of the
shortest paths from a,, we need not remember the
length of each path from a,: it suffices to keep just
the lengths of the shortest paths found so far. Thus,
we can make dst a min predicate, which is tanta-
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mount to extending P with the following rule.
dst(z,m) A (m < n) — dst(xz,n)

As a consequence of this change, a fact dst(a,/)
follows from P if and only if the distance from the
source node as to a is at most ¢; hence, each dst(a, k)
with & > ¢ then follows as well. Note that only dst
is a limit predicate: predicate F is EDB and so it
can be exact, which is in fact necessary to correctly
encode the graph structure. Finally, using an LUB
expression we can query the exact length of a short-
est path: P entails [dst(a,?)] if and only if ¢ is the
exact length from ay to a. <

We now discuss the technical challenges of deal-
ing with limit predicates. First, note that any limit-
closed interpretation containing a fact over a limit
predicate is infinite. In particular, the materiali-
sation of the program from Example 2.1 does not
change even if we make B a min predicate. A key
insight is that the interpretation of a limit predicate
is ‘contiguous’ for each tuple of object arguments;
hence, instead of keeping all of these facts, we can
remember only the limit values. Moreover, the limit
value may not exist; for example, if we make B a
max predicate in Example 2.1, then M(P) contains
B(k) for each integer k. However, we can represent
such cases using a special symbol co. This moti-
vates the following definition.

DEFINITION 3.3. A pseudofact is either a fact or
an expression of the form C(a,o0) for C a limit
predicate and a a tuple of objects. A pseudointer-
pretation is a set J of pseudofacts such that {1 = {5
for all limit pseudofacts C(a, 1) and C(a,ts) in J.

We stress an important point of Definition 3.3.
Intuitively, pseudofacts represent limit values, so
two different pseudofacts for the same predicate and
object arguments should not appear in any pseu-
dointerpretation together; for example, a pseudoin-
terpretation for the program in Example 3.2 can
contain either dst(a,5) or dst(a,7), but never both.
This, however, leads us to an important observa-
tion: a pseudointerpretation is finite whenever the
numbers of predicates and object constants are fi-
nite. This property of pseudointerpretations is es-
sential for our decidability results in Section 4.

Moreover, it is easy to see that limit-closed inter-
pretations and pseudointerpretations naturally cor-
respond to each other. For example, to convert a
pseudointerpretation J to a limit-closed interpreta-
tion Z, we replace each max (pseudo)fact C(a, ¢) in
J with ¢ € Z by all facts C(a, k) with k < ¢, each
such min fact by all C'(a, k) with k > ¢, and each
limit pseudofact C'(a, o0) by all C(a, k) with k € Z.
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Conversion in the other direction can be done in a
similar way. This allows us to transfer all defini-
tions and notations for limit-closed interpretations
to pseudointerpretations; for example, a pseudoint-
erpretation J entails a fact - if the corresponding
limit-closed interpretation Z entails v, J is a pseu-
domodel of a limit program P if Z =P, and the
pseudomaterialisation N (P) is the pseudointerpre-
tation corresponding to the materialisation M (P).

Finally, we observe that each limit program can
be easily rewritten into an equivalent homogeneous
program that uses only max (or only min) predi-
cates. This can be done by replacing all min predi-
cates with fresh max predicates of the same arities
and negating the corresponding numeric arguments
in atoms with the replaced predicates.

3.2 Limit-Linear Programs

The ability to finitely represent materialisations
does not, however, ensure decidability.

THEOREM 3.4. The fact entailment problem for
positive limit programs is undecidable.

Theorem 3.4 is due to the fact that limit programs
allow multiplication of numeric variables, which we
use to reduce the well-known undecidable problem
of solving Diophantine equations (i.e., finding inte-
ger roots of polynomials) to fact entailment. This
motivates the following linearity restriction.

DEFINITION 3.5. A numeric variable m is guard-
ed in a rule if it occurs in the rule body in either
a function-free positive exact literal or an LUB ex-
pression of the form [C(t,m)]. A rule or program is
limit-linear (LL-) if, in each multiplication, at most
one argument mentions an unguarded variable.

Intuitively, a guarded variable m in a rule of an
LL-program P can be matched only to finitely many
integers during the evaluation of P. To see this, first
note that all exact predicates are EDB in P; thus,
if m is guarded because it occurs in a function-free
positive literal over an exact predicate, then m can
be matched only to facts explicitly mentioned in
P. Second, if m is guarded because it occurs in an
LUB expression [C(t,m)], then variable m can be
matched to the limit value of C for each valuation
of t; moreover, since [C(t,m)] abbreviates a con-
junction containing not C(t,m + k) for k = £1, the
limit values for C are fully determined by the strata
of P preceding the stratum of the rule. Note that
atoms with other numeric terms involving m, such
as B(t,m + 1), do not make m guarded.

To understand how guarded variables are used to
ensure decidability, consider an LL-rule p contain-
ing a numeric term m X n with numeric variables
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m and n. Since p is limit-linear, at least one of
m and n must be guarded. If m is guarded, then,
by the previous paragraph, m can be matched to
finitely many integers k1, ..., k, and hence we can
replace p with its v instances where the term m x n
is replaced by k; x n. We have thus reduced multi-
plication of variables m x n to linear multiplication
k; X m, which allows us to obtain decidability in Sec-
tion 4 using methods from Presburger arithmetic.
To simplify the discussion in the rest of this pa-
per, we assume that each LL-program is normalised
so that each exact atom is function-free. This can
be achieved by replacing each positive exact body
atom B(a, s) with s containing functions by the con-
junction B(a,m) A (m = s) with m a fresh numeric
variable. Moreover, we note that all exact atoms
in rule heads are function-free: the predicates in all
these atoms are EDB, and so all such rules are facts.

3.3 Application Examples

Despite the restrictions of Definitions 3.1 and 3.5,
LL-programs can still naturally capture many inter-
esting data analysis tasks. We next present five such
examples motivated by practical applications.

EXAMPLE 3.6 (DIFFUSION IN NETWORKS).
Consider a social network of agents connected by
the ‘follows’ relation. Agent a, introduces (tweets)
a message, and each agent a retweets the message if
at least k, agents that a follows tweet this message,
where k, is a positive threshold associated with a.
We can determine which agents tweet the message
eventually using limit-linear Datalog,; as follows.
We encode the network structure as a dataset Dy,
consisting of the object fact tw(as) saying that as
introduces a message, object facts fol(a,a’) saying
that a follows @/, and exact facts thshld(a, k,) saying
that the threshold of a is k,. We also assume that
Dy is ordered—that is, it contains facts fst(aq),
nat(ay,az), ..., net(ac—1,ac), lst(a.) for some enu-
meration aq,...,a. of all objects (i.e., agents) in
Diw- The LL-program Py, consisting of Rules (4)—
(8), encodes message propagation. Here, ac is an
‘accumulating’” max predicate such that ac(a,a’, m)
is true if there are at least m agents tweeting the
message among the agents that a follows and that
(inclusively) precede o' in the dataset order.

fol(z,y') A fst(y) — ac(x,y,0) (4)
tw(y) A fol(z,y) A fst(y) — ac(z,y,1) (5)
ac(z,y',m) A nat(y',y) = ac(x,y,m) (6)

tw(y) A fol(x,y) A
ac(z,y’,m) Anzt(y',y) = ac(x,y,m +1) (7)
thshld(x, m) A ac(z,y,m) — tw(x) (8)
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Then, Py, U Dy, E tw(a) if and only if an agent a
tweets the message according to Dy, . <

EXAMPLE 3.7 (BILL OF MATERIALS).

Let Dy, be a dataset describing parts needed to
manufacture an end product. Specifically, for each
part a and each subpart a’ of a, Dy, contains object
facts pt(a) and pt(a’), and an exact fact dsp(a,a’, k)
indicating that a needs k copies of a’; also, let Dy,
be ordered as in Example 3.6. The graph formed
by predicate dsp is acyclic and has positive edge
weights. Rules (9)—(14) form the LL-program P, .
They compute, using max predicates ac and sp, how
many copies of each subpart are used for each part
in total. Intuitively, ac(a,a’,b,k) is true if part a
contains at least k copies of subpart @’ in all direct
subparts of a that precede part b in the order.

pi(e) - sp(e,, 1) (9)
pt(x) A pt(y) A fst(z) = ac(x,y, z,0) (10)
dsp(x,z,n1) A sp(z,y,n2) A
fst(z) = ac(z,y, z,n1 xng) (11)
ac(z,y, 2’ ,m)Anat(2,z) — ac(x,y, z,m) (12)
dsp(z,z,n1) A sp(z,y,m2) A
)

ac(z,y, 2’ ,m)Anzt(2',2) — ac(x,y, 2, m+ny Xns
(

13
ac(z,y, z,m) — sp(x,y, m) (14

Then, Ppm U Do | sp(a,d’, k) if and only if a
contains at least k copies of a’. Program Py, is
limit-linear since nq occurs in positive exact literals
over dsp and is thus guarded in (11) and (13). <

)
)
)

EXAMPLE 3.8 (COUNTING PATHS).
Limit-linear Datalog, can also count the paths be-
tween pairs of nodes in a directed acyclic graph. We
encode such a graph in the obvious way as a dataset
D, that uses a unary object predicate nd for nodes
and a binary object predicate E for edges; more-
over, D, is ordered as before. The LL-program
Pep, consisting of Rules (15)—(20) with max pred-
icates pn and ac, counts the paths. Intuitively,
ac(a,a’,b, k) is true if the sum of the numbers of
paths from each node b’ preceding node b (accord-
ing to the dataset order) to node a’ for which there
exists an edge from node a to b’ is at least k.

nd(x) = pn(z,z,1)  (15)

nd(x) A nd(y) A fst(z) = ac(z,y,2,0) (16)

E(xz,2) A pn(z,y,n) A fst(z) = ac(x,y,z,n) (17)

ac(z,y,2',m) A nzt(2',2) — ac(x,y,z,m) (18)
E(x,z) Apn(z,y,n) A

ac(x,y, 2’ ,m) A nzt(2',2) = ac(z,y,z,m +n)
(19)
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ac(x,y,z,m) — pn(x,y,m) (20)

Then, P, UDg, = pn(a,d’, k) if and only if there
are at least k paths from node a to node a’. <

All examples provided thus far use positive LL-
programs. In contrast, the following two examples
demonstrate the use of stratified negation.

EXAMPLE 3.9 (SHORTEST PATHS).

We modify the program from Section 1 to compute
not just the shortest distance, but also the actual
paths from a given source node as to a given target
node a; in a directed graph with weighted edges.
We assume that a dataset D, encodes a directed
graph with positive edge weights using a ternary ex-
act predicate F as before, and that it identifies the
source and target nodes using object facts src(as)
and tgt(a;), respectively. The LL-program Py,
consisting of Rule (2) and Rules (21)—(23), com-
putes a directed acyclic graph G with source as and
target a;, encoded using a binary object predicate
spE, such that every maximal path in G is a short-
est path from a4 to a; in the original graph.

sre(x) — dst(z,0) (21)
[dst(x,m)] A E(z,y,n) A
[dst(y,m+n)] A tgt(y) — spE(x,y) (22)
[dst(x,m)] A E(z,y,n) A
[dst(y,m +n)| A spE(y, z) = spE(z,y) (23)

The first stratum consists of Rules (2) and (21),
and computes the length of a shortest path from ag
to each other node using the min predicate dst; in
particular, we have that Py, UDesp = [dst(a, k)]
if and only if & is the length of a shortest path from
as to a. Then, the second stratum, consisting of
Rules (22) and (23), computes predicate spE such
that Pesp UDcsp = spE(a, a’) if the edge (a,d’) is a
part of a shortest path from as to a;. <

EXAMPLE 3.10 (CLOSENESS CENTRALITY).
The closeness centrality of a node in a strongly con-
nected directed graph G with weighted edges is a
measure of how central the node is in the graph [23].
Variants of this measure are useful, for example,
for the analysis of market potential. The closeness
centrality of a node a is 1/3 . \odein ¢ S2(a,a’),
where (a, a’) is the length of a shortest path from
a to a’; the sum in the denominator is often called
the farness centrality of a. We next present an
LL-program P, that identifies a node of maximal
closeness centrality in a strongly connected directed
graph with weighted edges. We encode such a graph
as an ordered dataset D, using a unary object pred-
icate nd and a ternary exact predicate F. Program
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P consists of Rules (24)—(32), where dst, fns and
fns’ are min, and cntr and cniér’ are object.

nd(x) — dst(z,z,0) (24)

dst(z,y,m) A E(y,z,n) — dst(z,z,m+n) (25)

nd(x)Afst(y)Adst(x,y,n) — fns'(x,y,n) (26)
Ins'(z,y, m) Anat(y, z) A

dst(z,z,n) — fns'(x, z,m+n) (27)
fns'(x,y,n) A lst(y) — fns(z,n) (28)
fst(x) — entr’(z,x) (29)

entr'(z, 2) A nat(z,y) A [fns(z,m)] A
[fns(y,n)] A (n < m) — cntr'(y,y) (30)

entr’ (x, 2) A nat(z,y) A [fas(z,m)] A
[frs(y,n)] A (m < n) — cntr'(y, 2) (31)
entr'(z, 2) A lst(x) — cntr(z) (32)

The first stratum consists of Rules (24)-(28); Rules
(24) and (25) compute the distance between any two
nodes, and Rules (26)—(28) then compute the far-
ness centrality of each node based on the aforemen-
tioned distances. In the second stratum, (29)—(32),
P.c uses negation (hidden inside the LUB expres-
sions) to compute a node of minimal farness cen-
trality (and hence of maximal closeness centrality),
which is recorded using the cntr predicate. <

4. COMPLEXITY OF LL-PROGRAMS

We now discuss the complexity of fact entail-
ment in limit-linear Datalog,. We consider com-
bined complexity, where the input consists of an LL-
program P and a fact ~y, and data complexity, where
we assume that P = P’ UD for a dataset D and a
fixed LL-program P’ (i.e., only D and v are given
as input). We assume binary coding of integers and
write || P|| for the size of the representation of a pro-
gram P; however, our results also hold for unary
coding. We show that, for the full language the
problem is complete for AEXP EXP"P in combined
and for A} = PNP in data complexity, while, for
the positive and semi-positive fragments, it is com-
plete for coNEXP and for coNP, respectively. Thus,
(semi-)positive LL-programs have the same com-
plexity as answer-set programming [24], and are one
level above the usual (semi-)positive Datalog, which
is EXP- and P-complete [8]. Moreover, in terms of
complexity, LL-programs are between the usual and
disjunctive answer-set programming, where the lat-
ter is complete for IIEXP and TI§ [10].

4.1 Positive Fragment

We first consider the problem of checking entail-
ment P = of a fact v by a positive LL-program
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P. Reasoning algorithms for usual Datalog often
start with computing the program grounding—that
is, replacing all variables with constants in the pro-
gram in all possible ways. This variable elimination
simplifies rule application, but with a cost of an
exponential blow-up (in the size of the program).
Our algorithms use a similar preprocessing step.
However, grounding in a usual way would require
replacing each numeric variable in an LL-program
with every integer, which would result in an infi-
nite grounding. To avoid working with infinite pro-
grams, we need to adapt the notion of grounding.

DEFINITION 4.1. An LL-rule or LL-program is
object-and-guarded-ground (OG-ground) if it has
neither object nor guarded numeric variables. The
canonical OG-grounding of an LL-program P is the
OG-ground program G(P) that contains the OG-
ground instance po for each rule p € P and each
substitution o mapping all object and guarded nu-
meric variables of p to constants in P.

To produce G(P) for a positive LL-program P,
we replace, in all possible ways, all object variables
in P with objects in P and all guarded numeric
variables with integers in P. The discussion in Sec-
tion 3.2 explains why considering only the integers
from P suffices. It is easy to see that P and G(P)
are equivalent in the sense that M(P) = M(G(P)),
so P |= v if and only if G(P) |= v for each fact 7.

Now we show how to apply a positive OG-ground
rule p to a pseudointerpretation 7. A minor prob-
lem is that, if we derive a fact C(a, () with C max
and we already have a fact C(a, k) with k < ¢, then
we must remove C(a, k), and similarly if C' is min.
More importantly, identifying the substitutions that
match the body of p to J is considerably more com-
plex than for ordinary interpretations. For exam-
ple, the body of the rule Cy(m) A Cz(m) — C(m)
where C and (5 are max predicates does not match
to the pseudointerpretation {C1(7), C(5)} directly,
but the rule is applicable and it derives C(5). We
address this difficulty by reducing the problem of a
positive OG-ground rule application to integer lin-
ear optimisation. Specifically, to match p to J, we
can transform p into a system of integer linear in-
equalities 1(p, J) whose solutions encode exactly
the substitutions obtained by matching of the body
of p to (the limit-closed interpretation correspond-
ing to) J. Thus, to compute the consequences of p
with a limit atom in the head, we just need the solu-
tion that optimises the numeric term in this atom.

Unfortunately, as shown in Example 2.1, itera-
tive rule application may not terminate even for
OG-ground programs. So, while one can formally
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describe a process that constructs the (finite) pseu-
domaterialisation by iteratively applying rules, this
process may be infinite and thus does not provide
us with a decision procedure for fact entailment.

We next discuss a key insight about positive LL-
programs, which we use to bound the magnitudes
of integers in pseudomaterialisations. We exploit
a connection with Presburger arithmetic—a theory
of first-order formulas with numeric variables (i.e.,
all variables range over integers) where all atoms
are comparisons of the form (s; < s2) or (s1 < $2)
(i.e., as in Datalog;) with multiplication-free nu-
meric terms s; and ss. Due to the lack of multipli-
cation, reasoning in this theory is decidable.

Now, to check entailment P |=+ for a positive
LL-program P and a fact v, we encode P as a Pres-
burger formula {p so that each pseudomodel of P
corresponds to a valuation of the free variables of
¢p that makes €p true. We analogously encode « as
a formula &, and we thus reduce P |= v to check-
ing whether the Presburger sentence Vv. (ép — &),
where v are the free variables of & and &, is true.
To illustrate a simplified version of our encoding,
consider an LL-program P consisting of a fact C'(2)
and a rule C(m) — D(m + 2), and a fact v = D(3),
where both C' and D are max. We encode the val-
ues of C' and D in a pseudomodel of P using vari-
ables vo and vp, respectively. Fact C(2) says ‘the
value of C in each pseudomodel is at least 2’, so
we encode it as & = (2 < v¢g). We also encode the
rule as & =Vm. (m <wve) = (m+2 <wp), and ~v
as & = (3 <wp). Clearly, P =+ if and only if
VocVup. (§p — &) is true for p = & A €. Follow-
ing this idea, our encoding uses additional variables
to represent undefined and unbounded values.

Thus, entailment P |= -y for a positive LL-prog-
ram P and fact v is decidable since Presburger arith-
metic is decidable; however, the complexity bounds
derived from the standard reasoning algorithms for
Presburger arithmetic are not optimal. Instead, by
analysing the structure of our encoding and ap-
plying the results by Chistikov and Haase [5], we
show that Vv.({&p — &) is true if and only if it
is true when the sentence is evaluated over inte-
gers with magnitudes at most double exponential in
IP|l + |7, and at most exponential in ||D]|| + |||l
where D is the dataset part of P.! So, each integer
can be written in binary using number of bits expo-
nential in |P| + ||v|| and polynomial in ||D|| + |||

Since the valuations of the free variables of £p en-
code the pseudomodels of P, nonentailment P F~ v
is witnessed by a pseudomodel J of P where the

"We thank Christoph Haase for providing the proof of
a key lemma for this statement.
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integers are bounded in the same way (note that
oo is not an integer so J can contain 0o). Thus,
we can decide P [~ v by first guessing a pseudoin-
terpretation J over the signature of P with inte-
gers bounded as explained, and then checking that
J EG(P) and J [~ . Overall, || J]| is at most ex-
ponential in ||P|| + ||v|| and at most polynomial in
D]+ |||l Moreover, to check J = G(P), we apply
the rules of G(P) to J and verify that no new fact is
derived, which requires solving integer optimisation
problems. Thus, our algorithm works in NEXP in
combined and in NP in data complexity.

For the matching lower data complexity bound,
we reduce the complement of the canonical NP-
complete problem SAT. Given an arbitrary propo-
sitional formula ® with h variables, we (arbitrarily)
order all variables of ® so we can view each vari-
able assignment ¢ as an integer ¢(o) between 0 and
2" — 1. To decide the satisfiability of ®, we then
can enumerate all assignments ¢ in the increasing
order of £(o) until we either find a o satisfying ®,
or we find that o,ae With £(0maz) = 2% — 1 does
not satisfy ®. If ® is encoded in a dataset, this enu-
meration can be simulated by a fixed positive LL-
program that stores ¢(o) in the numeric argument
of a max predicate, starting with 0 and increment-
ing if and only if the current o does not satisfy .
Hence, @ is unsatisfiable if and only if our encoding
entails a fact with a numeric argument 2".

As required for data complexity, the program in
this reduction does not depend on input ®. In con-
trast, this is not necessary for combined complexity,
and the same ideas can be applied to reduce the suc-
cinct version of SAT—a canonical NEXP-complete
problem [21]. We arrive to the following result.

THEOREM 4.2. The fact entailment problem for
positive LL-programs is coNEXP-complete in com-
bined and coNP-complete in data complezity.

4.2 Semi-Positive and Full Fragments

We first consider semi-positive programs, where
negation can be used only over EDB predicates. We
reduce our problem to the positive case by comput-
ing the canonical OG-grounding of the given pro-
gram and ‘evaluating’ all negative literals. This idea
is captured by the following definition.

DEFINITION 4.3. The reduct R(P) of a semi-po-
sitive LL-program P is the positive OG-program ob-
tained from G(P) by applying the following to each
rule p € G(P) and each negative literal not« in p.
— Let « be an object atom. If o ¢ G(P), then delete

nota from p, and otherwise delete p.

— Let a = B(a, s) be an exact atom and consider all

integers ky < -+ < kp, such that B(a,k;) € G(P)
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holds for each i € [1,h]. If h =0, then delete
not« from p; otherwise, replace p by h+ 1 rules
obtained by replacing nota in p with (s < ky),
(ki—1 < s <k;) forie[2,h], and (kn, < s).

— Let oo = C(a, s) be a limit atom and consider the
set S={leZ]|C(al)eG(P)} of integers. If
S =1, then delete nota from p; otherwise, re-
place nota in p with atom (max S <'s) if C is
max, and with atom (minS > s) if C is min.

By construction, M(P) = M(R(P)) for each se-
mi-positive LL-program P, so P = v is equivalent
to R(P) = for each fact . Moreover, R(P) is
positive and OG-ground, and can be computed with
the same bounds as G(P). Thus, the upper bounds
of Theorem 4.2 transfer to semi-positive programs.

THEOREM 4.4. The fact entailment problem for
semi-positive LL-programs is in coNEXP in com-
bined and in coNP in data complexity.

To handle arbitrary LL-programs, we first show
that the integer bound from Section 4.1 applies not
only to some pseudomodel, but also to the pseudo-
materialisation of each positive LL-program. Then,
given a fact v and an arbitrary LL-program P with
strata P[1],...,P[h], we decide P |=~ as follows.
For each i € [1, h], first, we let P{ = R(P[i] U Ji—1)
(assuming Jy = 0); then, we add to the pseudoin-
terpretation J; each max pseudofact C/(a,f) such
that P/ = C(a,?) and ¢ is either co or an integer
bounded as above satisfying P; = C(a,l+ 1); fi-
nally, we add to J; pseudofacts of other types analo-
gously. The pseudofacts in P[i] U J;—1 can contain
symbol oo, but Definition 4.3 generalises to such
‘programs’ without change. Clearly, Jj, = N (P),
and so P =« if and only if J, = . A naive com-
plexity bound of this algorithm is nonelementary,
but a fine-grained analysis (in particular, bounding
|7: ) gives the upper bounds of Theorem 4.5.

For the lower bounds, we generalise the ideas of
the positive case. In particular, for data complex-
ity, we reduce the canonical Ab-complete problem
ODD-MAX-SAT, where the question is if the maxi-
mum value of ¢(o) over all assignments o satisfying
a propositional formula ® is odd. For the combined
complexity, we use a similar reduction of the AEXP-
complete succinct version of ODD-MAX-SAT.

THEOREM 4.5. The fact entailment problem for
LL-programs is A5XP-complete in combined and A -
complete in data complexity.

S. TRACTABLE FRAGMENTS

Tractability of reasoning in data complexity is im-
portant for problems involving large datasets. We
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now present a stability condition on LL-programs
that brings the complexity of reasoning down to
EXP in combined and to P in data complexity, thus
matching the bounds for usual Datalog. We then
present a syntactic type-consistency condition that
ensures stability and is simple to check.

5.1 Stable LL-Programs

The fact entailment algorithm for usual Datalog
computes the materialisation iteratively, which can
be done in polynomial time in the size of data. We
now present a further restriction on LL-programs
that makes such iterative computation viable for
LL-programs. The key difficulty in doing so is to
detect when a numeric argument diverge—that is,
when it increases or decreases indefinitely. Hence,
to ensure tractability, we must be able to detect di-
vergence after polynomially many rule applications.
Example 5.1 illustrates the problem of divergence.

ExXAMPLE 5.1. Consider an LL-program P, with
the following rules with max predicates C; and Cs.

01(0) C’l(m) — Og(m) CQ(TTL) — C’l(m + 1)

Both C; and Cs diverge when computing pseudo-
materialisation A (Pg) due to a cyclic dependency
between C7 and Cs. The existence of such a depen-
dency, however, may not lead to divergence. Let an
LL-program P’, be obtained from Py; by adding a
fact C'(5), for C' max, and replacing the second rule
by the following rule.

Cy(m) A C(m) — Ca(m)

While C; and Cj still depend on each other, the
increase in C7 and C5 is bounded by an independent
value of C', so neither C7 nor Cy diverges. <

To capture these ideas formally, we first extend
Z U {oco} with a new symbol L, which indicates
that a fact does not hold for any integer. We also
define 1 <k < oo for each k€Z; L +¢= 1 and
00+ £ =00 foreach £ € ZU{oo}; and L + 00 = L.

Next we formalise the notion of dependency: a
numeric variable m depends on a numeric variable
n in an OG-ground rule p if m = n or m occurs in
an atom in p with a variable that depends on n. A
numeric term ss depends on a numeric term sy if sg
mentions a variable depending on a variable in s;.

We next introduce a key notion of a value prop-
agation graph. Our definition is based on the sys-
tem of linear inequalitites ¥ (p, J) from Section 4.1
whose solutions encode matches of the body of an
OG-ground rule p to a pseudointerpretation 7. So,
if the head of p is a limit atom C(a, s), then ¢ (p, J)
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corresponds to an integer linear optimisation prob-
lem ¢*(p, J) that optimises (i.e., maximises or min-
imises, depending on the type of C) the value of s
under ¥(p, J). If ¥(p, J) is satisfiable (i.e., p is ap-
plicable to J), then ¥*(p, J) can either be bounded

and have an optimal integer value, or unbounded.

DEFINITION 5.2. Given an OG-ground program
P and a pseudointerpretation [J, the value propa-
gation graph of P over J is the weighted directed
graph (V, E, Q) with the following components.

— The set of nodes V' contains a node (Ca) for each
limit atom C(a, s) in a rule head in P.

— The set of edges E contains ((Chray), (Caasz)) for
each rule p in P with satisfiable 1 (p, J) that pro-
duces the edge—that is, has C1(a, s1) in the body
and Ca(ag, s2) in the head where so depends on s1.

— The weight Q(e) of each edge e = ({(Cray), (Caas))
in E is an element of ZU {L, o0} defined as

Q(e) = max{Q,(e) | p € P produces e},

where Q,(e) is defined as follows, forl € Z U {co}
with Cy(ay,f) € J (which exists by applicability):
- Q,(e) = o0 if Y*(p, T) is unbounded,
- Qy(e) =L if Y*(p,J) is bounded and { = oo,
- 0p(e) = (“1)% k= (—1)% - € if 9 (p, ) has
optimal value k and ¢ € 7 where, fori € {1,2},
d; is 0 if C; is max and 1 if C; is min.
The weight Q(IT) of a path 11 in a value propagation
graph is the sum of the edge weights along I1; II has
positive weight if Q(II) is a positive integer or co.

Intuitively, graph (V, E, ) of a OG-ground pro-
gram P over a pseudointerpretation J describes
how, for each pseudofact Cj(aj,¥) in J, applying
P propagates ¢ to other pseudofacts. For exam-
ple, every edge e = ((Cia;), (Ceag)) with max C
and C9 indicates that a rule is applicable to a fact
Cy(a1,£) € J and that it produces Cz(as, £ + Q(e)).

It is easy to check that the value propagation
graph increases monotonically during rule applica-
tion in the following sense: for each OG-ground pro-
gram P and pseudointerpretations J and J’ such
that Z C 7’ for the corresponding limit-closed in-
terpretations Z and Z’, we always have V =V’ and
E C FE’ for the graphs (V, E, Q) and (V' E’, ) of
P over J and P over J’, respectively. This guar-
antees the correctness of the following definition.

DEFINITION 5.3.  An OG-ground program P is
stable if, for all pseudointerpretations J and J'
such that T C I’ holds for the corresponding limit-
closed interpretations T and I', for the value prop-
agation graphs (V,E,Q) and (V,E',Q') of P over
J and of P over J', respectively, and for each edge
e € E, it is the case that Q(e) < ' (e) holds.

SIGMOD Record, December 2019 (Vol. 48, No. 4)

Intuitively, iterative rule applications never de-
crease the edge weights if a program is stable. Pro-
gram Py in Example 5.1 is stable, while P, is not
stable since Q(e) =0 and Q'(e) = —1 for the edge
e = ({C4), (Ca)) in the propagation graphs (V, E, Q)
and (V, E', Q) of P!, over the pseudointerpretations
{C1(0),C(0)} and {C1(1),C(0)}, respectively.

It can be shown that a positive-weight cycle of
a stable OG-ground program P over a pseudoint-
erpretation J guarantees divergence of numeric ar-
guments along the cycle by repeated application of
the rules of P to J. This allows us to compute the
pseudomaterialisation in a finite number of steps
by applying the rules iteratively, provided that, af-
ter each rule application, we construct the value
propagation graph for the current pseudointerpre-
tation and bump to oo the numeric arguments of
all pseudofacts along each positive-weight cycle. It
follows that the number of rule applications needed
to obtain such a cycle can be polynomially bounded
in the size of P, which leads to the following lemma.

LEMMA 5.4. For each stable OG-ground program
P, the pseudomaterialisation N'(P) can be computed
in time exponential in ||P| and polynomial in | D||,
where D is the dataset component of P.

Using Lemma 5.4, we can decide fact entailment
for stable OG-ground programs in EXP in combined
and in P in data complexity—that is, with the same
complexity as for usual Datalog. We next show how
to extend this result to LL-programs with negation.
We first generalise the notion of stability.

DEFINITION 5.5. An LL-program P is stable if
it can stratified as P[1],..., P[h] such that, for each
i € [1,h] and for the pseudomaterialisation J;_1
of P[1JU---UP[i — 1], the reduct R(P[i)]UT;—1) is
stable (assuming Jo = 0 for uniformity).

Combining Lemma 5.4 with the ideas in Theo-
rem 4.5, we obtain the following result.

THEOREM 5.6. The fact entailment problem for
stable LL-programs is EXP-complete in combined
and P-complete in data complexity.

5.2 Type-Consistent Programs

Stability identifies a large class of LL-programs
for which reasoning is tractable. Unfortunately, the
condition is semantic, rather than syntactic. More-
over, it is not a local condition in the sense that it
cannot be verified by looking at each rule in isola-
tion but depends on how different rules interact. Fi-
nally, checking stability of an LL-program involves
computing the reduct of each stratum, which de-
pends on the materialisation of the preceding strata
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(in fact, even checking stability of an OG-ground
program is coNP-hard). This motivates the follow-
ing sufficient condition for stability.

DEFINITION 5.7. An mm-typing of variables of
an LL-rule partitions all unguarded numeric vari-
ables occurring in positive limit body literals of the
rule into max and min types. Given such a typing,
a numeric term is of type max if it is of the form

s+ (Z:Zl k; x mi) — (Z;U:l 4 x nj) ,

for s a numeric term not mentioning any max or
min variables, nonnegative integers v and w, each
m; a max variable with coefficient k; > 1, and each
n; a min variable with coefficient £; > 1. Moreover,
a numeric term is of type min if the same holds
except that each m; is min and each is n; max.
An LL-rule p = ¢ — « is type-consistent if it has
a variable mm-typing with the following properties.
— Fach numeric variable in each negative exact lit-
eral in ¢ is guarded.
— The numeric term of each max and each min
atom in p is of type max and min, respectively.
— Each comparison in ¢ has the form (s; < s3) or
(s1 < 89), for s1 of type min and sy of type max.
— If a = Cy(ag, s2) is a limit atom then, for each
positive limit literal Cy(ay,s1) in ¢ with so de-
pending on s1, terms s1 and So have a common
unguarded variable that has coefficient 1 in s1 and
does not occur in any other positive limit liter-
als in ¢, where dependency is defined as in Sec-
tion 5.1 except that only unguarded numeric vari-
ables are taken into account.
An LL-program is type-consistent if all of its rules
are type-consistent.

Type-consistency can be checked rule by rule in L,
and all programs in Section 3.3 are type-consistent.
Furthermore, the complexity results in Theorem 5.6
apply since type-consistency implies stability.

THEOREM 5.8. FEach type-consistent LL-program
1s stable.

6. RELATED WORK

The closest formalism to limit Datalog, is the
‘monotonic programs’ of Ross and Sagiv [22]. Their
core fragment extends usual Datalog by predicates
whose last position ranges over partially ordered
cost domains (e.g., integers ordered by <) with as-
sociated built-in functions. They allow only for in-
terpretations resembling our pseudointerpretations,
and their programs are required to be monotonic
in the sense that rule applications should produce
only interpretations of the appropriate form and
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preserve the orders of all cost domains. Unfortu-
nately, checking monotonicity is undecidable, and
moreover monotonicity does not imply decidability
of fact entailment. Nonetheless, there is a rich com-
mon fragment of monotonic programs and limit-
linear Datalog, that inherits the decidability, com-
plexity, and tractability of the latter.

Another related formalism is DatalogF s proposed
by Mazuran et al. [19], which extends usual Datalog
with so-called frequency support goals and provides
the formal underpinning for the DeALS system [31].
Similar to the language of Ross and Sagiv, fact en-
tailment in DatalogF Sis undecidable, and no practi-
cal decidable fragment has been identified. Finding
such fragments could potentially be accomplished
by transferring some ideas from our work.

Datalog, is also closely related to constraint logic
programming (CLP). Although a number of decid-
able CLP languages have been identified [7], none
of them allow for recursive numeric value invention,
which is an integral feature of Datalog; necessary
to capture several examples in Section 3.3.

Finally, note that some examples from Section 3.3
implement aggregation over recursive rules. Sev-
eral attempts were made to provide a generic se-
mantics for such aggregation (including monotonic
programs and DatalogF % considered above in their
full power). However, all these attempts yield solu-
tions either for restricted classes of programs that
are subject to strong monotonicity assumptions, use
only min and maz aggregate functions, or have un-
decidable fact entailment [6, 11, 12, 16, 20, 27].

7. CONCLUSION

We have presented several decidable fragments of
Datalog, that can capture interesting data analysis
problems. For future work, we first aim to system-
atically explore the ability of Datalog, to express
aggregate functions, which are a necessary compo-
nent of any practical data analytics formalism. Sec-
ond, we plan to extend our results to the context of
descriptive complexity [13]: we believe that the lan-
guages of semi-positive and arbitrary LL-programs
capture coNP and AF, respectively. Another avenue
for future work is exploring practical applicability
of our algorithms and their implementation in prac-
tical declarative data analysis systems.
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ABSTRACT

Data stream processing systems (DSPSs) enable
users to express and run stream applications to
continuously process data streams. To achieve real-
time data analytics, recent researches keep focusing
on optimizing the system latency and throughput.
Witnessing the recent great achievements in the
computer architecture community, researchers and
practitioners have investigated the potential of adoption
hardware-conscious stream processing by better
utilizing modern hardware capacity in DSPSs. In this
paper, we conduct a systematic survey of recent work
in the field, particularly along with the following three
directions: 1) computation optimization, 2) stream I/O
optimization, and 3) query deployment. Finally, we
advise on potential future research directions.

1 Introduction

A large volume of data is generated in real time
or near real time and has grown explosively in
the past few years. For example, IoT (Internet-
of-Things) organizes billions of devices around the
world that are connected to the Internet. IHS
Markit forecasts [3] that 125 billion such devices
will be in service by 2030, up from 27 billion in
2018. With the proliferation of such high-speed
data sources, numerous data-intensive applications
are deployed in real-world use cases exhibiting
latency and throughput requirements, that can not
be satisfied by traditional batch processing models.
Despite the massive effort devoted to big data
research, many challenges remain.

A data stream processing system (DSPS) is a
software system which allows users to efficiently
run stream applications that continuously analyze
data in real time. For example, modern DSPSs [5,
6] can achieve very low processing latency in the
order of milliseconds. Many research efforts are
devoted to improving the performance of DSPSs
from the research community [45, 23, 98, 92] and
leading enterprises such as SAP [102], IBM [37],
Google [9] and Microsoft [19]. Despite the success of
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the last several decades, more radical performance
demand, complex analysis, as well as intensive
state access in emerging stream applications [21,
91] pose great challenges to existing DSPSs.
Meanwhile, significant achievements have been
made in the computer architecture community,
which has recently led to various investigations of
the potential of hardware-conscious DSPSs, which
alm to exploit the potential of accelerating stream
processing on modern hardware [104, 98].

Fully utilizing hardware capacity is notoriously
challenging. A large number of studies have been
proposed in recent years [19, 66, 57, 58, 45, 98,
103, 104]. This paper hence aims at presenting
a systematic review of prior efforts on hardware-
conscious stream processing.  Particularly, the
survey is organized along with the following three
directions: 1) computation optimization, 2) stream
I/O optimization, and 3) query deployment. We
aim to show what has been achieved and reveal
what has been largely overlooked. = We hope
that this survey will shed light on the hardware-
conscious design of future DSPSs.

2 Background

In this section, we introduce the common APIs
and runtime architectures of modern DSPSs.

2.1 Common APIs

A DSPS needs to provide a set of APIs for
users to express their stream applications. Most
modern DSPSs such as Storm [6] and Flink [5]
express a streaming application as a directed acyclic
graph (DAG), where nodes in the graph represent
operators, and edges represent the data dependency
between operators. Figure 1 (a) illustrates the word
count (WC) as an example application containing
five operators. A detailed description of a few more
stream applications can be found in [103].

Some earlier DSPSs (e.g., Storm [6]) require
users to implement each operator manually.
Recent efforts from Saber [45], Flink [5], Spark-
Streaming [96], and Trident [55] aim to provide
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(Spout+Parser)+(Spter)-~( Counter - 5i)

“aboy and “a”, “boy” (“boy”,1), (“a”,2)
agirl”

Figure 1: A stream processing example of word
count.

declarative APIs (e.g.,, SQL) with rich built-
in operations such as aggregation and join.
Subsequently, many efforts have been devoted to
improving the execution efficiency of the operations,
especially by utilizing modern hardware (Section 4).

2.2 Common Runtime Architectures

Modern stream processing systems can be
generally categorized based on their processing
models including the Continuous Operator (CO)
model and the Bulk Synchronous Parallel (BSP)
model [87].

Continuous Operator Model: Under the CO
model, the execution runtime treats each operator
(a vertex of a DAG) as a single execution unit
(e.g., a Java thread), and multiple operators
communicate through message passing (an edge
in a DAG). For scalability, each operator can be
executed independently in multiple threads, where
each thread handles a substream of input events
with stream partitioning [43]. This execution model
allows users to control the parallelism of each
operator in a fine-grained manner [103]. This kind
of design was adopted by many DSPSs such as
Storm [6], Heron [49], Seep [17], and Flink [5] due
to its advantage of low processing latency. Other
recent hardware-conscious DSPSs adopt the CO
model including Trill [19], BriskStream [104], and
TerseCades [66].

Bulk-Synchronous Parallel Model: Under the
BSP model, input stream is explicitly grouped
into micro batches by a central coordinator and
then distributed to multiple workers (e.g., a
thread/machine). Subsequently, each data item
in a micro batch is independently processed by
going through the entire DAG (ideally by the same
thread without any cross-operator communication).
However, the DAG may contain synchronization
barrier, where threads have to exchange their
intermediate results (i.e., data shuffling). Taking
WC as an example, the Splitter needs to ensure
that the same word is always passed to the same
thread of the Counter. Hence, a data shuffling
operation is required before the Counter. As a
result, such synchronization barriers break the DAG
into multiple stages under the BSP model, and
the communication between stages is managed by
the central coordinator. This kind of design was
adopted by Spark-streaming [96], Drizzle [87], and
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FlumelJava [18]. Other recent hardware-conscious
DSPSs adopt the BSP model including Saber [45]
and StreamBox [57].

Although there have been prior efforts to
compare different models [82], it is still inconclusive
that which model is more suitable for utilizing
modern hardware — each model comes with
its own advantages and disadvantages. For
example, the BSP model naturally minimizes
communication among operators inside the same
DAG, but its single centralized scheduler has
been identified with scalability limitation [87].
Moreover, its unavoidable data shuffling also brings
significant communication overhead, as observed
in recent research [104]. In contrast, CO model
allows fine-grained optimization (i.e., each operator
can be configured with different parallelisms
and placements) but potentially incurs higher
communication costs among operators. Moreover,
the limitations of both models can potentially be
addressed with more advanced techniques. For
example, cross operator communication overhead
(under both CO and BSP models) can be overcome
by exploiting tuple batching [19, 103], high
bandwidth memory [58, 70], data compression [66],
InfiniBand [38] (Section 5), and architecture-aware
query deployment [104, 98] (Section 6).

3 Survey Outline

The hardware architecture is evolving fast and
provides a much higher processing capability
than that traditional DSPSs were originally
designed for. For example, recent scale-up
servers can accommodate hundreds of CPU
cores and terabytes of memory [4], providing
abundant computing resources. Emerging network
technologies such as Remote Direct Memory Access
(RDMA) and 10Gb Ethernet significantly improve
system ingress rate, making I/O no longer a
bottleneck in many practical scenarios [57, 21].
However, prior studies [103, 98] have shown that
existing data stream processing systems (DSPSs)
severely underutilize hardware resources due to the
unawareness of the underlying complex hardware
architectures.

As summarized in Table 1, we are witnessing
a revolution in the design of DSPSs that exploit
emerging hardware capability, particularly along
with the following three dimensions:

1) Computation Optimization:  Contrary to
conventional DBMSs, there are two key features
in DSPSs that are fundamental to many stream
applications and computationally expensive:
Windowing operation [35] (e.g., windowing stream
join) and Out-of-order handling [12]. The former
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Table 1: Summary of the surveyed works

Optimization efficiency

Research Key Concerns Key Related Work
Dimensions
Computation Synchronization overhead, work | CellJoin [23], FPGAJoin [47, 72|, Handshake join [83,

73], PanJoin [65], HELLS-join [42, 41], Aggregation on
GPU [45], Aggregation on FPGA [64, 24], Hammer Slide [84],
StreamBox [57], Parallel Index Join [75]

Stream I/O | Time and space efficiency, data | Batching [103], Stream with HBM [58, 70], TerseCades [66],

Optimization locality, and memory footprint Stream over InfiniBand [38], Stream on SSDs [51], and NVM-
aware Storage [68]

Query Operator interference, elastic | Orchestrating [48, 22|, Streamlt [16], SIMD [36],

Deployment scaling, and power constraint BitStream [8], Streams on Wires [60], HRC [88], RCM [89],

CMGG [63], GStream [106], SABER [45], BriskStream [104]

deals with infinite stream, and the latter handles
stream imperfection. The support for those
expensive operations is becoming one of the major
requirements for modern DSPSs and is treated as
one of the key dimensions in differentiating modern
DSPSs. Prior approaches use multicores [84, 57],
heterogeneous architectures (e.g., GPUs and Cell
processors) [23, 45], and Field Programmable
Gate Arrays (FPGAs) [83, 73, 47, 72, 64, 24] for
accelerating those operations.

2) Stream I/0 Optimization: Cross-operator
communication [103] is often a major source
of overhead in stream processing. Recent
work has revealed that the overhead due to
cross-operator communication is significant, even
without the TCP/IP network stack [103, 98].
Subsequently, research has been conducted on
improving the efficiency of data grouping (i.e.,
output stream shuffling among operators) using
High Bandwidth Memory (HBM) [58], compressing
data in transmission with hardware accelerators
and applying computation directly over compressed
data [66], and leveraging InfiniBand for faster
data flow [38]. Having said that, there are also
cases where the application needs to temporarily
store data for future usage [85] (i.e., state
management [15]).  Examples include stream
processing with large window operation (i.e.,
workload footprint larger than memory capacity)
and stateful stream processing with high availability
(i.e., application states are kept persistently). To
relieve the disk I/O overhead, recent work has
investigated how to achieve more efficient state
management, leveraging SSD [51] and non-volatile
memory (NVM) [68].

3) Query Deployment: At an even higher point
of view, researchers have studied launching a whole
stream application (i.e., a query) into various
hardware architectures.  Similar to traditional
database systems, the goal of query deployment
in DSPS is to minimize operator interference/
cross-operator communication, balance hardware
resource utilization, and so on. The major
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difference compared to traditional database systems
lies in their different problem assumptions,
and hence in their system architectures (e.g.,
infinite input stream [90], processing latency
constraints [33], and unique cost function of
streaming operators [102, 44]). To take advantage
of modern hardware, prior works have exploited
various hardware characteristics such as cache-
conscious strategies [8], FPGA [60], and GPUs [88,
89, 63, 106]. Recent works have also looked
into supporting hybrid architectures [45] and
NUMA [104].

4 Computation Optimization

In this section, we review the literature on
accelerating computationally expensive streaming
operations using modern hardware.

4.1 Windowing Operation

In stream applications, the processing is mostly
performed in the form of long-running queries
known as continuous queries [11]. To handle
potentially infinite data streams, continuous queries
are typically limited to a window that limits the
number of tuples to process at any point in time.
The window can be defined based on the number
of tuples (i.e., count based), function of time (i.e.,
time based) or sessions [86]. Window stream joins
and window aggregation are two common expensive
windowing operations in data stream processing.

4.1.1 Window Join

A common operation used in many stream
analytical workloads is to join multiple data
streams. Different from traditional join in relational
databases [32], which processes a large batch of data
at once, stream join has to produce results on the
fly [39, 77, 31, 26]. By definition, the stream join
operator performs over infinite streams. In practice,
streams are cut into finite slices/windows [93]. In
a two-way stream join, tuples from the left stream
(R) are joined with tuples in the right stream (8)
when the specified key attribute matches, and the
timestamp of tuples from both streams falls within
the same window.
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Figure 2: HW-conscious stream join algorithms (using two cores as an example).

Algorithm Overview. Kang et al. [39]
described the first streaming join implementations.
For each tuple r of stream R, 1) Scan the window
associated with stream S and look for matching
tuples; 2) Invalidate the old tuples in both windows;
3) Insert 7 into the window of R.

HW-Conscious Optimizations. The costly
nature of stream join and the stringent response
time requirements of stream applications have
created significant interest in accelerating stream
joining. Multicore processors that provide high
processing capacity are ideal for executing costly
windowed stream operators. However, fully
exploiting the potential of a multicore processor
is often challenging due to the complex processor
microarchitecture, deep cache memory subsystem,
and the unconventional programming model in
general. Figure 2 illustrates the four representative
studies on accelerating window stream joins
described as follows.

CellJoin: An earlier work from Gedik et al. [23],
called CellJoin, attempt to parallelize stream
join on Cell processor, a heterogeneous multicore
architecture. CellJoin generally follows Kang’s [39]
three-step algorithm. To utilize multicores, it re-
partitions S, and each resulting partition is assigned
to an individual core. In this way, the matching
step can be performed in parallel on multiple cores.
A similar idea has been adopted in the work by
Karnagel et al. [42] to utilize the massively parallel
computing power of GPU.

Handshake-Join (HSJoin): CellJoin essentially
turns the join process into a scheduling and
placement process. Subsequently, it is assumed
that the window partition and fetch must be
performed in global memory. The repartition
and distribution mechanism essentially reveals that
CellJoin generally follows the BSP model (see
Section 2.2). This is later shown to be ineffective
when the number of cores is large [83], and a new
stream join technique called handshake join (i.e.,
HSJoin) was proposed. In contrast to CellJoin,
HSJoin adopts the CO model. Specifically, both
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input streams notionally flow through the stream
processing engine in opposite directions. As
illustrated in Figure 2 (b), the two sliding windows
are laid out side by side, and predicate evaluations
are continuously performed along with the windows
whenever two tuples encounter each other.

Low-Latency Handshake-Join (i.e., LLHSJoin):
Despite its excellent scalability, the downside of
HSJoin is that tuples may have to be queued for
long periods of time before the match, resulting
in high processing latency. In response, Roy et
al. [73] propose a low-latency handshake-join (i.e.,
LLHSJoin) algorithm. The key idea is that, instead
of sequentially forwarding each tuple through a
pipeline of processing units, tuples are replicated
and forwarded to all involved processing units (see
the red dotted lines in Figure 2 (c)) before the join
computation is carried out by one processing unit
(called a home node).

SplitJoin: The state-of-the-art windowing join
implementation called SplitJoin [62] parallelizes the
join process via the CO model. Rather than
forwarding tuples bidirectionally, as in HSJoin
or LLHSJoin, SplitJoin broadcasts each newly
arrived tuple ¢ (from either S or R) to all
processing units. In order to make sure that
each tuple is processed only once, t is retained
in exactly one processing unit chosen in a round-
robin manner. Although SplitJoin [62] and
HSJoin [83] can achieve the same concurrency
theoretically without any central coordination, the
former achieves a much lower latency due to
the linear chaining delay of the HSJoin. While
LLHSJoin [73] reduces the processing latency of
HSJoin [83] by using a fast forwarding mechanism,
it complicates the processing logic and reintroduces
central coordination to the processing [62].

4.1.2 Window Aggregation

Another computationally heavy windowing
operation is window aggregation, which summarizes
the most recent information in a data stream. There
are four workload characteristics [86] of stream
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aggregation including 1) window type, which
refers to the logic based on which system derives
finite windows from a continuous stream, such
as tumbling, sliding, and session; 2) windowing
measures, which refers to ways to measure
windows, such as time-based, count-based, and any
other arbitrary advancing measures; 3) aggregate
functions with different algebraic properties [81]
such as invertible, associative, commutative, and
order-preserving; and 4) stream (dis)order, which
shall be discussed in Section 4.2.

Algorithm  Overview. The trivial
implementation is to perform the aggregation
calculation from scratch for every arrived data.
The complexity is hence O(n), where n is the
window size.  Intuitively, efficiently leveraging
previous calculation results for future calculation is
the key to reducing computation complexity, which
is often called incremental aggregation. However,
the effectiveness of incremental aggregation
depends heavily on the aforementioned workload
characteristics such as the property of the
aggregation function. For example, when the
aggregation function is invertible (e.g., sum), we
can simply update (i.e., increase) the aggregation
results when a new tuple is inserted into the window
and evict with the time complexity of O(1). For
faster answering median like function, which has to
keep all the relevant inputs, instead of performing
a sort on the window for each newly inserted
tuple, one can maintain an order statistics tree as
auxiliary data structure [34], which has O(logn)
worst-case complexity of its insertion, deletion, and
rank function. Similarly, the reactive aggregator
(RA) [80] with O(logn) average complexity only
works for aggregation function with the associative
property. Those algorithms also differ from each
other at their capability of handling different
window types, windowing measures, and stream
(dis)order [86]. Traub et al. [86] recently proposed
a generalization of the stream slicing technique
to handle different workload characteristics for
window aggregation. It may be an interesting
future work to study how the proposed technique
can be applied to better utilize modern hardware
architectures (e.g., GPUs).

HW-Conscious Optimizations. There are
a number of works on accelerating windowing
aggregation in a hardware-friendly manner. An
early work by Mueller et al. [59] described
implementation for a sliding windowed median
operator on FPGAs. This is an operator commonly
used to, for instance, eliminate noise in sensor
readings and in data analysis tasks [71]. The
algorithm skeleton adopted by the work is rather
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conventional: it first sorts elements within the
sliding window and then computes the median.
Compared to the O(logn) complexity of using
an order statistics tree as an auxiliary data
structure [34], Mueller’s method has a theoretically
much higher complexity due to the sorting step
(O(nlogn)). Nevertheless, their key contribution
is on how the sorting and computing steps can
be efficiently performed on FPGAs. Mueller’s
implementation [59] focuses on efficiently processing
one sliding window without discussing how to
handle subsequent sliding windows. Mueller et al.
hence proposed conducting multiple computations
for each sliding window by instantiating multiple
aggregation modules concurrently [60].

Recomputing from scratch for each sliding
window is costly, even if conducted in parallel [60].
Hence, a technique called pane [52] was proposed
and later verified on FPGAs [64] to address this
issue. The key idea is to divide overlapping windows
into disjoint panes, compute sub-aggregates over
each pane, and “roll up” the partial-aggregates to
compute final results. Pane was later improved [46]
and covers more cases (e.g., to support non-periodic
windows [14]). However, the latest efforts are
mostly theoretical, and little work has been done
to validate the effectiveness of these techniques on
modern hardware, e.g., FPGA and GPUs.

Saber [45] is a relational stream processing
system targeting heterogeneous machines equipped
with CPUs and GPUs. To achieve high throughput,
Saber also adopts incremental aggregation
computations utilizing the commutative and
associative property of some aggregation functions
such as count, sum, and average. Theodorakis
et al. [84] recently studied the trade-off between
workload complexity and CPU efficient streaming
window aggregation. To this end, they proposed
an implementation that is both workload- and
CPU-efficient. ~ Gong et al. [27] proposed an
efficient and scalable accelerator based on FPGAs,
called ShuntFlow, to support arbitrary window
sizes for both reduce- and index-like sliding
window aggregations. The key idea is to partition
aggregation with extremely large window sizes into
sub-aggregations with smaller window sizes that
can enable more efficient use of FPGAs.

4.2 Out-of-Order Handling

In a real production environment, out-of-order’
input data are not uncommon. A stream operator
is considered to be order-sensitive if it requires
input events to be processed in a certain predefined

1Other issues such as delay and missing can be seen as
special cases of out-of-order.
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order (e.g., chronological order). Handling out-of-
order input data in an order-sensitive operator often
turns out to be a performance bottleneck, as there
is a fundamental conflict between data parallelism
and order-sensitive processing — the former seeks to
improve the throughput of an operator by letting
more than one thread operate on different events
concurrently, possibly out-of-order.

Algorithm Overview. Currently, there are
three general techniques to be applied together with
the order-sensitive operator to handle out-of-order
data streams. The first utilizes a buffer-based data
structure [12] that buffers incoming tuples for a
while before processing. The key idea is to keep the
data as long as possible (within the latency/buffer
size constraint) to avoid out-of-order inputs. The
second technique relies on punctuation [53], which
is a special tuple in the event stream indicating the
end of a substream. Punctuations guarantee that
tuples are processed in monotonically increasing
time sequence across punctuations, but not within
the same punctuation. The third approach is to
use speculative techniques [74]. The main idea is
to process tuples without any delay, and recompute
the results in the case of order violation. There are
also techniques specifically designed for handling
out-of-order in a certain type of operator such as
window aggregation [86].

HW-Conscious Optimizations. Gulisano et
al. [28] are among the first to handle out-of-order
for high-performance stream join on multi-core
CPUs. The proposed algorithm, called scalejoin
is illustrated in Figure 3 (a). It first merges
all incoming tuples into one stream (through a
data structure called scalegate) and then distributes
them to processing threads (PTs) to perform join.
The output also needs to be merged and sorted
before exiting the system. The use of the scalegate
makes this work fall into the category of buffer-
based approach and have inherent limitation of
higher processing latency.  Scalejoin has been
implemented in FPGA [47] and further improved
in another recent work [72]. They both found that
the proposed system outperforms the corresponding
fully optimized parallel software-based solution
running on a high-end 48-core multiprocessor
platform.

StreamBox [57] handles out-of-order event
processing by the punctuation-based technique on
multicore processors. Figure 3 (b) illustrates the
basic idea of taking the stream join operator as
an example. Relying on a novel data structure
called cascading container to track dependencies
between epochs (a group of tuples delineated
by punctuation), StreamBox is able to maintain
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Figure 3: Multicore-friendly out-of-order handling.

the processing order among multiple concurrently
executing containers that exploit the parallelism of
modern multicore hardware.

Kuralenok et al. [50] attempt to balance the
conflict between order-sensitive and multicore
parallelism with an optimistic approach falling in
the third approach. The basic idea is to conduct
the joining process without any regulations, but
apologize (i.e., sending amending signals) when the
processing order is violated. They show that the
performance of the proposed approach depends on
how often reorderings are observed during run-
time. In the case where the input order is naturally
preserved, there is almost no overhead. However,
it leads to extra network traffic and computations
when reorderings are frequent. To apply such an
approach to practical use cases, it is hence necessary
to predict the probability of reordering, which could
be an interesting future work.

4.3 Remarks

From the above discussion, it is clear that
the key to accelerating windowing operators are
mainly two folds. On the one hand, we
should minimize the operation complexity. There
are two common approaches: 1) incremental
computation algorithms [45], which maximize
reusing intermediate results, and 2) rely on
efficient auxiliary data structures (e.g., indexing
the contents of sliding window [95]) for reducing
data (and/or instruction) accesses, especially cache
misses. On the other hand, we should maximize
the system concurrency [84]. This requires us
to distribute workloads among multiple cores
and minimize synchronization overhead among
them [57].  Unfortunately, these optimization
techniques are often at odds with each other.
For example, incremental computation algorithm
is complexity efficient but difficult to parallelize
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due to inherent control dependencies in the
CPU instruction [84]. Another example is that
maintaining index structures for partial computing
results may help to reduce data accesses, but
it also brings maintenance overhead [54]. More
investigation is required to better balance these
conflicting aspects.

5 Stream I/0 Optimization

In this section, we review the literature on
improving the stream 1/O efficiency using modern
hardware.

5.1 Cross-operator Communication

Modern DSPSs [5, 6] are able to achieve
very low processing latency in the order of
milliseconds. However, excessive communication
among operators [103] is still a key obstacle in
further improving the performance of the DSPSs.

Kamburugamuve et al. [38] recently presented
their findings on integrating Apache Heron [49]
with InfiniBand and Intel OmniPath. The results
show that both can be utilized to improve the
performance of distributed streaming applications.
Nevertheless, many optimization opportunities
remain to be explored. For example, prior work [38]
has evaluated Heron on InfiniBand with channel
semantics but not remote direct memory access
(RDMA) semantics [67]. The latter has shown to
be very effective in other related works [76, 97].

Data compression is a widely used approach for
reducing communication overhead. Pekhimenko
et al. [66] recently examined the potential of
using data compression in stream processing.
Interestingly, they found that data compression
does not necessarily lead to a performance gain.
Instead, improvement can only be achieved through
a combination of hardware accelerator (i.e., GPUs
in their proposal) and new execution techniques
(i.e., compute directly over compressed data).

As mentioned before, word count requires
the same word to be transmitted to the same
Counter operator (see Section 2.1). Subsequently,
all DSPSs need to implement data grouping
operations regardless of their processing model
(i.e., the continuous operator model or bulk
synchronous model). Data grouping involves
excessive memory accesses that rely on hash-based
data structures [103, 96]. Zeuch et al. [9§]
analyzed the design space of DSPSs optimized for
modern multicore processors. In particular, they
show that a queue-less execution engine based on
query compilation, which replaces communication
between operators with function calls, is highly
suitable for modern hardware. Since data grouping
can not be completely eliminated, they proposed a
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mechanism called “Upfront Partitioning with Late
Merging”, for efficient data grouping. Miao et
al. [58] have exploited the possibility of accelerating
data grouping using emerging 3D stacked memories
such as high-bandwidth memory (HBM). By
designing the system in a way that addresses the
limited capacity of HBM and HBM’s need for
sequential-access and high parallelism, the resulting
system can achieve several times of performance
improvement over the baseline.

5.2 State Management

Emerging stream applications often require the
underlying DSPS to maintain large application
states so as to support complex real-time
analytics [85, 15]. Representative example states
required during stream processing include graph
data structures [105] and transaction records [56].

The storage subsystem has undergone
tremendous innovation in order to keep up
with the ever-increasing performance demand.
Wukong+S [105] is a recently proposed distributed
streaming engine that provides real-time consistent
query over streaming datasets. It is built based on
Wukong [76], which leverages RDMA to optimize
throughput and latency. Wukong+S also follows
its pace to support stream processing while
maintaining low latency and high throughput.
Non-Volatile Memory (NVM) has emerged as
a promising hardware and brings many new
opportunities and challenges. Fernando et al. [68]
has recently explored efficient approaches to
support analytical workloads on NVM, where an
NVM-aware storage layout for tables is presented
based on a multidimensional clustering approach
and a block-like structure to utilize the entire
memory stack. As argued by the author, the
storage structure designed on NVM may serve
as the foundation for supporting features like
transactional stream processing systems [29] in the
future. Non-Volatile Memory Express (NVMe)
-based solid-state devices (SSDs) are expected
to deliver unprecedented performance in terms
of latency and peak bandwidth. For example,
the recently announced PCle 4.0 based NVMe
SSDs [1] are already capable of achieving a peak
bandwidth of 4GB/s. Lee et al. [51] have recently
investigated the performance limitations of current
DSPSs on managing application states on SSDs
and have shown that query-aware optimization can
significantly improve the performance of stateful
stream processing on SSDs.

5.3 Remarks

Hardware-conscious stream I/O optimization is
still in its early days. Most prior work attempts at
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mitigating the problem through a purely software
approach, such as I/O-aware query deployment [94].
The emerging hardware such as Non-Volatile
Memory (NVM) and InfiniBand with RDMA
open up new opportunities for further improving
stream I/O performance [105]. Meanwhile, the
usage of emerging hardware accelerators such as
GPUs further brings new opportunities to trade-
off computation and communication overhead [66].
However, a model-guided approach to balance the
trade-off is still generally missing in existing work.
We hence expect more work to be done in this
direction in the near future.

6 Query Deployment

We now review prior works from a higher level of
abstraction, the query/application dimension. We
summarize them based on their deployment targets:
multicore CPUs, GPUs, and FPGAs.

6.1 Multicore Stream Processing

Language and Compiler. Multicore
architectures have become ubiquitous. However,
programming models and compiler techniques
for employing multicore features are still lagging
behind hardware improvements. Kudlur et al. [48]
were among the first to develop a compiler
technique to map stream application to a multicore
processor. By taking the Cell processor as an
example, they study how to compile and run a
stream application expressed in their proposed
language, called StreamIt. The compiler works
in two steps: 1) operator fission optimization
(i.e., split one operator into multiple ones) and
2) assignment optimization (i.e., assign each
operator to a core). The two-step mapping is
formulated as an integer linear programming (ILP)
problem and requires a commercial ILP solver.
Noting its NP-Hardness, Farhad et al. [22] later
presented an approximation algorithm to solve the
mapping problem. Note that the mapping problem
from Kudlur et al. [48] considers only CPU
loads and ignores communications bandwidth.
In response, Carpenter et al. [16] developed
an algorithm that maps a streaming program
onto a heterogeneous target, further taking
communication into consideration. To utilize a
SIMD-enabled multicore system, Hormati et al. [36]
proposed vectorizing stream applications. Relying
on high-level information, such as the relationship
between operators, they were able to achieve
better performance than general vectorization
techniques. Agrawal et al. [8] proposed a cache
conscious scheduling algorithm for mapping stream
application on multicore processors. In particular,
they developed the theoretical lower bounds on
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cache misses when scheduling a streaming pipeline
on multiple processors, and the upper bound of
the proposed cache-based partitioning algorithm
called seg_cache. They also experimentally found
that scheduling solely based on the cache effects
can often be more effective than the conventional
load-balancing (based on computation cost)
approaches.

Multicore-aware DSPSs. Recently, there has
been a fast growing amount of interest in building
multicore-friendly DSPSs.  Instead of statically
compiling a program as done in StreamIt [48,
22, 16], these DSPSs provide better elasticity
for application execution. They also allow the
usage of general-purpose programming languages
(e.g., Java, Scala) to express stream applications.
Tang et al. [79] studied the data flow graph
to explore the potential parallelism in a DSPS
and proposed an auto-pipelining solution that
can utilize multicore processors to improve the
throughput of stream processing applications. For
economic reasons, power efficiency has become more
and more important in recent years, especially in
the HPC domains. Kanoun et al. [40] proposed a
multicore scheme for stream processing that takes
power constraints into consideration. Trill [19]
is a single-node query processor for temporal or
streaming data. Contrary to most distributed
DSPSs (e.g., Storm, Flink) adopting the continuous
operator model, Trill runs the whole query only on
the thread that feeds data to it. Such an approach
has shown to be especially effective [98] when
applications contain no synchronization barriers.

6.2 GPU-Enabled Stream Processing

GPUs are the most popular heterogeneous
processors due to their high computing capacity.
However, due to their unconventional execution
model, special designs are required to efficiently
adapt stream processing to GPUs.

Single-GPU. Verner et al. [88] presented a
general algorithm for processing data streams with
real-time stream scheduling constraints on GPUs.
This algorithm assigns data streams to CPUs and
GPUs based on their incoming rates. It tries to
provide an assignment that can satisfy different
requirements from various data streams. Zhang et
al. [100] developed a holistic approach to building
DSPSs using GPUs. They design a latency-driven
GPU-based framework, which mainly focuses on
real-time stream processing. Due to the limited
memory capacity of GPUs, the window size of
the stream operator plays an important role in
system performance. Pinnecke et al. [69] studied the
influence of window size and proposed a partitioning
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method for splitting large windows into different
batches, considering both time and space efficiency.
SABER [45] is a window-based hybrid stream
processing framework aiming to utilize CPUs and
GPUs concurrently.

Multi-GPU. Multi-GPU systems provide
tremendous computation capacity, but also pose
challenges like how to partition or schedule
workloads among GPUs. Verner et al. [89] extend
their method [88] to a single node with multiple
GPUs. A scheduler controls stream placement
and guarantees that the requirements among
different streams can be met. GStream [106]
is the first data streaming framework for GPU
clusters.  GStream supports stream processing
applications in the form of a C++ library; it
uses MPI to implement the data communication
between different nodes and uses CUDA to conduct
stream operations on GPUs. Alghabi et al. [10]
first introduced the concept of stateful stream data
processing on a node with multiple GPUs. Nguyen
et al. [63] considered the scalability with the
number of GPUs on a single node, and developed
a GPU performance model for stream workload
partitioning in multi-GPU platforms with high
scalability. Chen et al. [20] proposed G-Storm,
which enables Storm [6] to utilize GPUs and can
be applied to various applications that Storm has
already supported.

6.3 FPGA-Enabled Stream Processing

FPGAs are programmable integrated circuits
whose hardware interconnections can be configured
by users. Due to their low latency, high energy
efficiency, and low hardware engineering cost,
FPGAs have been explored in various application
scenarios, including stream processing.

Hagiescu et al. [30] first elaborated challenges
to implementing stream processing on FPGAs
and proposed algorithms that optimize processing
throughput and latency for FPGAs. Mueller et
al. [60] provided Glacier, which is an FPGA-
based query engine that can process queries on
streaming data from networks. The operations in
Glacier include selection, aggregation, grouping,
and windows. Experiments show that using FPGAs
helps achieve much better performance than using
conventional CPUs. A common limitation of
an FPGA-based system is its expensive synthesis
process, which takes a significant time to compile
the application into hardware designs for FPGAs.
This makes FPGA-based systems inflexible in
adapting to query changes. In response, Najafi
et al. [61] demonstrated Flexible Query Processor
(FQP), an online reconfigurable event stream query
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processor that can accept new queries without
disrupting other queries in execution.

6.4 Remarks

Existing systems usually involve heterogeneous
processors along with CPUs. Such heterogeneity
opens up both new opportunities and poses
challenges for scaling stream processing. From the
above discussion, it is clear that both GPUs and
FPGASs have been successfully applied for scaling up
stream processing. FPGAs have low latency and are
hardware configurable. Hence, they are suitable for
special application scenarios, such as a streaming
network.

7 System Design Requirements

In 2005, Stonebraker et al. [78] outlines eight
requirements of real-time data stream processing.
Since then, tremendous improvements have been
made thanks to the great efforts from both industry
and the research community. We now summarize
how hardware-conscious optimization techniques
mitigate the gap between DSPSs and requirements
while highlighting the insufficiency.

Most DSPSs are designed with the principle
of “Keep the Data Moving” [78], and hence
aim to process input data “on-the-fly” without
storing them. As a result, message passing
is often a key component in the current
DSPSs. To mitigate the overhead, researchers
have recently attempted to improve the cross-
operator communication efficiency by taking
advantage of the latest advancement in network
infrastructure [38], compression using hardware
accelerator [66], and efficient algorithms by
exploiting new hardware characteristics [58]. Going
forward, we expect more work to be done for
hardware-conscious stream I/O optimization.

Handling out-of-order input streams is relevant
to both the Handle Stream Imperfections and
Generate Predictable Outcomes [78] requirements.
In real-time stream systems where the input data
are not stored, the infrastructure must make
provision for handling data that arrive late or are
delayed, missing or out-of-sequence. Correctness
can be guaranteed in some applications only if time-
ordered and deterministic processing is maintained
throughout the entire processing pipeline. Despite
the significant efforts, existing DSPSs are still
far from ideal for exploiting the potential of
modern hardware.  For example, as observed
in a recent work [104], the same DSPS (i.e.,
StreamBox) delivers much lower throughput on
modern multicore processors as a result of enabling
ordering guarantees.

The state management in DSPSs is more
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related to the Integrate Stored and Streaming
Data [78] requirement. For many stream processing
applications, comparing the “present” with the
“past” is a common task. Thus, the system must
provide careful management of the stored states.
However, we observe that only a few related studies
attempt to improve state management efficiency
levering modern hardware [51]. There are still many
open questions to be resolved, such as new storage
formats, indexing techniques for emerging hardware
architectures and applications [29, 101]. New
media applications such as live audio streaming
services [91] also challenge existing systems in terms
of new processing paradigms.

The  Partition and  Scale  Applications
Automatically [78] requires a DSPS to be able
to elastically scale up and down in order to
process input streams with varying characteristics.
However, based on our analysis, little work has
considered scaling down the processing efficiently
(and easily scaling up later) in a hardware-aware
manner. A potential direction is adopting a server-
less computing paradigm [13] with the help of novel
memory techniques such as Non-Volatile Memory
(NVM) into DSPSs. However, questions such as
how to efficiently manage the partial computing
state in GPUs or FPGAs still remain unclear.

The proliferation of high-rate data sources has
accelerated the development of next-generation
performance-critical DSPSs.  For example, the
new 5G network promises blazing speeds, massive
throughput capability, and ultra-low latencies [2],
thus bringing the higher potential for performance
critical stream applications. In response, high-
throughput stream processing is essential to
keeping up with data streams in order to satisfy
the Process and Respond Instantaneously [78]
requirement. However, achieving high-throughput
stream processing is challenging, especially when
expensive windowing operations are deployed. By
better utilizing modern hardware, researchers and
practitioners have achieved promising results. For
example, SABER processes 79 million tuples per
second with eight CPU cores for Yahoo Streaming
Benchmark, outperforming other DSPSs several
times [7]. Nevertheless, current results also show
that there is still room for improvement on a
single node, and this constitutes an opportunity for
designing the next-generation DSPSs [99].

Two requirements including Query using SQL
on Streams and Guarantee Data Safety and
Awvailability are overlooked by most existing
HW-conscious optimization techniques in DSPSs.
In particular, how to design HW-aware SQL
statements for DSPSs, and how best to guarantee

SIGMOD Record, December 2019 (Vol. 48, No. 4)

data safety and system availability when adopting
modern hardware, such as NVM for efficient local
backup and high-speed network for remote backup,
remain an open question.

8 Conclusion

In this paper, we have discussed relevant
literature from the field of hardware-conscious
DSPSs, which aim to utilize modern hardware
capabilities for accelerating stream processing.
Those works have significantly improved DSPSs to
better satisfy the design requirements raised by
Stonebraker et al. [78]. In the following, we list some
additional advice on future research directions.

Scale-up and -out Stream Processing. As
emphasized by Gibbons [25], scaling both out
and up is crucial to effectively improving the
system performance. In situ analytics enable data
processing at the point of data origin, thus reducing
the data movements across networks; Powerful
hardware infrastructure provides an opportunity
to improve processing performance within a single
node. To this end, many recent works have
exploited the potential of high-performance stream
processing on a single node [45, 57, 98]. However,
the important question of how best to use powerful
local nodes in the context of large distributed
computation setting still remains unclear.

Stream Processing Processor. With the wide
adoption of stream processing today, it may be
a good time to revisit the design of a specific
processor for DSPSs. GPUs [45] provide much
higher bandwidth than CPUs, but it comes with
larger latency as tuples must be first accumulated
in order to fully utilize thousands of cores on
GPU; FPGA [47] has its advantage in providing
low latency, low power consumption computation
but its throughput is still much lower compared to
GPUs. The requirement for an ideal processor for
stream processing includes low latency, low power
consumption, and high bandwidth. On the other
hand, components like complex control logic may
be sacrificed as stream processing logic is usually
predefined and fixed. Further, due to the nature of
continuous query processing, it is ideal to keep the
entire instruction set close to processor [103].
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ABSTRACT

We present JedAl, a new open-source toolkit for end-
to-end Entity Resolution. JedAl is domain-agnostic
in the sense that it does not depend on background ex-
pert knowledge, applying seamlessly to data of any do-
main with minimal human intervention. JedAl is also
structure-agnostic, as it can process any type of data,
ranging from structured (relational) to semi-structured
(RDF) and un-structured (free-text) entity descriptions.
JedAl consists of two parts: (i) JedAl-core is a library
of numerous state-of-the-art methods that can be mixed
and matched to form (thousands of) end-to-end work-
flows, allowing for easily benchmarking their relative
performance. (ii) JedAl-gui is a user-friendly desktop
application that facilitates the composition of complex
workflows via a wizard-like interface. It is suitable for
both lay and power users, offering concrete guidelines
and automatic configuration, as well as manual config-
uration options, visual exploration, and detailed statis-
tics for each method’s performance. In this paper, we
also delve into the new features of JedAl’s latest version
(2.1), and demonstrate its performance experimentally.

1. INTRODUCTION

Entity Resolution (ER) aims to detect different
entity profiles that describe the same real-world ob-
jects [4]. Tt is a core task for data integration, with
many applications that range from knowledge bases
to question answering [6]. Yet, the functionality of
the available ER systems is significantly restricted
by the format of the various data collections. We
can actually distinguish the existing systems into
those crafted for structured (relational) data that is
described by a well-defined schema, and those ap-
plying exclusively to semi-structured data that is
associated with loose, diverse schemata and resides
in XML/RDF repositories or SPARQL endpoints.

The latter category encompasses Link Discovery
frameworks, which are surveyed in [20]. LIMES!

"http://aksw.org/Projects/LIMES. html
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and Silk? are the most prominent representatives.
However, most of these tools implement only the
method(s) introduced by their creators, and/or are
suitable for power users, requiring the manual con-
figuration of matching rules, or a labeled dataset
for learning such rules in a supervised way [14]. An-
other drawback is that none of them is applicable to
structured data, while half of them lack a GUI [20].

A larger variety of tools is available for structured
data. A thorough list of 15 commercial and 18 non-
commercial systems (such as Febrl® and Dedoop?) is
analyzed in [15]. Most of them, though, suffer from
one or more of the following problems: they cover
the ER pipeline partially, they constitute stand-
alone systems with a limited variety of methods, or
they are exclusively meant for power users, provid-
ing insufficient guidelines on how to perform ER ef-
ficiently and effectively [15]. Magellan [16] resolves
these issues, offering various blocking and match-
ing methods. However, it is restricted to Record
Linkage over relational data, lacks a GUT (it merely
offers a command-line interface) and requires heavy
user involvement; its goal is actually to facilitate the
development of tailor-made methods for the data at
hand. Similarly, heavy user involvement is required
by the crowd-sourcing systems Corleone [11] and
Falcon [5], which also address ER in an end-to-end
manner through various efficiency techniques.

To overcome these drawbacks, we developed the
Java gEneric DAta Integration® toolkit (JedAl
for short), aiming to facilitate researchers, practi-
tioners and lay users in applying ER solutions to
any type of data. At its core lies the end-to-end
ER workflow of Figure 1, which covers both Dirty
ER (Deduplication) and Clean-Clean ER (Record
Linkage). JedAl conveys one of the largest libraries

“http://silkframework.org
3https://sourceforge.net/projects/febrl
‘https://dbs.uni-leipzig.de/dedoop
Shttp://jedai.scify.org
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Figure 1: The end-to-end workflow for Entity Resolution implemented by JedAl.

with state-of-the-art ER methods, while being one
of the few ER systems that is suitable even for lay
users, providing an intuitive GUI. In more detail,
JedAl has the following advantages:

1) Structure-agnostic functionality. JedAl applies
uniformly to structured, semi-structured and un-
structured (free-text) data.

2) Domain-agnostic functionality. All methods
implemented by JedAl apply to data from any do-
main, ranging from homogeneous census, customer,
product and bibliographic data to heterogeneous
Knowledge Bases. The only requirement is that
their entities contain string-dominated values.

3) High time efficiency. JedAl offers the largest
variety of blocking and block processing methods.
No other toolkit exploits the benefits of schema-
agnostic blocking, which minimizes user involvement,
while maximizing recall [22]. Also, no other toolkit
includes the Block and Comparison Cleaning steps,
which are indispensable for enhancing the time ef-
ficiency of ER by orders of magnitude [26]. JedAl
also uses GNU Trove® for minimizing its memory
footprint. This is done by operating on primitive
data types instead of objects. E.g., collections of
integer values are handled through the 4-byte int
type instead of the 16-byte Integer objects, thus
occupying up to 75% less memory. This also re-
duces the running time by more than 50% when
compared to native Java [28].

4) Hands-off functionality. JedAl couples every
implemented method with a default configuration
of its internal parameters. Thus, neither manual
parameter fine-tuning nor expert knowledge are re-
quired for building an end-to-end ER workflow; users
simply select one or more methods per step.

5) Learning-free functionality. None of the im-
plemented methods requires a labelled dataset for
its training. Their default configuration renders
them directly applicable to any data. Labelled data
in the form of all true matches in a dataset (i.e.,
positive instances) are only required for evaluating
the performance of a method or workflow and for
fine-tuning its configuration parameters. In con-
trast, the learning-based methods require a labelled
dataset for their operation, i.e., in order to learn
their blocking or matching model. This labelled
dataset includes not only the positive instances con-
sidered by JedAl, but also a carefully selected sam-
ple of non-matches (i.e., negative instances). The

Shttps://bitbucket.org/trovedj/trove
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Figure 2: JedAl’s architecture.

relative number of positive and negative instances
as well as their representativity affects significantly
the performance of the learned model. No such re-
strictions apply to JedAl’s learning-free methods.

Most importantly, JedAl’s learning-free methods
optimize their performance by fine-tuning their in-
ternal parameters, which are generic in the sense
that they are independent of the data at hand. In
contrast, the features of learning-based methods are
domain or dataset-specific, typically requiring heavy
human intervention for their definition. Note also
that JedAl’s learning-free methods are inherently
crafted for highly noisy and heterogeneous data [24]:
to address possible errors in attribute values, their
domain-agnostic functionality considers all values in
each entity profile rather than relying on a particu-
lar (set of) attribute(s).

JedAl has been presented as a demo to two dif-
ferent communities, namely Semantic Web [27] and
databases [28]. In this work, we present its struc-
ture and characteristics in more detail, introduce
the new features of version 2.1, and provide exper-
imental evidence of its performance over real data.

The rest of the paper is structured as follows:
Section 2 delves into JedAl’s architecture, Section 3
elaborates on the new features in version 2.1, Sec-
tion 4 presents experiments that highlight the po-
tential of JedAl, and Section 5 concludes the paper
along with directions for future work.

2. ARCHITECTURE

JedAl’s architecture appears in Figure 2. It is
modular so that it can be easily extended by expert
users in the future. Every component implements
a simple (Java) interface such that every new class
(algorithm) implementing it can be seamlessly added.
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JedAl consists of two parts: (i) JedAl-core”, the
back-end that essentially constitutes a library of
state-of-the-art methods, and (ii) JedAl-gui®, the
front-end that facilitates the use of the library. Be-
low, we describe each part in detail.

2.1 JedAl-core

Figure 1 depicts the workflow implemented by
JedAl-core, which consists of the following eight steps:

1) Data Reading loads from the disk into main
memory the data collection(s) to be processed along
with the respective golden standard. The follow-
ing data formats are supported: CSV, XML, OWL
and RDF files as well as relational databases and
SPARQL endpoints. Any mixture of these formats
is possible in case of Clean-Clean ER. This is made
feasible by transparently converting entities of any
format into a flat name-value pairs model.

2) Schema Clustering is an optional step that

groups together syntactically similar attributes, which

share similar names and/or values. Unlike Schema
Matching, this step does not seek semantically iden-
tical attributes (e.g., “place” and “location”). In-
stead, it aims to improve the performance of the
next steps by raising precision significantly with no
impact on recall [28]. Three methods are currently
supported, Attribute Value Clustering, Attribute
Name Clustering, Attribute Holistic Clustering [23],
but at most one of them can be added in a workflow.
They can be combined with any technique offered
by the Text Processing component (see Figure 2)
for comparing aggregations of strings. All pairs of
attributes with a similarity above a% of the maxi-
mum similarity for either attribute are placed into
the same cluster [29].

3) Block Building clusters similar entities into blocks

so as to drastically reduce the candidate match space
and to cut down on the running time. JedAl in-
cludes the nine methods in Figure 3, where every
edge A — B denotes that method B is built on top
of A, using the same core structures in a different
way. For more details on the internal functional-

"Code available under Apache License V2.0 at: https:
//github.com/scify/JedAIToolkit

8Code available under Apache License V2.0 at https:
//github.com/scify/jedai-ui.
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Reciprocal Cardinality Node Pruning (ReWNP)

Node Pruning (ReCNP)

Figure 4: Comparison Cleaning methods.

ity of each method, please refer to [22]. All meth-
ods operate in a schema-agnostic fashion, extracting
several signatures from every entity to place it into
multiple blocks. The resulting redundancy yields
high recall at the cost of low precision [4, 22].

4) Block Cleaning is an optional step that im-
proves time efficiency by cleaning the original set of
overlapping blocks from redundant and superfluous
comparisons; the former are repeated across differ-
ent blocks, while the latter involve non-matches [6,
22]. This step includes three complementary meth-
ods that operate at the level of entire blocks: Block
Purging, Block Filtering, Block Clustering [8, 25].

5) Comparison Cleaning is another optional step
that targets superfluous and redundant comparisons.
Unlike Block Cleaning, though, it operates at the
finer level of individual comparisons, offering a more
accurate functionality at a higher computational
cost. This step includes the ten methods that are
depicted in Figure 4, where every edge A — B de-
notes that method B extends method A. Most of
them are Meta-blocking techniques, described in [6,
26]. Only one of them can be selected, as they are
competitive with each other.

6) Entity Matching conveys two schema-agnostic
methods that carry out all comparisons in the fi-
nal set of blocks: Group Linkage [21] and Profile
Matcher, a custom approach that aggregates all at-
tribute values of an entity into a common represen-
tation. Both methods can be combined with a large
variety of graph and bag representation models and
several associated similarity metrics [10] that are
implemented by the Text Processing component (see
Figure 2). This step yields a similarity graph, where
every node corresponds to an entity and a weighted
edge connects every pair of compared entities.

7) Entity Clustering partitions the nodes of the
similarity graph into equivalence clusters such that
every cluster contains all entity profiles correspond-
ing to the same real-world object. For Dirty ER,
this step implements the seven most efficient state-
of-the-art methods evaluated in [13]. For Clean-
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Clean ER, it offers the prevalent method in the lit-
erature, namely Unique Mapping Clustering [18].
8) Ewaluation estimates the performance of the
end result with respect to the golden standard that
was specified in Step 1. To this end, it reports a se-
ries of measures for effectiveness and time efficiency.
This step also includes Data Writing, which stores
intermediate or end results into any of the sup-
ported data formats. In case a structured format
is selected (CSV or relational database), the out-
put retains the original entity ids. When selecting
a semi-structured format (XML, RDF or SPARQL
endpoint), the user has to specify the URI prefix, in
case it is not available, i.e., when the original data
were structured. To store the output to databases
or SPARQL endpoints, the user should also provide
the necessary credentials, if applicable, along with
the table and the dataset namespace, respectively.
Regarding the use of optional steps, Schema Clus-
tering is indispensable for heterogeneous data sources
that involve a large number of noisy attributes. In
these settings, it reduces the computational cost of
Block Building and provides useful information for
Comparison Cleaning and Entity Matching. Block
Cleaning is indispensable for block collections that
exhibit a Zipf distribution, where the larger a block
size is, the less blocks correspond to it. Compari-
son Cleaning should be used in all cases, at least for
eliminating all redundant comparisons at no cost
in recall via Comparison Propagation. In case of

redundancy-positive blocks, a Meta-blocking approach

should be used to drastically reduce the computa-
tional cost. The exact method that should be se-
lected for every optional step depends on the data
at hand, as there is no clear winner among them.

2.2 JedAl-gui

This desktop application conveys a user-friendly
wizard that allows for building ER workflows in
a straightforward way, simply by selecting among
the available methods per workflow step. A unique
characteristic is that it offers three configuration op-
tions that are suitable for both expert and lay users:

1) The default configuration associates every avail-
able method with recommended parameter values
that consistently achieve high performance, as ver-
ified through an extensive experimental study [26].

2) The manual configuration leverages the Docu-
mentation component of JedAl-core (see Figure 2),
which enriches every method with a JSON file that
provides information about its parameter configu-
ration: the name and a short description of each
parameter, the type of values it receives (e.g., an in-
teger or real number), the range of acceptable values
as well as its recommended default value. JedAl-gui
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presents this information to the user in the form of
tooltips that pop-up in the configuration windows.

3) The automatic configuration currently accom-
modates two established approaches [1]: (i) grid
search exhaustively applies to each parameter a set
of reasonable settings that have been determined
experimentally [26], or are typically used by experts
in practice. (ii) random search iteratively tries ar-
bitrary configurations that lay within the range of
acceptable values for each parameter. Both ap-
proaches apply to individual methods and entire
workflows. In the latter case, two operations are
supported: (i) holistic configuration, where all pa-
rameters of all methods in a workflow are simultane-
ously optimized, and (ii) step-by-step configuration,
where the parameters of each method are gradually
optimized, independently of the others, following
the workflow execution order.

To make the most of these options, JedAl-gui sup-
ports a workbench functionality. The evaluation
window summarizes the performance of all exper-
iments, enabling users to investigate the impact of
parameter fine-tuning on the quality of results. This
applies to all possible levels of granularity — from
one or more parameters in a particular method to
one or more methods in an entire ER workflow. The
workbench functionality also facilitates the perfor-
mance evaluation of the >10,000 different workflows
that can be derived from the combination of the
available methods per workflow step.

Another major characteristic of JedAl-gui is the
data exploration functionality. After specifying the
data to be processed, the user is able to go through
the golden standard and the corresponding entity
profiles, observing their properties as well as the
level of noise and heterogeneity they contain. By
the end of a workflow execution, the user can also
examine the equivalence clusters that have been
formed, assessing the quality of the results.

3. NEW FEATURES IN VERSION 2.1

The new JedAl version, 2.1, extends both JedAl-
core and JedAl-gui. The latter is enriched with a
hierarchically-structured benchmark screen, which
is a crucial feature for the workbench functionality,
as it allows users to review all aspects of perfor-
mance per method. In this way, users can identify
the weak link in an end-to-end workflow and as-
sess whether a better parameter configuration is re-
quired or it should be substituted by another method.

Another important new feature is the command-
line interface that has been added to JedAl-core.
This allows developers to easily test changes made
in the implementation of a method and to evalu-
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ate new methods in the context of an end-to-end
workflow. It also facilitates users to test JedAl on a
server, exploiting much higher computational power
than commodity hardware.

Additionally, we altered the way Block Building
is handled by both the command-line interface and
JedAl-gui. Instead of selecting a single method, they
are now able to combine the results of multiple ap-
proaches. In this way, we satisfy a user requirement,
which was articulated by businesses that applied
JedAl to incomplete or noisy data. As an exam-
ple, consider a customer database that abounds in
profiles with missing or erroneous information. Ap-
plying a single block building technique, such as
bigram blocking, yields a set of blocks with low lev-
els of redundancy. This means that the block co-
occurrence patterns for matching entities are scarce,
downgrading the performance of Block and Com-
parison Cleaning methods, which are crucial for de-
riving high quality candidate matches [26]. To lever-
age their performance, we can apply them to the
union of blocks formed by two or more block build-
ing methods (e.g., bigram and trigram blocking),
which provides much denser co-occurrence patterns.

Another user requirement was to update JedAl’s
output. In version 2, it simply comprised equiva-
lence clusters of matching entities, without provid-
ing any evidence for the degree of similarity. As
a result, the end result of JedAl could not be re-
fined by expert users or domain-specific applica-
tions that incorporate additional, contextual infor-
mation. This is now resolved in version 2.1, as each
pair of matching entities is associated with a confi-
dence score that indicates their profile similarity.

Finally, several new methods have been added in
JedAl-core, such as Correlation Clustering and chi-
squared weighting scheme for Comparison Cleaning.
We also integrated the results of Schema Cluster-
ing into Comparison Cleaning and Entity Match-
ing. As indicated in [29], evidence from attribute
clusters, such as entropy, enhances significantly the
weights assigned to entity pairs in the sense that
it facilitates the distinction between matching and
non-matching ones. The same principle has been
incorporated into Entity Matching, weighting the
contribution of n-grams to the overall pair similarity
according to the corresponding attribute clusters.

4. EXPERIMENTS

We now evaluate the performance of JedAl with
respect to the state-of-the-art in the literature. To
this end, we use the four real-world, structured,
Clean-Clean ER datasets that were introduced in
[17]. Their technical characteristics are listed in
Table 1. Note that D; and D entail product data,
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Dataset D1 Do D3 Dy
Source; Abt Amazon DBLP DBLP
Sources Buy | Google Pr. ACM | Scholar
Entities; 1,076 1,354 2,616 2,516
Entitiesy 1,076 3,039 2,294 | 61,353
NVP; 2,568 5,302 10,464 10,064
NVP, 2,308 9,110 9,162 | 198,001
Duplicates 1,076 1,104 2,224 2,308
Cartesian Pr. || 1.16-10° 4.11-10% | 6.00-106 | 1.54-108

Table 1: Dataset technical characteristics.
NVP stands for attribute name-value pairs.

while D3 and D, involve bibliographic data.

We applied the following workflow to all of them:
Token Blocking for Block Building, Block Purg-
ing with size constraints along with Block Filter-
ing for Block Cleaning, Cardinality Node Pruning
(CNP) for Comparison Cleaning, Profile Matcher
for Entity Matching and Unique Mapping Cluster-
ing (UMC) for Entity Clustering. This workflow
involves five parameters: (i) the maximum block
size (Block Purging), (ii) the ratio of retained blocks
(Block Filtering), (iii) the weighting scheme (CNP),
(iv) the representation model in combination with
the similarity metric (Profile Matcher), and (v) the
minimum similarity for a pair of matches (UMC).

To explore the potential of this workflow, we fine-
tuned these parameters in three ways: (i) step-
by-step random configuration, where we used the
methodology of [26] for independently optimizing
each method until CNP? and the F-Measure for op-
timizing the last two methods, (ii) holistic random
configuration, whose goal is to maximize the overall
F-Measure, and (iii) step-by-step grid configuration,
where we used the same criteria as the first case. We
compare these configurations against three state-of-
the-art domain-specific, learning-based systems: (i)
COSY, which is a commercial system!? that achieves
the top performance in [17], (ii) DeepMatcher [19],
and (iii) Magellan [16]. For the last two, we con-
sider the top performance that is reported in [19]
among all configurations and dataset versions.

The F-Measure of all systems is reported in Fig-
ure 5(a). We observe that JedAl outperforms all
baseline systems over D; by 15% to 45%, depend-
ing on its configuration. For D3, the differences be-
tween all approaches are negligible (£1.5%), as they
all achieve practically perfect performance. For Do
and Dy, DeepMatcher achieves the top performance

9This methodology aims to maximize for each method
the measure PC(B)-RR(B, B'), where B stands for the
input blocks, B’ for the output ones, PC(B) for the
pairs completeness, i.e., the recall of blocks B, and

RR(B, B")=1- l\‘ﬁs’/”\l for the reduction ratio - the decrease

in pairwise comparisons when transforming B into B’.
Due to license restrictions, its name is not disclosed.
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Figure 5: (a) Effectiveness of 3 different configurations of a JedAl workflow in comparison with
3 state-of-the-art domain-specific systems, and (b) the corresponding running times of JedAl.

to a significant extent, due to the external con-
textual information that is encapsulated in its fea-
tures (i.e., word embeddings). JedAl is very close
to COSY and outperforms Magellan to a significant
extent over Do, and vice versa over Dy.

It is worth associating these measurements with
the corresponding time efficiency of each system.
To measure JedAl’s running time, we used a lap-
top with an Intel i7-4710MQ @ 2.50GHz, running
Ubuntu 18.04.3 LTS and Java 8. We applied each
configuration to every dataset'!, allocating 1 GB
of RAM and performing 10 iterations with a clear
Java cache. The average running times appear in
Figure 5(b). We do not report the time perfor-
mance of the baseline systems, as they all rely on
manually-defined blocks of high performance, which
are not reproducible, due to lack of details. We ob-
serve the high efficiency of JedAl’s configurations, as
they process every dataset within few seconds - less
than 2 seconds for Dy and D3, from 3 to 8 seconds
for Dy and from 8 to 14 seconds for D4y. Dy and
Dy are the most time consuming datasets, because
they involve higher levels of noise and, thus, a larger
number of candidate matches is processed. D, also
involves the largest number of entities by far. Sim-
ilar running times are reported in [17] for COSY,
while Magellan and DeepMatcher require few sec-
onds and few hours, respectively, for training their
matching models, after having performed blocking
with the help of an expert and labelling a consid-
erable number of comparisons [19], operations that
are very expensive in time. Therefore, we conclude
that JedAl is much faster than the last two systems.

Another advantage of JedAl over Magellan is its
ability to process Dirty ER datasets that Magel-
lan cannot handle. This is illustrated in Table 2,
which reports JedAl’s performance over two estab-
lished dirty datasets [3, 26]: Cora (1,295 entities,

"The corresponding code is available here:
https://github.com/scify/JedAIToolkit/tree/
mavenizedVersion/jedai-core/src/test/java/org/
scify/jedai/configuration/version2_1.

SIGMOD Record, December 2019 (Vol. 48, No. 4)

_ Cora __ CdDb
F-Measure | Run-time | F-Measure | Run-time
HRC 85.55% 514 msec 89.45% 266 sec
SRC 82.16% 294 msec 89.66% 155 sec
SGC 77.29% | 3,752 msec 89.23% 127 sec

Table 2: Performance of JedAl over two Dirty ER
datasets in combination with holistic random con-
figuration (HRC) and step-by-step random and grid
configuration (SRC and SGC, respectively).

17,184 pairs of duplicates) and CdDb (9,763 enti-
ties, 299 pairs of duplicates). We used the same sys-
tem and approach for the time measurements and
the same end-to-end workflow, except that UMC is
replaced by Connected Components Clustering (re-
call that UMC does not apply to Dirty ER). We
observe that JedAl achieves very high effectiveness,
combined with very high time efficiency. The only
exception is the high running time that is required
for CdDb (between 2 and 4.5 minutes). This is
caused by the large entity profiles, which involve
17.75 name-value pairs, on average (against 5.5 for
Cora), and, thus, yield high levels of redundancy
and a large number of candidate matches after CNP.

Combined with the results in Figure 5, we ob-
serve a trade-off between the holistic and the step-
by-step configurations. The former optimizes the
parameters of all methods in an end-to-end work-
flow simultaneously: in every iteration, a new ran-
dom, but valid value is assigned to each internal
parameter and the iteration achieving the highest
F-Measure is selected as optimal. As a result, holis-
tic random configuration is crafted for identifying
the global maximum, unlike the step-by-step con-
figurations, which optimize every workflow step in-
dependently of the subsequent ones and, thus, are
prone to confining themselves in local maxima. Yet,
step-by-step configurations yield very low running
times, because every method is fine-tuned to min-
imize its computational cost for the best possible
effectiveness. In contrast, holistic random config-
uration consistently exhibits a significantly higher
computational cost, since it exclusively considers
the F-Measure in its optimization. As a result, its
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blocking methods are configured to return a rela-
tively high number of candidate matches.

On the whole, these results indicate that with
proper configuration, JedAl produces learning-free,

domain-agnostic workflows with an effectiveness that

is comparable to, or better than, high-end, learning-
based, domain-specific ER solutions, while exhibit-
ing very low running times and limited memory con-
sumption across various domains.

S.

CONCLUSIONS

We presented JedAl, a user-friendly ER toolkit
that fulfills the two main challenges arising in data

integration [12]: the development of extensible, open-

source tools, and the provision of solutions that ap-
ply not only to structured, but also to semi- or even

unstructured data.

We described JedAl’s unique

characteristics and elaborated on its main compo-
nents, highlighting the new features in version 2.1.
We demonstrated the high performance of its work-
flows and verified that it is ideal for the development
phase of ER solutions, as it facilitates the identifica-
tion of the best end-to-end workflows for a particu-
lar dataset and use case. Yet, the resulting workflow
should be optimized for production systems.

In the future, JedAl will support pre-trained em-
beddings and will also allow for combining multi-
ple algorithms and/or representations models for
the pairwise comparisons during Entity Matching.
Special care will be taken to progressively evalu-
ate the performance of end-to-end workflows, a fea-
ture that is particularly useful when processing very
large datasets. In later versions, we intend to enrich
JedAl with support for supervised learning tech-
niques. To comply with its domain-agnostic foun-
dations, we will begin with approaches that leverage
generic, schema-agnostic features, like those in [2].
Upon successful completion of this extension, we
will also consider schema-based features and con-

straints, which call for fundamental changes for their

incorporation. Special care will be taken to add ac-
tive learning techniques from top crowd-sourced ER
approaches [7, 9], thus addressing the sensitivity to
cluster size for some of JedAl’s workflows.
Acknowledgements. This work was partially
funded by the EU project ExtremeEarth (825258).
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Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community.
I'm Marianne Winslett, and today we’re at the 2017 SIGMOD and PODS conference in Chicago. I have here with
me Anastasia Ailamaki, who’s a professor at the Swiss Federal Institute of Technology, better known as EPFL.
Before that, Natassa was a professor at Carnegie Mellon. She’s an ACM Fellow, a Sloan Fellow, and received the
European Young Investigator Award, as well as ten Best Paper awards. After this interview, she received the Edgar
F. Codd Innovation Award from the ACM SIGMOD in 2019, and the Nemitsas Prize in Computer Science from the

President of the Republic of Cyprus in 2018. Her Ph.D. is from the University of Wisconsin, Madison. So, Natassa,
welcome!
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You work in two very different areas, new hardware
and information management for the life sciences. Why
those two?

It started that way. I started as a student. I worked with
Yannis loannidis initially and then with David DeWitt
when Yannis moved back to Greece. The work that we
were doing with Yannis involved interaction with the
Soil Science group, at the time, in Wisconsin. We were
building a data management infrastructure for them.
There were very interesting challenges to meet. I liked
the topic, but then I ended up doing a Ph.D. on
architecture-conscious data management. 1 also
discovered my love for interdisciplinary science
through these two projects.

Afterwards, as an assistant professor, I always thought
that I should stop one of the two thrusts, but then it got
more and more interesting on both sides. On the
architecture side, we got a lot of interesting devices.
Hardware trends, as you know, go upward and onward
in many directions. There were (and still are) many
problems to solve, and I had a lot of students
interested. And on the other side, I also started working
with  astronomers, with mechanical engineers,
earthquake simulation people. Then, when I moved to
EPFL, 1 started talking with life scientists,
neuroscientists in particular, clinical and experimental.
The interesting problems just flourished. So, I ended
up working on both sides. It’s actually been very
motivating to me.

In your research on new hardware, how can you be
sure that your insights into hardware-related effects
aren’t an artifact of running student-quality software?

That’s a very good question. The quality of student
software varies wildly, and one cannot be fully sure
that it’s thoroughly tested. I get away with less work
testing it very closely on the experimental side of my
work: the numbers have to be generated and tested and
re-generated and corroborated in so many different
ways that the software that we write is mostly scripts
to test what’s going on and figure out whether, for
example, the breakdowns of time reveal any
bottlenecks and where in the machine the time is
attributed to and things like that. It’s not production
software, it’s not something intended for end users. It’s
meant to reveal how the software uses the underlying
hardware, and that we can test in many other ways than
just looking at the result and making sure it’s correct.

On the other hand, when we’re doing work for
scientific databases for actual users, there we have
more problems. There, a lot of times, we need the
involvement of an engineer to make sure that the
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software is tested correctly, does the right thing for the
user, is reliable and so on and so forth.

How have the changes in the hardware world affected
relational databases up until now?

The hardware world has been giving us quite a few
opportunities, taking away decision-making processes
at the hardware level, and giving us, essentially,
choice. The big example there is parallelism. We view
its different facets as they come up: instruction-level
parallelism, pipelining, now multi-core, multi-
threading, and so on and so forth. But it’s been pretty
much the same, explicit or implicit parallelism
methods revealing opportunities at the hardware level.

Now, databases, from the very beginning of time, have
been called to use this parallelism that’s available in
the hardware. We are, more or less, trying to go
towards the same general direction. However, it’s not
always the same because the details of how the
parallelism is implemented, implicitly or explicitly, are
important for the architecture of the system design that
we will end up with for the final product.

The other important aspect, however, that’s come up
very recently is heterogeneity in the hardware,
heterogeneity at the compute level, at the interconnect
level, and at the memory level, more recently. There,
we’re really not ready to use what’s available. I foresee
a very interesting future in hardware/software co-
design for databases, just because this is the first time,
really, we get something fundamentally new.

Hardware/software co-
design means that you
design software while

keeping in mind what the
hardware can do. And you
also, at the same time, have
the hardware get influenced
by the software when you
make design decisions at
that level.

Tell me more about that co-design.

Well, when you architect a database engine, you write
code for it. When someone tells you what’s going on
with the hardware, the first reaction is “why should I
care?” Right? Because there is an operating system in
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between. There is other software and lots of stuff
happening. You’re writing middleware; databases are
middleware. They’re going to run other applications,
but they’re not really that close to the hardware. People
will go as far as data placement, and then they will
stop there. They won’t automatically think that they
have to really consider what’s going on in the compute
subsystem or the high-level memory subsystem.

And they should!

Well, you and I may think that they should. And I
certainly didn’t think so until I realized that they
should, after reading and experimenting and realizing
that the operating system actually does very, very little
and for a very small part of the time. There’s really
nothing between the database system and the hardware
that impedes very good communication between the
two. But this communication can only be good, which
means the database system really taking advantage of
the hardware resources, if the database system actually
is aware of the hardware resources. So, co-design
means that you design both of the things at the same
time. Hardware/software co-design means that you
design software while keeping in mind what the
hardware can do. And you also, at the same time, have
the hardware get influenced by the software when you
make design decisions at that level.

But from our point of view, what we really need to do
is to, first of all, evaluate the current situation because
otherwise, you will run into a chicken and egg
problem, a vicious cycle: which is designed for what...
We want database software to be sort of general-
purpose. We don’t want to completely and deeply
vertically-integrate everything. But at the same time,
we also want the hardware to be able to run a vast
breadth of applications and not just database systems.
So, there are interesting tradeoffs to be solved.

I find very rewarding to work with micro-benchmarks:
look at really simple fundamental database operations,
and figure out, when they are executed (and they’re
executed very often), how they use the hardware
resources. I’ve been doing this with many generations
of databases and many generations of several different
brands of computers.

I need an example of a couple of those fundamental
database operations.

Like, for example, an index probe or even sorting for
larger scale or a join. These are the kinds of operations
that you can look at. Now, why are these important at
the micro-architecture level?
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Well, you may be executing a very short transaction
where an index probe is the main action, or you may
be executing two-megabyte-long code for one query
where the index probe is a millionth of what it does.
But in both cases, the processor grabs a bunch of
instructions, gets them through the pipeline, graduates
them, executes them, gives out the results, then grabs
the next bunch of instructions. So the index probe code
is as much as the window “seen” by the pipeline of
execution at the processor level.

What happens is there’s this window of instructions
that moves; that window is very, very small. By
basically measuring what’s going on with those micro-
benchmarks, I found it pretty educating to understand
how the interaction between the software and the
hardware works, how smoothly it works, whether the
processor was sitting there idle or whether it was
actually doing useful work.

So, co-design, to go back to your previous question,
means that we work out details in the architecture of
our engine keeping in mind how the hardware receives
both the instruction stream of the code that we write,
but also how it will be able to feed the high-level
caches with data in the memory subsystem, without
having to thrash them, and how we can also, ourselves,
sort and schedule those accesses today, the
instructions, so that we can achieve a better result.

The phrase co-design sounded exciting to me because
it sounds like we were gonna get some control over
what the hardware was gonna be like.

I had the same impression and the same hope. It
actually isn’t completely hopeless. There are a lot of
times where we come up with an intuition for an
algorithm, and we test the algorithm. That algorithm
works really well, but then there is a software part that
could be done a lot more efficiently if the hardware
could just implement a very inexpensive hint, for
example, that could alert the software that an event has
happened: the cache is full or something like that.

I have had meetings with people at hardware
companies, at Intel, for example, where we had these
discussions for a long time. There were actually very
reliable results that we were presenting, that they were
convinced that this would be a great thing. I don’t
know that any of these ever went to production
because the time from when one person, no matter how
high up the management hierarchy they are, realized
that this could be a great thing and the time that this
might make it to production overlap with different
generations in the company roadmap. So, priorities
change.
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I have good news for you. Andrew Chien, just a few
minutes ago, told us that we’re gonna get our own
SoCs (System on a Chip).

(jokingly) So, your own personal SoCs!

No. I mean personal to the database world. But I guess
it’s a long, slow process. You've probably been having
those discussions a long time.

So, getting database-specific systems on-chip, I think
it’s a great idea. But this is just one of the things that
will happen. I really believe we’re heading to more—
different futures that will all happen concurrently.

What are the other futures?

Database engines, transactional engines, will be
different, depending on the hardware that they’re
executing on. This is a realization that comes from the
necessity to move the line of abstraction, of
independence, if you will, from the hardware, from the
very low level that it’s at right now to a bit higher, to
obtain better utilization of the resources. It’s
sometimes simply impossible to do that, just because
the resources at this point don’t only give us more
parallelism, but hardware also gives us a lot of
heterogeneity. So, we get different kinds of cores on
the same chip. And in order to use them, we have to
really alter the architecture of the system.

Virtual and dynamic solutions only work up to a point.
Then they impose so much housekeeping overhead, so
long of a “case” statement, that you will not be able to
execute them efficiently.

1t sounds like it could be very painful for the database
companies to handle all these different types of
architectures unless they have a very clean way of...

It could be painful, but I view it more as an
opportunity. First of all, the research community is
going to be given a lot of new questions to answer.
Second, as I said, it’s a matter of raising the abstraction
line that divides the hardware-oblivious from the
hardware-conscious part of the system. So, it really
means that there will be multiple products coming out,
which means growing the market and getting more
people to really like databases. I see it really as an
opportunity.

For me it’s a fundamental change of scene because
heterogeneity has never been this accessible from us. [
have been doing work with CPUs and GPUs or CPUs
and NPUs for research long time ago, but the other
processors that weren’t the main CPU were treated like
the poor cousin that we would enlist just to see what
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happens, get a result, answer an academic question we
had posed ourselves but nobody really cared about in
the industrial world. Now, this changes a lot. I'm very
excited.

It’s exciting times!

What changes do you see on the horizon in the kinds of
applications that use relational databases? 1 mean,
new applications.

Changes in the form of an application being one way
now and changing in the future? I’m not sure I see any
changes whatsoever. What 1 see, however, is new
applications that come up, given that we are evolving,
in so many ways, the infrastructure that we build that
more and more things are possible. Now, for example,
more and more systems involve just-in-time access to
data. So, NoETL is a big wave. My startup is in that
domain. We access data that just arrived in multiple
formats, from multiple sources. We don’t access it
unless it’s asked for, unless it’s queried. That’s a big
change.

Applications are not ready for something like that. But
from the moment that this sinks in, for example, there
will be a lot more interesting opportunities at the
application level, to take advantage of this stuff. Apps
are too bound, now, to the ingest-then-query model.

What do you think of Spark Streaming and Storm as
ways to handle that data?

They’re great enablers of handling data on a
distributed infrastructure. They free the user from
having to worry about all of these things, like Hadoop
configuration and all that nitpicking that one has to go
through in order to make things work today at scale.

But since you have your startup, you must not feel that
they solve all the problems that matter for these new
applications.

As 1 said, they’re enablers. They’re mechanisms. It’s
up to the application or the middleware infrastructure
to solve the problem. It’s a tool. You have to use the
tool correctly to solve the problem. It’s not a
policymaker in the software.

How are we doing in the database world with respect
to energy efficiency?

We have been doing pretty well in investigating what
we can do. I don’t think we’ve hit home run yet in
understanding the relationship between database
management systems and energy efficiency because, in
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a lot of ways, it’s a moving target. We have industry
that is very qualified to actually do whatever they can
to drop the numbers in the power bills. We have
research people at all levels, at the architectural level,
even lower, and then on top of that, at the system level,
systems researchers, and even database researchers that
do work in the area. But all of this work is coming out
at the same time. We’re taking each other’s work and
trying to measure what’s happening in our world.

I don’t think we’ve hit home
run yet in understanding the
relationship between
database management
systems and energy

efficiency [...]

It’s an interesting and very dynamic research
environment right now. We haven’t really hit a home
run yet, I don’t think, even in understanding the
problem rather than solving it. Because the problem is
very close to numbers and quantifying such a problem
requires a very big breadth of numbers that are
constantly changing today.

But I think that we will have to solve this problem.
Eventually, the rest of the factors will converge. We
will know that unless we do something in the software
that’s fundamentally energy-conscious, these numbers
are not going to go down, the costs are not going to go
down. So, we will have to solve a more stable problem,
hopefully, in the near future. It’s certainly a very
interesting area.

You are already viewed as a rock star researcher in
Europe. I've been told, this week, that you are much
better than you think you are in every way, which
suggests that your fame is only going to increase. How
do you deal with the demands that come with this?

I’'m very happy to be here. I take demands as they
come. Whenever I receive a request to do some work
or give a talk, I evaluate it honestly. If I can do it, I do
it. If I can’t, I just can’t. The biggest problem that all of
us face at some point, very early on, even, is to be able
to say “no”. Right? I am very, very bad at that. I don’t
say as many “no””’s as I should and a lot of times it
takes a toll on my other work, that I have accepted too
much to do on the outside. But at the same time, I find
it very rewarding. Even for things that I regret
immediately having said “yes” to, then I realize that
there was a very positive side to this after I’ve done the
work. So, I’ve never really regretted doing something
even if it meant that it was a lot of work. But I am
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trying to train myself to say a bit more “no”’s. We
should all try to do that, I think.

Your research group is fairly large and you're known
as being hands-on with your students. How do you
scale up being hands-on to a group of a dozen people
orso?

I have twelve students, ten to twelve. The number
varies in that neighborhood. Then I have a few
engineers because now I’'m in Europe and European
Union projects demand engineering work. I have post-
docs and scientific collaborators, who come after their
Ph.D. Then, I have interns and masters students. It’s a
healthy group of 20 to 25 people. So, I organize
meetings with everybody on a weekly or bi-weekly
basis.

Individual?

Individually, depending on demands and depending on
my travel as well. So I end up seeing everyone at least
every two weeks. As is normal, I need to see mostly
the graduate students. They take priority. Then I see
the post-docs and the engineers as needed.

I am proud to say that this is a great group. The people
who apply and are admitted to EPFL, and the people
who I receive and end up in my group, they are top
people. My students are fantastic. Everybody, post-
docs, engineers, my administrative staff, is great. EPFL
is a very supportive place. They have a great
infrastructure, lots of resources. So, I find that my day-
to-day job there, at least from that point of view, is
very, very easy. I don’t see any trouble.

The male professors want me to ask you how they can
find more female Ph.D. students.

I don’t particularly try to get female Ph.D. students. I
always hire on a merit basis. One realization that I had
when I went to Europe is that intelligence is uniformly
distributed. I was worried that I wasn’t going to have
as good students as I had at CMU, just because I was at
EPFL. It turns out that I am getting just as good
students. But maybe male professors should realize
that intelligence is also uniformly distributed not only
geographically but also gender-wise. Giving equal
opportunities doesn’t come automatically. Perhaps we
need to work toward that direction.

That'’s interesting because 1 did not find that to be the
case at lllinois. I was the head of the awards
committee, and the awards winners were very
disproportionately female (considering how few
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women we had). So, I realized that, in fact, our
average female was smarter, significantly.

I believe that, but I would believe the same if you told
me that it was male. I think you are describing a
snapshot. We should just forget about gender. That has
been — if I have one big change that I wish it could just
magically happen is that, upon entrance into my
building of work, I could be a genderless person. My
life would be so much easier. I think that a lot of
people would agree with me, from both genders, that
that would be a very, very good idea. However, human
nature doesn’t allow that. So, we have to work with
what we have.

But as far as students are concerned, the one thing to
remember — talking about working with what we have
and getting a tight grasp of reality here — is that female
graduate students, on average, are way less confident
than male graduate students. That’s something that
comes from nature (it is the big word). I don’t know
how to specialize it more. But I want to work with the
result. I’ve always learned to look at the result of my
experiment and reverse engineer, not try to find the
source. Unless the problem is solvable, I’'m not
interested, and I think that this problem is not solvable
at the source. We need to treat the symptoms.

So, I receive this graduate student, who is way less
confident than she should be. And I take it upon myself
to actually work with her: channel her motivation the
right way; make her understand what she’s doing well,
what she doesn’t do well; and make sure that all her
capabilities, at the end of her tenure of five years,
whatever, in my group, reach the level that will allow
her to have a good job and a good life.

But wait a minute. That’s exactly what I’m trying to do
with the male students, as well. It’s just that some
people, male or female, are better at some things and
they’re not as good at some other things. As
professors, basically, our job is to have this person
across from us once a week (or more often), and to try
to help them surface their best qualities and apply them
to whatever it is they are passionate about.

1 like that summary. How do you get so much energy?

(jokingly) You mean like the energy efficiency we
were talking about?

No! No! No! No!
I understand. I think I’m naturally pretty energetic as a
person. I don’t know how I am like that. But I have a

very supportive environment. Not just at work. I
described that already, and I couldn’t have wished for
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a better environment. The first half of my career at
CMU, the second half of my career at EPFL; both
environments have been the most nurturing I could
have ever hoped for. I cannot emphasize this enough.

But also, my personal life. | have my ups and downs,
like everybody. I’ve had my troubles, like everybody.
But every time in my life there’s been a lot of good
stuff happening. So, I try to be appreciative, even when
things are not the best of what’s going on, and start
every day as a new opportunity. I know that sounds as
a cliché, but we do have to look around and see that
there’s great, great things going on. And not just at
work. Our families, our parents, our children, where
we live, what we can do during one single day...
There’s a lot of good stuff.

That’s a lovely answer!

[...] the beauty of computer
science is that the size and
time change the solutions to
the same problem. We can
actually innovate in
different ways solving
similar problems as our
predecessors, but really
pushing the envelope of
science, and of technology of
course, much further.

Do you have any other words of advice for fledgling or
mid-career database researchers?

I don’t know that I have so much advice, because
advice is something that you’re very sure is going to
work for the other person and that’s a very big crowd.
But actually, what worked for me was to try to look
back to the research that people did when things were
relatively simple at the infrastructure level. I can only
know how to be a systems researcher.

With systems, history is a very important education
factor. I found a lot of inspiration in the work that the
first database groups did. And I still do. I find myself
going back and looking at it very often; more often
than I read blogs. That’s one thing: drawing inspiration
from the mental ideas because the beauty of computer
science is that the size and time change the solutions to
the same problem. We can actually innovate in
different ways solving similar problems as our
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predecessors, but really pushing the envelope of
science, and of technology of course, much further.

If you magically had enough extra time to do one
additional thing at work that you're not doing now,
what it would be?

Two things. One would be I would give a lot more
talks to junior students, both undergraduate and
graduate. Not necessarily computer science talks but
general talks about what I feel a good technical talk
should be structured like. Stuff that colleagues of mine
do, as well, and I’'m very grateful that they do, but I
would like to also do some more service in that
direction.

Then at large, not within what I do right now, I would
like to get some education and perhaps even a degree
in a different science. I’ve always been fascinated by

SIGMOD Record, December 2019 (Vol. 48, No. 4)

architecture and material sciences, so [ would really go
toward that direction to get, maybe, a degree or
definitely some classes there.

Do you mean computer architecture or building
architecture?

No, building architecture.
Civil engineering. Cool.
Thank you very much for talking with us today.

Thank you very much. It was a pleasure.
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ABSTRACT

Approximately every five years, a group of database re-
searchers meet to do a self-assessment of our commu-
nity, including reflections on our impact on the industry
as well as challenges facing our research community.
This report summarizes the discussion and conclusions
of the 9th such meeting, held during October 9-10, 2018
in Seattle.

1. INTRODUCTION

From the inception of the field, academic database
research has strongly influenced the state of the
database industry and vice versa. The database
community, both research and industry, has grown
substantially over the years. The relational database
market alone has revenue upwards of $50B. On the
academic front, database researchers continue to be
recognized with significant awards. With Michael
Stonebraker’s Turing Award in 2014, the commu-
nity can now boast of four Turing Awards and three
ACM Systems Software Awards.

The strong progress the database research com-
munity has made in recent years is clearly evident.
Over the last decade, our research community pio-
neered the use of columnar storage, which is used in
all commercial data analytic platforms, whether or
not they are based on a relational engine. Database
systems offered as cloud services are widely used
and have witnessed explosive growth. Hybrid trans-
actional/analytical processing (HTAP) systems are
now an important segment of the industry. All
data platforms have embraced SQL-style APIs as
the predominant way to query and retrieve data. A
new generation of data cleaning and data wrangling
technology is being explored. Database researchers
have played an important part in influencing the
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evolution of streaming data platforms as well as
NoSQL systems.

Our achievements show that the state of our com-
munity is strong. Yet, in technology, the only con-
stant is change. Today, we are living in a data-
driven society where decisions are increasingly driven
by the insights gathered from analysis of relevant
data (“data is the new oil”). This societal trans-
formation places us squarely in the center of tech-
nology disruptions. However, the fact that data is
at the center of everything today also means that
the field has grown in breadth and that new chal-
lenges have arisen. Indeed, just in the last five years,
much has changed in industry and the research com-
munity. Technology trends are providing our com-
munity with an unprecedented opportunity to have
an even bigger impact in today’s data-driven world
than ever before.

In the Fall of 2018, the authors of this report met
in Seattle to identify and discuss research directions
for the community that seem especially promising,
considering the key developments that impact our
field. There is a long tradition of such meetings in
our community, held approximately every five years.
The first such meeting was held in conjunction with
VLDB 1988 [3] and the last one prior to Seattle took
place in Irvine in 2013 [2].

This report summarizes the findings from the Seat-
tle meeting of database researchers. We begin by
reviewing key technology trends that impact our
field. The central part of the report covers research
themes that we believe are especially promising. We
close by discussing steps the community can take to
be more impactful beyond solving the technical re-
search challenges.
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2. WHAT HAS CHANGED IN THE LAST
FIVE YEARS?

The transformation to data-driven decision mak-
ing has been in progress for many years. In fact, the
last report identified Big Data as our field’s central
challenge [2]. However, in the last five years, the
transformation has accelerated well beyond our pro-
jections, in part due to technological breakthroughs
in machine learning (ML) and artificial intelligence
(AI). Deep neural networks (DNNs) have led to un-
precedented progress in image analysis and natu-
ral language processing (NLP), among other disci-
plines. Reinforcement learning emerged as a power-
ful paradigm to complement traditional supervised
learning. Recently, models such as BERT hold the
promise of democratizing the use of natural lan-
guage as an interaction model for tasks in any enter-
prise, not just Internet companies with a rich infor-
mation corpus. The barrier to writing ML-based ap-
plications has been sharply lowered by widely avail-
able programming frameworks, such as TensorFlow
and PyTorch, as well as new FPGA, GPU, and
specialized hardware for use in private and public
clouds. The database community has a lot to offer
to ML users given our expertise in data discovery,
versioning, cleaning and integration. These tech-
nologies are critical for a machine learning platform
to derive insights from data. Execution of inference
and training workflows can potentially benefit from
query optimization techniques. The database com-
munity can also help shape how traditional SQL
querying functionality is seamlessly integrated with
machine learning. Moreover, with the increasing
availability of usage data, ML can be leveraged to
transform the database platform itself.

A related development has been the rise of data
science as a discipline that combines elements of
data cleaning, transformation, statistical analysis,
data visualization, and machine learning techniques.
Today’s world of data science is quite different from
the previous world of statistical tools such as SAS
and SPSS, and from traditional data transforma-
tion tools in the enterprise data integration world.
Notebooks have become by far the most popular in-
teractive environment. Our expertise in declarative
query languages can enrich the world of data science
by making it more accessible to domain experts, es-
pecially those without traditional computer science
background.

Our society has become increasingly concerned
about the state of data governance. This is a diffi-
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cult challenge as data moves within information sys-
tems as well as across organizational entities and na-
tional borders. Data governance requires that data
owners adhere to data privacy and other constraints
related to the movement of data. To meet this re-
quirement, data provenance and metadata manage-
ment technology are important ingredients. Data
governance has also led to the rise of confidential
cloud computing whose goal is to exploit cloud re-
sources while keeping the data encrypted. Beyond
data governance, another societal concern is ethical
and fair use of data. This concern impacts all fields
of computer science, but is especially important for
data management, which must enforce such policies.

The last report observed that “Cloud Comput-
ing has become mainstream” [2], and indeed, usage
of managed cloud data systems has grown tremen-
dously in the last five years. As an alternative to
provisioned resources, the industry now offers on-
demand resources that provide extremely flexible
elasticity, popularly referred to as serverless. For
analytics, the industry has converged on a data lake
architecture, which uses elastic compute services to
analyze data in cloud storage “on-demand”. The
elastic compute could be jobs on a Big Data system
such as Apache Spark, a traditional SQL data ware-
housing query engine, or an ML workflow. It oper-
ates on cloud storage with the network in-between.
This architecture disaggregates compute and stor-
age, so they can scale independently. These changes
have profound implications on how we design future
data systems.

Industrial Internet-of-Things (IoT), focusing on
domains such as manufacturing, retail, and health-
care greatly accelerated in the last five years, aided
by versatile connectivity, cloud data services, and
data analytics infrastructure. Its requirements have
further stress-tested our ability to do fast data in-
gestion and quickly discover insights with minimal
delay for real-time scenarios such as monitoring.
Their effectiveness also depends on efficient data
processing at the edge, including data filtering, sam-
pling, and aggregation.

Finally, there are significant changes in the hard-
ware landscape. With the end of Dennard scaling,
and the rise of compute-intensive workloads such
as DNN, a new generation of powerful accelera-
tors leveraging FPGAs, GPUs, and ASICs are be-
ing used. These technologies appear to be the only
viable approaches today to train big models. The
memory hierarchy continues to evolve with the ad-
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vent of a new generation of SSD and low-latency
NVRAM. Specialized interconnects as well as im-
provements in network bandwidth and latency con-
tinue to be remarkable. Beyond datacenters, the ad-
vent of 5G with ample bandwidth can reshape the
workload characteristics of data platforms. These
developments point to the need to leverage an in-
creasingly heterogeneous hardware landscape as we
rethink the architecture of the next generation of
database engines.

3. RESEARCH CHALLENGES

While we have made progress in some of the key
challenges articulated in the last report [2], many of
the difficult questions remain relevant today. The
changes described in the previous section present
us with new scenarios that deserve our considera-
tion as well. This report combines these two sets
of research challenges, organized into four subsec-
tions. The first subsection addresses challenges in
data science where our community can play a major
role. The second focuses on the emerging societal
concerns of data governance. The last two cover
the cloud data services and the closely related topic
of database engines. It should be noted that some
of the challenges cut across multiple themes, e.g.,
machine learning.

3.1 Data Science

The NSF CISE Advisory Council' defines data
science as a field that focuses on “the processes and
systems that enable the extraction of knowledge or
insights from data in various forms, either struc-
tured or unstructured ” Over the past decade, it has
emerged as a major interdisciplinary field and it will
become even more important in the future.

Data science is used to drive important decisions
in companies and discoveries in science. It is used
for one-off decision making as well as for track-
ing Key Performance Indicators (KPIs) over time.
From a technical standpoint, data science is about
the pipeline from raw input data through data in-
tegration and wrangling, to data analysis, data vi-
sualization, and finally insights.

Through the history of database systems, users
have extracted insights from their databases. They
have used complex SQL queries, online analytical
processing (OLAP), data mining techniques, and
statistical software suites. The modern data sci-
entist works in a different environment. Jupyter

"https://www.nsf.gov/cise/ac-data-science-
report/ CISEACDataScienceReport1.19.17.pdf
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Notebooks are the new de-facto standard, and data
scientists rely on a rich ecosystem of open-source li-
braries for sophisticated analysis, including the lat-
est ML techniques. They also work with data lakes
that hold structured and unstructured datasets with
varying levels of data quality — a significant depar-
ture from carefully curated data warehouses. Fur-
thermore, data science is fundamentally a multidis-
ciplinary field with deep integration with an ap-
plication domain, whether in science or industry.
These characteristics have created new requirements
for the database community to address, as discussed
below.

Data integration and wrangling: Data scientists re-
peatedly say that data integration and data wran-
gling is 80-90% of their challenge. These are prob-
lems the database community has worked on for
decades. Thus, it can bring a solid understanding
of the core challenges and known solutions. In the
past, we have focused much of our efforts on solving
“point problems”; e.g., algorithms for specific chal-
lenges such as entity resolution. Instead, we need
to devote more efforts on the end-to-end data-to-
insights pipeline, including understanding systems
that go all the way from raw data to an end-user’s
desired outcome, such as a visualization of the an-
swer to the user’s question, or a prediction by a
machine learning model.

Data context and provenance: Data scientists need
to understand the quality of the results that they
are getting from a data to insights pipeline. In tra-
ditional database applications, query results are as-
sumed to be correct, complete, and fresh. The data
is trusted because it was created by the same entity
that consumed it. In modern applications, correct-
ness, completeness, freshness, and trust cannot be
taken for granted. Consumers need to know the de-
gree to which these properties of their data hold and
to reason about their impact. This requires under-
standing the context of the incoming data and the
processes working on it. This is a classic data prove-
nance problem, which involves tracking, integrating,
and analyzing this metadata. Beyond explaining re-
sults, data provenance also enables reproducibility,
which is key to data science, although it is especially
difficult when data has a limited retention policy.

This is an area where we need to focus our efforts.

Data management in support of machine learning:
Data science pipelines require machine learning, in-
cluding the latest techniques such as deep learn-
ing. The database community needs to embrace
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this new type of workload. In addition to develop-
ing efficient methods for executing such workloads
(see Section 3.4), it needs to investigate declarative
programming paradigms to specify and optimize all
stages of machine learning pipelines (data discov-
ery, data preparation, and model building). The
management of models and machine learning exper-
iments is an area where our community can provide
rich support, including but not limited to model
versioning. Data provenance is also important in
machine learning, as it can help identify differences
between test data and training data that cause mod-
els to lose accuracy.

Fast Exploration: To support exploratory analyses
by data scientists, systems must provide interac-
tive response times over Big Data, since high la-
tency reduces the rate at which users make observa-
tions, draw generalizations, and generate hypothe-
ses. More research is needed for at scale visualiza-
tion and interactive query processing. Research is
also needed in developing methods that make cre-
ating and debugging complex data science pipelines
easier than writing code in an imperative language
like Python. This work also requires a change in the
database community conference culture, promoting
user studies that assess the impact of novel technol-
ogy on data scientists.

Modern data analysis and management, includ-
ing data science, continues to move to public clouds
where the data for analysis is drawn from data lakes.
This change has significant implications, as discussed
later in this report. Big Data, Data Science, and Al
have also led to more diverse applications that of-
ten do not fit well with the relational model. Data
management researchers should work on determin-
ing the right data models, query operators, storage
schemes, and optimizers for emerging data-intensive
applications. This requires participation in building
end to end systems and experimentation with user
applications.

Since the database research community has worked
on many facets of data-to-insights pipeline, we are
well positioned to have a big impact. However,
we must collaborate with other disciplines so that
our technological contributions are recognized and
adopted widely. The time has come for our commu-
nity to develop a data science agenda that builds
on our strengths, attracts broad participation, and
helps shape this emerging field.
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3.2 Data Governance

The data management, and indeed the entire com-
puter science community, has become socially aware.
As technology continues to impact society in more
profound ways, the database community must focus
more attention on the societal impact of the tech-
nology they develop.

Today, end-users generate data that becomes in-
put to many data-intensive applications. Some of it
is about people: our homes have become “smart”,
with sensors located in doorbells, thermostats, and
other appliances; virtual assistants have entered our
living rooms; medical records are digitized; and so-
cial media is publicly available and widely popu-
lar. Data-intensive applications that use these data
sources raise not only technical challenges but also
those of privacy and ownership. Data producers
have an economic and personal interest that the
data is used only in certain ways. For instance, they
might have licensed the use of their personal health
records for medical research, but not for military
applications. The European Union’s General Data
Protection Regulation (GDPR), which has gained
wide adoption beyond Europe, is directly related to
the issues of data privacy and data use. These top-
ics of data governance are discussed below.

Data use policy and data sharing: In industry, data
science pipelines are often complex and different
sub-teams work on different steps of the pipeline:
one team prepares the data; another builds models
on the data, and yet another team accesses the data
and models through interactive dashboards. Addi-
tionally, data science teams leverage multiple het-
erogeneous data sources in data lakes. The database
community needs to develop tools that support col-
laborations around data, including labeling, anno-
tating, exchanging, securing, discovering, and cap-
turing provenance of data. Such collaborations and
sharing must adhere to fine-grained access control
and auditing requirements to ensure data is used by
the right people for the right purpose. Data prove-
nance technology is needed to support auditing at
scale so that checks for legitimate usage can be im-
plemented. Finally, as data volumes grow, we need
to better techniques to compress data, move data
to cold storage, and choose data to discard.

Data Privacy: As we continue to aggregate data,
balancing the need for data privacy with analyt-
ical usage of such data for decision support has
emerged as a key challenge. Cryptographic tech-
niques as well as differential privacy have emerged
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as a foundation for much of the privacy work, in-
cluding in our community. However, it is still un-
clear in what way differential privacy may be em-
bedded in the database platforms effectively with-
out restricting the query surface significantly. Col-
laborations across organizations are also subject to
privacy constraints and require techniques such as
Multi-Party Computation.

Ethical data science: Machine learning models can
contribute to bias and discrimination. Activities
around surfacing and countering those problems have
gained traction in research and practice. The bias
often comes from the input data itself. Sometimes,
it comes from insufficiently representative data used
to train models. Our community can apply exper-
tise in data quality and data integration to help
address this problem. Responsible data manage-
ment has emerged as a new research direction where
the data management community has much to con-
tribute. A related challenge is identifying data de-
signed to misinform, e.g., on social media platforms.
Addressing the above challenge requires inferring
intent, as well as collaboration with the NLP, com-
puter vision, and other communities.

3.3 Cloud Services

The movement of workloads to the cloud has led
to explosive growth for cloud database services, which
in turn has led to substantial innovation, experi-
mentation, as well as new research challenges.

Challenges of new consumption models: The sim-

plest consumption model is Infrastructure-as-a-Service

(IaaS). This model is very flexible, but users must
handle all operational management of the database
system themselves. An emerging trend for such ser-
vices is to exploit innovations such as “spot pricing”
in the underlying IaaS services to optimize costs for
non-critical workloads. In contrast to laaS, man-
aged services, offered either by first-party cloud pro-
viders or third-party multi-cloud vendors, sharply
reduce operational complexity but provide less flex-
ibility. When managed services were introduced,
users paid for them by a provisioned capacity model.
Alternative consumption models have now emerged:
usage-based pricing as well as hybrid models that
support on-demand event-driven auto-scaling of com-
pute and storage. As we continue to move away
from pre-provisioned resources to on-demand elas-
tic infrastructure, including serverless, new chal-
lenges for state management arise. What will be the
best way to offer serverless database services with
the pay-as-you-go on-demand model? Such event-
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driven on-the-fly creation of data services will have
a significant impact on the architecture of the query
or the storage engines. Two other key difficulties for
users of cloud data services are the absence of SLAs
for cloud data services that go beyond availability
and the lack of transparency on how auto-scaling
and other choices affect the cost.

Challenges of cloud architecture: The cloud archi-
tecture raises unique opportunities and challenges
for innovative database system design:

e Disaggregation: An important characteristic
of cloud architectures is the use of very large
pools of commodity hardware that are subject
to hardware and software failures at scale. To
handle such failures, modern cloud databases
are increasingly decoupling storage and com-
pute for high availability, scalability, and dura-
bility. For example, all distributed data lake
platforms have been or are being rearchitected
with compute and storage services decoupled.
Disaggregation is key to enabling elastic com-
pute, but its ability to meet response time re-
quirements critically depends on caching effec-
tively, which is challenging due to the multiple
levels of memory hierarchy. It also depends on
supporting some minimal compute within the
storage service that can sharply reduce data
movement. (See also Section 3.4)

o Multi-tenancy: Unlike traditional environments
where resources are scarce and carefully pro-
visioned per workload, cloud-based infrastruc-
ture offers an opportunity to rethink databases
in a world with an abundance of resources that
can be pooled together for a set of workloads.
In such an environment, it is critical to sup-
port multi-tenancy to control costs and uti-
lization. This requires mechanisms to respond
swiftly and alleviate resource pressure as de-
mand causes local spikes. Telemetry can be
used to predict usage and take proactive mea-
sures. Over longer time frames, there are chal-
lenges of capacity management. The range
of required innovation here spans reimagining
database systems as composite single-tenant
and multi-tenant microservices, creating and
operating predictive models, developing mech-
anisms for agile response to resource demands,
reorganizing resources among active tenants
dynamically without impacting active applica-
tion workloads and ensuring tenants are iso-
lated from noisy neighbor tenants.
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e Hybrid cloud: In an ideal world, on-premise
data platforms would seamlessly draw upon
compute and storage resources available in the
cloud “on-demand”. There is a pressing need
to identify architectural approaches that make
it possible for on-premise data infrastructure
and cloud systems to take advantage of each
other instead of relying on “cloud only” or “on-
premise only”. As enterprises split their data
processing across on-premise systems and the
cloud, they need a single control plane for the
entire data estate.

e Fdge and cloud: IoT has resulted in a sky-
rocketing number of computing devices con-
nected to the cloud, in some cases only inter-
mittently. The limited capabilities of these de-
vices, characteristics of their connectivity (e.g.,
limited bandwidth for offshore devices, am-
ple bandwidth for 5G-connected devices), and
their data profiles will lead to new optimiza-
tion challenges for distributed data processing
and analytics.

Leveraging uniqueness of SaaS: Software-as-a-Service
(SaaS) applications need to be multi-tenant. But in
contrast to ad-hoc multi-tenancy, each tenant has
approximately or exactly the same database schema
(but no shared data) and the same application code.
One way to support multi-tenant SaaS applications
is to have all tenants share one database instance
with the logic to support multi-tenancy pushed into
the application stack. While this is simple to sup-
port from a database platform perspective, this ap-
proach makes customization (e.g., schema evolu-
tion), query optimization, and insulation from a
noisy neighbor harder. The other extreme approach
is to spawn a separate database instance for each
tenant. While flexible, this approach is not cost-
effective as it fails to take advantage of common-
ality among tenants. Yet another approach is to
pack tenants into shards with large tenants placed
in shards of their own. Such packing of tenants
into shards is nontrivial. Moreover, security con-
siderations may also constrain the specific architec-
ture that is chosen. Thus, there is a need to think
carefully about tradeoffs between design alterna-
tives in architecting SaaS and about functionality
that needs to be supported at the cloud database
infrastructure vs. implemented in the application
stack.

Multi data center issues: Cloud applications that

operate across multiple data centers, potentially ge-
ographically distant from each other, remain a key
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challenge for both analytics and active-active on-
line transaction processing (OLTP) workloads (see
details in Section 3.4). Some countries have data
sovereignty laws that make it illegal to move their
citizens’ data to another country’s data center. More
work is needed to understand how these consid-
erations impact data center replication and high
availability.

Auto-tuning: Cloud databases need to support a
diverse set of time-varying multi-tenant workloads,
and no one configuration tuning works well univer-
sally. Furthermore, the vastly expanded user base
of cloud databases lacks expert DBAs. Studies of
cloud workloads indicate that many cloud database
applications do not use best practices for configu-
ration settings, schema design, or data access code.
Thus, while auto-tuning has always been important,
for cloud databases it is of critical importance. For-
tunately, cloud systems’ telemetry logs are plenti-
ful and present a great opportunity to improve the
auto-tuning functionality of the database systems.
Machine learning may be helpful here as well.

Confidential cloud computing: Enterprises are con-
cerned about security and privacy of their data when
it moves into a public cloud. This has led to the
rise of confidential cloud computing, which makes
data visible only to the enterprise, so no security
lapse in the cloud infrastructure compromises its
privacy. The challenge is to enable this functional-
ity with an acceptable loss of performance. While
there has been progress in this area, a comprehen-
sive approach to confidential cloud computing is yet
to emerge and thus this remains a fertile research
area.

Opportunity for data sharing: The cloud offers a
unique opportunity for flexible data sharing. More
importantly, we need to define architectures for data
sharing idioms. In its most stringent form, data
sharing can be viewed as a variant of the multi-party
computation (related to confidential cloud comput-
ing described above). In its simplest form, it is
the ability to leverage public data sets along with
private data sets. We should explore other idioms
of data sharing between these extremes. A related
challenge is a scalable flexible search for data sets
and providing provenance and other related meta-
data that are crucial for data sharing.

Minimizing lock-in for cloud data services and

facilitating interoperability across multi-clouds will
benefit all users. Today, each public cloud is a
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“walled garden”, created using rich supporting tools
around data services. While important, there has
been little effort in facilitating multi-cloud either in
the industry or in the research community.

3.4 Database Engines

As mentioned earlier in the report, the last two
decades have witnessed significant changes that have
impacted the architecture of data platforms. One
change affecting the core database engines is the
rise of scalable distributed “document-stores”, which
support key-value look up and horizontal scaling.
Another is the evolution of the Hadoop ecosystem to
a more efficient Spark ecosystem for extract-trans-
form-load jobs (ETL) and support for relational ex-
ecution over such a runtime by leveraging query
processing techniques from database engines. New
memory-optimized data structures, compilation, and
code-generation have significantly enhanced perfor-
mance of traditional database engines. Main-memory
database techniques have become established in both
industry and research, often as part of HTAP sys-
tems. Another key achievement of the field are
highly scalable streaming systems that are widely
used. All data analytics engines have now imple-
mented column-oriented storage. The cloud has
reinvigorated work in geo-distributed replication, and
the industry has made significant progress on that
front. As mentioned earlier, the need for elastic
computation in cloud platforms has led to rearchi-
tecting database engines for disaggregated storage
and compute.

We now discuss the key themes related to the evo-
lution of database engines.

Heterogeneous computation: We see a clear trend
towards heterogeneous computation with the death
of Dennard scaling and the advent of new accelera-
tors introduced to offload compute. GPUs and FP-
GAs are available today, with the software stack for
GPUs much better developed than that for FPGAs.
Likewise, we see increasing deployments of RDMA.
The memory and storage hierarchy is also more het-
erogeneous than ever before. The advent of high-
speed SSDs has already had significant performance
impact and altered the traditional trade-offs be-
tween in-memory systems and disk-based database
engines. Engines with the new generation of SSDs
are destined to erode some of the key benefits of in-
memory systems. Furthermore, NVRAM is finally
becoming generally available, which might have sig-
nificant impact on database engines due to their
support for persistence and low latency. Embracing
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this new normal world of heterogeneous hardware
and re-architecting the database engine accordingly
will be one of the most important tasks for the com-
munity. We also need to explore what would be
an ideal hardware-software co-design that will best
support database engines. For example, a co-design
could help with asynchronously doing bulk lookup
of objects for queries. Thus, we expect database ar-
chitects to have an active agenda to take advantage
of disaggregation, recent and upcoming hardware
innovations, and to explore hardware-software co-
design.

Data lakes and modern data warehousing applica-
tions: The needs of traditional data warehousing
applications have expanded. They need to consume
data from a variety of data sources. They need to
transform the data and perform complex analyses
more quickly. These new requirements have a pro-
found impact on the design of core database engines
that support them. The community is in the mid-
dle of a transition from classical data warehouses to
a data-lake-oriented architecture for analytics. Al-
though popularized in the public cloud due to the
wide availability of scalable low-cost blob storage,
a data lake architecture is equally applicable for
on-premise systems. Instead of a traditional set-
ting where data is ingested into an OLTP store and
then swept into a data warehouse through an ETL
process, perhaps powered by a Big Data framework
such as Spark, the data lake is a flexible repository
that can ingest a variety of data objects. Subse-
quently, a variety of compute engines can operate
on the data, to curate it or execute complex SQL
queries, and store the results back in the data lake
or send it to other operational systems. Thus, data
lakes exemplify a disaggregated architecture. One
unique challenge of data lakes is scalable data dis-
covery. Therefore, data profiling, which provides a
statistical characterization of data, is of utmost im-
portance in data lakes. Data profiling is challenging
for data lakes, as profiling must have low latency de-
spite having to provide a statistical summary of very
large, heterogeneous, and possibly semi-structured
data sets. Other challenges include finding all data
relevant to a task quickly, e.g., identifying data that
is joinable with other relevant data sets after suit-
able transformations.

Leveraging approzimation: As the volume of data
continues to explode, we must seek techniques that
reduce latency or increase throughput of query pro-
cessing. For example, leveraging approximation for
fast progressive visualization of answers to queries
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over data lakes can help exploratory data analysis to
unlock insights in data. Data sketches have already
gone mainstream and are classic examples of effec-
tive approximations. Sampling is another tool that
can be used to reduce the cost of query processing.
However, the support for sampling in today’s Big
Data systems is quite limited and does not cater to
the richness of query languages such as SQL. Our
community has done much foundational work in ap-
proximate query processing, but we need a better
way to expose it in a programmer-friendly manner
with clear semantics.

Distributed transactions: Data management systems
are increasingly being distributed across multiple
machines both within a single region and across
multiple geographic regions. This has renewed in-
terest in industry and academia on the challenges of
processing distributed transactions. The increased
complexity and variability of failure scenarios, com-
bined with increased communication latency and
performance variability in distributed architectures
has resulted in a wide array of tradeoffs between
consistency, isolation level, availability, latency,
throughput under contention, elasticity, and scal-
ability. There is an ongoing debate between two
schools of thought: (1) Distributed transactions are
hard to process at scale with high throughput and
availability and low latency without giving up some
traditional transactional guarantees. Therefore, con-
sistency and isolation guarantees are reduced at the
expense of increased developer complexity. (2) The
complexity of implementing a bug-free application
is extremely high unless the system guarantees strong
consistency and isolation. Therefore, the system
should offer the best throughput, availability, and
low-latency service it can, without sacrificing cor-
rectness guarantees. This debate will likely not be
fully resolved anytime soon, and industry will of-
fer systems consistent with each school of thought.
However, it is critical that application bugs and lim-
itations in practice that result from weaker system
guarantees be better identified and quantified, and
tools be built to help application developers using
both types of system achieve their correctness and
performance goals.

Leveraging machine learning: Recent advances in
ML have inspired our community to reflect on how
some of hard data engine problems could use ML
to advance the state of the art. The most obvi-
ous such problems are in auto tuning. For example,
we can systematically replace “magic numbers” in
database systems with data-driven learning models
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and use them to auto-tune system configurations.
ML also provides new hope for progress in query
optimization, which has seen only minor improve-
ments in the last two decades. Although in principle
almost any component can potentially be improved
with ML, answers to some key questions are prereq-
uisites for success, such as availability of training
data, a well-thought software engineering pipeline
to support an ML component (debuggability is no-
toriously hard), and availability of the guard-rails
so that when test data or test queries deviate from
the training data and training queries, the system
degrades gracefully.

Support for machine learning in database engines:
As we briefly discussed in Section 3.1, modern data
management workloads include ML. This adds an
important, new requirement for database engines.
We must immediately address the challenge of ef-
ficiently supporting “in-database” ML. Today, this
is achieved by leveraging the traditional extensibil-
ity mechanisms of databases. However, as DNN
models become more popular and bigger, support-
ing efficient inferencing and training will require
database engines to leverage heterogeneous hard-
ware and support popular ML programming frame-
works. This evolution is still in its early stage.
Database engine architects need to work with ar-
chitects responsible for building ML infrastructure
using FPGAs, GPUs and specialized ASICs.

Benchmarking: Over the years, benchmarks tremen-
dously helped move forward the database industry
and the database research community. The tradi-
tional benchmarks (e.g., TPC- E, TPC-DS, TPC-
H) that the database community has developed are
good, but they do not capture the full breadth and
depth of our field. We need to reaffirm our com-
mitment to invest in benchmarking for the new ap-
plication scenarios and database engine architec-
tures. For example, without development of appro-
priate benchmarking and data sets, a fair compari-
son between traditional database architectures and
MUL-inspired architectural modifications to database
systems will be impossible. The community needs
new benchmarks that capture the needs of modern
workloads, in particular with respect to the velocity
and variety dimensions of Big Data, e.g., streaming
scenarios, data with skew, workloads with common
data transformations, and processing of new types
of data such as videos. While some benchmarks are
emerging in this space, much more remains to be
done. A closely related issue is that of poor prac-
tice of performance evaluation in publications. The
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selection of workloads, databases, and parameters
often lacks rigor. Moreover, only a simplistic aggre-
gate metric (average) is typically reported, instead
of providing important additional metrics such as
the variance.

SQL Standard: While the SQL Standard has been
a major benefit to the ecosystem, SQL implemen-
tations in different data systems still differ in se-
mantics. Our community must continue to push
towards making SQL a true standard. At the same
time, SQL may not be enough for supporting data
science applications and ML workloads. Therefore,
we need to investigate systems that combine rela-
tional algebra and linear algebra in a richer query
paradigm, potentially as extensions to SQL.

Two “holy grails” should continue to stay on our
agenda. First, we must always explore any novel
ideas to reduce the impedance mismatch between
application development and writing database quer-
ies. Second, we must continue to find ways to make
database systems less rigid (e.g., flexible schema
evolution) without significantly sacrificing their per-
formance.

4. COMMUNITY

The database community is in a healthy state
with stable numbers of submissions to our confer-
ences. Our flagship conferences are well attended by
academics and engineers from the industry. Never-
theless, the community continues to have great op-
portunities to improve, as discussed below.

End-to-end solutions in the hands of users: To in-
crease its impact, the database research community
should put more weight on developing (or partic-
ipating in the building of) full-fledged systems, as
well as use these systems and tools to help real users.
Incorporating the algorithmic innovations from our
community into working systems will greatly in-
crease their impact and reach. Moreover, by inter-
acting with real users, the community will increase
its impact, visibility, and connection with today’s
rapidly changing data management challenges.

Open source and Cloud Services: To achieve high
impact, our community should develop tools that
are easy to adopt. This will be the case if they are
part of existing, popular ecosystems of open-source
tools or are available as easy-to-use cloud services.
Specifically, an important way through which we
can have impact is when we rally around large-scale
open-source systems. Such systems accelerate inno-
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vations because new algorithmic ideas can be read-
ily added to them. They also become mature tools,
with large communities of developers that can more
easily support real users. Recent examples of such
systems that either came out (or, included signifi-
cant input from) the database community include
Apache Spark, Apache Flink, and Apache Kafka.

Data science software ecosystem: The database com-
munity must do a better job integrating database
research with the data science ecosystem (e.g., Jup-
yter notebooks, Python). Database techniques for
data integration, data cleaning, data processing, and
data visualization should be easily called from Pyth-
on scripts. The community can also develop more
elegant APIs that scale more naturally and better
integrate relational and linear algebras. These tools
need to work well at any scale, not just for the
biggest problems. Users should be able to try the
tools at small scale on their laptops or in the cloud
and should not have to make significant changes to
their code as their data and computational needs
grow.

Community innovation: The database community
has always been innovating its approach to run-
ning conferences, such as having multiple confer-
ence deadlines per year, changing how papers are
assigned and reviewed, pioneering the evaluation of
the reproducibility of accepted papers, expanding
the conference programs to include tutorials. Go-
ing forward, it is important for the community to
remain innovative and to continue to improve the
paper selection processes. Several factors have sur-
faced in recent years. First, database researchers
now have tremendous opportunities for ambitious
research projects, large centers, and exciting col-
laborations with industry. As a result, many re-
searchers are too busy to participate in program
committees as often as they would like, even for our
top conferences, because they are simply stretched
too thin. We need to find a solution to this prob-
lem because we want the input of all our commu-
nity members in the reviewing process. Second, pa-
per reproducibility continues to be a challenge. The
community has experimented with many techniques
to encourage researchers to make their work open-
source and reproducible, but this continues to be
an uphill battle. The community needs to continue
to explore innovative ideas to remedy this prob-
lem. Third, the current review process and common
understanding among reviewers honors algorithmic
research contributions as “syntactically correct pa-
pers”, with a clear definition of a baseline that an
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algorithm improves upon, whereas some members
of the community do not sufficiently value other
contributions, such as papers describing innovative
systems, applications, experiments and analyses, or
user studies. One way to improve the situation is
to more strongly emphasize “potential for impact”
in the reviewing process.

Impact on university campuses: The advent of data
science and the excitement around data science edu-
cation, including data science minors, majors, mas-
ter’s degrees, and specializations within existing ma-
jors, are great opportunities for the database com-
munity to broadly influence education on our uni-
versity campuses. Data science is multidisciplinary.
It includes components from machine learning, hu-
man computer interaction, statistics, ethics, law,
data visualization, application domains, and of course
data management. Many aspects of data manage-
ment are very relevant to data science, as discussed
in Section 3.1 of this report. Students from all fields
of study (not only computer science) need to learn
the technology our community has developed over
the years to support the data to insights pipeline.
Therefore, database experts are natural collabora-
tors for teaching data science and devising data sci-
ence curricula. Database faculty should thus be
engaged in discussions that define the data science
curriculum on their respective campuses.

5. LOOKING FORWARD

It is impossible to capture fully the exciting dis-
cussions we have had in our meeting in Fall 2018.
This report summarizes some of the key recommen-
dations and reflections from that meeting. A down-
loadable copy of this report as well as some supple-
mentary materials used in the meeting can be found
on the event website [1].

Beyond the summary recommendations in this re-
port, database researchers should be attentive to
technology and application trends. Much has al-
ready changed since our Fall 2018 meeting. Ev-
ery new mechanism that has emerged offers a po-
tential opportunity to enhance data management
capabilities (e.g., blockchain, quantum computing)
and every new scenario is a potential application
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area where data management might help (e.g., self-
driving cars, fake news).

As the database community continues its strong
history of impact on research and industry, we are
fortunate to have many exciting research directions
around data science, machine learning, data gover-
nance, as well as new architectures for cloud systems
and data engines. We need to focus on building
more impactful open-source software systems and
cloud services based on our research, and better
integrate with the existing data science stack and
tools. In our conferences, we must revisit how schol-
arship is evaluated and recognized so that we are set
up for maximal impact.
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1. INTRODUCTION

The Italian Research Conference on Digital Li-
braries (IRCDL) is the annual Italian forum to dis-
cuss research topics on Digital Libraries and re-
lated technical, practical, and social issues. Along
the years, IRCDL touched several aspects under-
lying the “Digital Library” domain and promptly
adapted to the evolution of the field. Today, the
“Digital Library” field includes theory and practices
reflecting the evolution of the role of libraries in the
scholarly communication domain, and also embrac-
ing scholarly communication and open science.

The theme of IRCDL 2019 was “Digital Libraries:
Supporting Open Science”. Three main reasons mo-
tivated this theme: (%) science is increasingly be-
coming digital, meaning that research is performed
using data services and digital tools; (iz) the results
of the research are no longer just traditional sci-
entific publications; (4i) the outcomes of science
are increasingly encompassing datasets, software,
and experiments. As digital artifacts, such prod-
ucts can be shared and re-used together with the
article, thus enabling comprehensive research as-
sessment and various degrees of reproducibility of
science. Positive consequences of this shift towards
Open Science are: accelerating science, optimiz-
ing the cost of research, fraud detection, and fully-
fledged scientific reward. Digital Libraries are cen-
tral in the evolution of research outputs by target-
ing findability, preservation, interlinking, and re-use
of research products and by integrating the compo-
nents of the scholarly communication process.

The conference has been organized in Pisa, and
the proceedings are published in the Springer CCIS
series Vol. 988 [22]. Pre-print versions, research
datasets, and research software relative to the ac-
cepted contributions are accessible via Zenodo.org.

"https://zenodo.org/communities/ircdl
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2. CONFERENCE CONTRIBUTIONS

All submitted contributions were peer-reviewed
by three of the thirty-two members of the Program
Committee, and twenty-one were accepted, out of
which six were short papers. IRCDL comprised of
one invited speaker and six sessions.

Invited talk: Citation in the Era of Big Data and
Open Source Software.

Prof. Susan B. Davidson, Weiss Professor at the
Dept. of Computer and Information Science of the
University of Pennsylvania, USA, discussed the most
recent developments in data and software citation.
Citations are the cornerstone of knowledge propaga-
tion in science and the principal means to assess the
quality of research as well as to direct investments
in science. We are transitioning towards the fourth
paradigm of science where data and software are
as vital to scientific progress as traditional publica-
tions are. Nevertheless, there is no viable computa-
tional method for citing data and software. Thus,
to recognize the scientific contribution of develop-
ers, data scientists, data curators, and data centers
and to estimate the value of data. Prof. Davidson
presented the main challenges, and the solutions the
database and digital library communities are sup-

plying [11].

Open Science and Open Access. This session dis-
cussed on the issues originating from enacting Open
Access and Open Science principles to the general
public and the research world. Lana [19] advocated
how Information Literacy needs Open Access, for
the citizens to freely access high-quality informa-
tion. Beamer [5] presented a methodology to op-
timize the embracing of Open Science practices in
academic libraries. Fontanin [14] highlighted the
Open Access-related barriers — e.g., technical infras-
tructures, points of access, digital and cultural di-
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vide — making the information potentially available
not just to researchers, but to everyone.

Open Science publishing and scientific workflows.
The contributions in this session dealt with method-
ologies, practices, and tools in support of publishing
workflows respecting Open Science principles. Latif
[20] presented the work on EconStor, ZBW’s Open
Access Repository, to enrich attribution metadata
by linking to external authority data sources. Dosso
[12] described the ”Learning to Cite” framework,
for the creation of citation models to automatically
cite XML files and its application with a process of
transfer learning in the archival domain. Mizzaro
[28] introduced an open-source software solution for
the implementation of crowdsourcing Peer Review
methodologies. Minelli [24] showcased the practi-
cal application of the open scientific life-cycle model
proposed by the EcoNAOS (Ecological North Adri-
atic Open Science Observatory System) project.
Bardi [4] illustrated a framework for the descrip-
tion, and peer review of research flows developed in
the OpenUp project.

Text mining. Text mining techniques play a cru-
cial role in Digital Libraries to automatically ex-
tract information used to serve user’s needs bet-
ter. Serra [26] proposed an approach to keyphrase
extraction via an Attentive Model, a neural net-
work designed to focus on the most relevant parts
of data. Carducci [7] presented a system combin-
ing standard and semantic learning for automat-
ically annotating bibliographic records. Pandolfo
[25] described how they built the semantic layer of
the Pilsudski Institute of America digital archive.
Ferilli [13] described the work performed to extend
the BLA-BLA tool for learning linguistic resources
by adding a Grammar Induction feature based on
the advanced process mining and management sys-
tem WoMan. Petrocchi [9] presented a study per-
formed on Google Shopping to showcase how large
search engines apply query steering depending on
the user’s profile.

Research Communities and Research Data. Research

communities and the way they manage research data
are increasingly becoming critical elements of dig-
ital libraries. Witt [31] presented the Repository
Finder tool, designed to help researchers in the do-
main of Earth, space, and environmental sciences
at finding the thematic repository they need based
on a user-friendly wizard. Vezzani [30] presented
TriMED, a digital library of terminological records
designed to satisfy the information needs of different
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categories of users within the healthcare field. Cas-
tro described the results of two exploratory studies:
in [27] the authors adopt a researcher-curator col-
laborative approach involving researchers in meta-
data description and discussing the use of generic
and domain-oriented metadata; in [17] the authors
analyze a data deposition workflow in CKAN us-
ing a Dublin Core metadata model for non-expert
users. Luzi and Ruggieri [21] presented the OpenUp
project pilot on research data sharing, validation,
and dissemination in Social Sciences, intending to
investigate the applicability of peer review and/or
Open Peer Review to datasets in disciplines related
to Social sciences.

Information retrieval and discovery. The relation-
ship between information retrieval and discovery
with digital libraries is long-standing. Fabris [1]
presented a study exploring the relationships be-
tween SIGIR Information Retrieval articles from 2003
to 2017 with topics in the Digital Library domain.
The goal is to identify trends and synergies be-
tween the two research fields. Amelio [2] show-
cased a study of the CAPTCHA usability which
analyses the predictability of the solution time, also
called response time, to solve the Dice CAPTCHA
and suggested strategies towards the achievement
of the “optimal” CAPTCHA. Tardelli [10] intro-
duced on-demand tools provided by the SoBigData.
eu research infrastructure for user-driven monitor-
ing of Twitter data and publishing of the results
as research data. Hast [16] described a training-
free word spotting algorithm to mine images of dig-
itized historical handwritten material to enable text
search across the collection. Metilli [23] presented a
case-study based on the Wikidata knowledge base
exploring techniques to improve search functionali-
ties by semi-automatically extracting narratives.

Applications. The last session included contribu-
tions about four application use-cases. Mannocci
[18] presented DOIBoost, a version of the CrossRef
metadata collection enriched with ORCID and the
Microsoft Academic Graph, and Unpaywall made
public in Zenodo.org, together with the software
required to generate it. Foufoulas [15] presented
user interfaces included in the Research Community
Dashboard service of OpenAIRE enabling users to
fine-tune text mining algorithms over a 10M full-
texts corpus. Bellotto and Bettella [6] illustrated
the experience of extending the metadata model
of the Phaidra repository (University of Wien) to-
wards the MODS data model. Firmani and Nieddu
[3] reported on the Codice Ratio project, deliver-
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ing a system taking advantage of character segmen-
tation to support paleographers with tools for the

..] Scholarly Record”. Literature, datasets, soft-
ware, and other digital assets of science should re-

minimal-effort transcription of large medieval manuscriptside in resource-specific digital libraries (archives,

from the Vatican Secret Archives.

3. CONCLUSION AND PROSPECT

The research activities and results presented at
IRCDL2019 give a clear indication of how active
and multifaceted Digital Library research is.

A panel of experts? was organized to start a dia-
logue aiming at identifying research directions. Dig-
ital Libraries have always supported two phases of
science, namely sharing of “mature” research prod-
ucts and discovery of published research products.
Open Science has de facto revolutionized this model
that conceptually separated the production of sci-
ence from the publishing of science. For example,
Research Infrastructures offer services constituting
the “digital laboratory” where scientists are execut-
ing their experiments while accessing and sharing
their intermediate results with others.

Two decades ago, the DELOS Grand Vision of
Digital Libraries challenges focused on “[. . . enabling]
any citizen to access all human knowledge anytime
and anywhere, in a friendly, multimodal, efficient
and effective way, by overcoming barriers of dis-
tance, language, and culture and by using multi-
ple Internet-connected devices” [29]. The advent of
Open Science, together with the natural evolution
towards digital science, has profoundly impacted
on this vision. TRCDL2019 conference has widely
proven this statement, by highlighting strong in-
terests in connecting digital library methods, tools,
and services with thematic services for science and
Open Science challenges. The current scenario, al-
though addressing the urgent requirements of dig-
ital science (e.g. big research data, data-intensive
science, multi-disciplinarity ), suffers from the down-
sides arising when solutions originate from sponta-
neous initiatives rather than overarching engineer-
ing. The scholarly record is today kept in highly
distributed and poorly connected sources, operated
by publishers, research infrastructures, and institu-
tions, adhering to heterogeneous publishing work-
flows, publishing best practices, and standards.

Asremarked by Dr. C. Thanos in the final confer-
ence panel on the Future of Digital Library research,
digital library research should envision “a world in
which all scientific literature, data and other re-
search outcomes are on-line, open and interoper-
able [...and seek for ...] the creation of discipline-
specific and interdisciplinary interconnected schol-

arly information spaces |. . . altogether forming a global

’https://ircd12019.isti.cnr.it/?page_id=371
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repositories, databases), intended as active nodes
in scholarly infrastructures [8]. To this aim, Digital
Libraries should act as critical elements of Research
Infrastructures and Open Cyber-Scholarly Commu-
nication Infrastructures, therefore flexibly adapt to
support scientific communities at performing and
publishing science by managing any research asset.
In summary, Digital Libraries have upgraded their
vest, their original intent, and are evolving to serve
different actors. They should ambitiously act as an
enabling service between scientists performing sci-
ence, scientists publishing science, scholars, and sci-
entists discovering scientific results, innovators ac-
cessing science for industrial benefits, and officers
in need of monitoring science.
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