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Securing analytics on shared data is important but
expensive. Analyzing datasets from multiple data own-
ers can yield valuable insights [1, 2, 3, 4, 5] but poses
significant security risks. Even within enterprises – our
primary focus – precautions are necessary when han-
dling data across subsidiaries and geographic regions [6,
7]. Existing security solutions based on Trusted Execu-
tion Environments (TEEs) [8, 9], fully homomorphic en-
cryption [10], and structured encryption [11] o↵er strong
protections, albeit in a physically centralized manner.
For more decentralization, there are exciting approaches
based on Secure Multi-Party Computation (MPC) [12]
that do not need a trusted third party nor merging
datasets at a central location. Recent projects [6, 13,
14, 15] show that MPC can reduce the risk of leaks
for analytics on shared data under stronger security
guarantees. However, MPC queries are often imprac-
tically slow, requiring orders of magnitude more com-
putation and communication than plain-text or TEE-
based query execution.

Adding security measures is a balancing act in the
enterprise. Conventional wisdom dictates not to com-
promise on security between distrusting parties at all –
no matter the performance impact. In the context of
in-house analytics at large enterprises, however, even if
only parts of a query are run with improved security,
there is already a benefit for the enterprise [6]. Adding
protection through the use of TEEs and MPC to the
existing DBMS-level ones is useful if performance does
not plummet, and future databases should be able to
decide, given a performance target, what level of secu-
rity can be actually fulfilled.

Analytics on shared data need security-aware query
planning. We are working on a platform that modu-
larizes secure query execution and allows for di↵erent
strategies for trading o↵ performance and security at
the operator and query level. One point in the trade-o↵
space is protecting computation using TEEs: we are ex-
ploring how to run OLAP queries in TEEs without per-
formance overhead [8]. Another solution is using MPC
and we are investigating how to precisely control infor-
mation leakage about data passing between operators in

exchange for faster MPC query execution. In the future,
the query planner will need to be able to combine lo-
cal and distributed operators executing in plain-text, in
TEEs, using MPC, etc., and under di↵erent adversarial
models. For completeness, in addition to the systems-
level challenges, it will be also necessary to define secu-
rity levels that are tailored to DBMS use-cases.

Case study: Trading o↵ intermediate result size pro-
tection for better performance. As a concrete example
of trading o↵ security for performance, consider how in-
termediate results are passed between operators in an
MPC query. The execution of MPC operators is obliv-
ious to the content of their input: an oblivious filter,
for instance, produces an output equal in size to its
input but with a secret column indicating which row
is actually selected. Similarly, an oblivious join has an
output size equal to the Cartesian product of its inputs.
This results in data sizes snowballing as the query ex-
ecution proceeds, especially for analytical queries with
many joins [6, 14, 15, 16]. Related work explores the
relaxation of intermediate result size protection in dif-
ferent ways, e.g., adding non-deterministic noise to the
true intermediate result size [14] or entirely foregoing
adding noise to it [6]. One common decision, however,
is to combine the implementation of the intermediate
result size protection with the actual operator logic.

In Reflex [17] we decouple the protection mechanism
from the operator logic, achieving flexibility while re-
taining execution e�ciency thanks to a highly parallel
implementation. The benefit of implementing interme-
diate result size protection as a separate step after each
oblivious operator is that we can define custom strate-
gies for hiding the size of the intermediate results and,
through this, o↵er di↵erent security/performance trade-
o↵s. These strategies could be based on related work,
using, e.g., di↵erentially private noise [14], or entirely
new ones. Reflex approaches secure shared analytics
di↵erently from most related work: instead of prescrib-
ing a specific set of security guarantees, we build the
mechanisms necessary for the query planner to pick the
adequate protections for each query based on perfor-
mance and security/privacy criteria.
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