
The Case for a New Cloud-Native Programming Model
with Pure Functions

Ana Klimovic
ETH Zurich

aklimovic@ethz.ch

Cloud evolution: Over the past two decades, the cloud
has become the dominant platform for running all kinds
of applications, from data analytics to web services. In
the process, cloud platforms have evolved from rent-
ing virtual machines (VMs) on-demand to o↵ering elas-
tic compute and storage services. While the ability
to support legacy applications was critical in the early
days of cloud to ease migration from on-premise, to-
day’s users commonly develop cloud-native applications
by composing cloud storage services (e.g., S3), com-
pute services (e.g., AWS Lambda), data analytics ser-
vices (e.g., BigQuery), machine learning services (Azure
ML), and elastic databases (e.g., Snowflake [4]). With
this approach, users no longer need to explicitly provi-
sion CPU/memory/storage for their applications, as the
elastic services automatically scale-out based on load
and bill users for the resources consumed [7].

Opportunity and obstacle: By abstracting resource
management from users, elastic cloud services have the
potential to optimize resource allocation, task schedul-
ing, and data movement under the hood to improve
overall performance and energy-e�ciency. Multi-tenant
cloud services like AWS S3 and Lambda can optimize
resource allocation with a global view across users [8].

However, a major optimization obstacle is that to-
day’s cloud programming model captures very little
about the resource requirements and data access pat-
terns of individual applications, leaving cloud services
with little information to apply optimizations. Despite
new cloud-native models like Functions as a Service
(FaaS), today’s cloud is still built around the princi-
ple of executing opaque1 user applications inside VMs.
For example, FaaS platforms execute a user function
as an opaque unit in a MicroVM [1]. Each server-
less function arbitrarily combines custom computation
logic and calls to external cloud services for data pass-
ing. The platform is not aware of inter-function nor
inter-service dependencies, making it di�cult to opti-
mize task scheduling and data prefetching. As a result,
serverless functions often spend a large fraction of their

1
Opaque execution refers to execution with no awareness of

application characteristics, such as data dependencies.

execution time blocked on I/O [5]. To avoid idling CPU
cores while functions block, the platform can multiplex
many VMs per core. However, context switching se-
curely between VMs adds latency [2] and comes with a
high memory footprint, as the platform must allocate
the total memory needed for all in-flight VMs.
Rethink the programming model: A promising way to
enable cloud platforms to improve performance and re-
source e�ciency is to rethink the cloud-native program-
ming model, such that users develop applications in
ways that provide the cloud platform with key infor-
mation to guide task scheduling and data prefetching
optimizations.

We propose a programming model that strictly sepa-
rates compute tasks (custom user logic) and I/O tasks
(interactions between cloud services). In this new
paradigm, users express applications by composing two
types of functions: 1) pure compute functions, i.e., un-
trusted user code snippets that compute exclusively on
declared inputs and produce declared outputs and 2)
I/O functions, i.e., trusted code implemented by the
platform and exposed to users as a library, enabling in-
teraction with other services, like storage.

Separating compute and I/O has several benefits.
First, it makes application dataflow explicit to the plat-
form, enabling data prefetching and task scheduling op-
timizations [3, 11]. For example, the platform can co-
locate functions that need to exchange data and allocate
CPU cores and memory to functions only when their in-
puts are ready. Second, separating I/O tasks (which re-
quire interaction with the operating system and hence
have a large attack surface) from other user code en-
ables executing user code with more lightweight isola-
tion mechanisms than canonical VMs [9, 10] to improve
performance. Finally, separating computation and I/O
in the programming model simplifies o✏oading each
type of task to hardware accelerators, as accelerators
are typically specialized for either fast computation or
fast I/O. We are currently exploring these ideas in Dan-
delion [6], a new serverless platform.

50 SIGMOD Record, June 2025 (Vol. 54, No. 2)



References
[1] Alexandru Agache, Marc Brooker, Alexandra

Iordache, Anthony Liguori, Rolf Neugebauer,
Phil Piwonka, and Diana-Maria Popa. “Fire-
cracker: Lightweight Virtualization for Serverless
Applications”. In: 17th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI 20). 2020.

[2] Amazon Web Services. The Security Design of the
AWS Nitro System. https://docs.aws.amazon.
com/whitepapers/latest/security- design-

of-aws-nitro-system/security-design-of-

aws-nitro-system.html. 2022.

[3] Ankit Bhardwaj, Meghana Gupta, and Ryan
Stutsman. “On the Impact of Isolation Costs
on Locality-aware Cloud Scheduling”. In: 12th
USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 20). 2020.

[4] Benoit Dageville, Thierry Cruanes, Marcin
Zukowski, Vadim Antonov, Artin Avanes, Jon
Bock, Jonathan Claybaugh, Daniel Engovatov,
Martin Hentschel, Jiansheng Huang, Allison W.
Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon
Triantafyllis, and Philipp Unterbrunner. “The
Snowflake Elastic Data Warehouse”. In: Proceed-
ings of the 2016 International Conference on
Management of Data. SIGMOD ’16. San Fran-
cisco, California, USA: Association for Com-
puting Machinery, 2016, pp. 215–226. isbn:
9781450335317. doi: 10.1145/2882903.2903741.
url: https : / / doi . org / 10 . 1145 / 2882903 .

2903741.

[5] Yuhan Deng, Angela Montemayor, Amit Levy,
and Keith Winstein. “Computation-Centric Net-
working”. In: Proceedings of the 21st ACM Work-
shop on Hot Topics in Networks. HotNets ’22.
2022.

[6] Tom Kuchler, Michael Giardino, Timothy Roscoe,
and Ana Klimovic. “Function as a Function”.
In: Proceedings of the 2023 ACM Symposium on
Cloud Computing. SoCC ’23. 2023.

[7] Ingo Müller, Renato Marroqúın, and Gustavo
Alonso. “Lambada: Interactive Data Analytics on
Cold Data Using Serverless Cloud Infrastructure”.
In: Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data.
SIGMOD ’20. Portland, OR, USA: Association for
Computing Machinery, 2020, pp. 115–130. isbn:
9781450367356. doi: 10.1145/3318464.3389758.
url: https : / / doi . org / 10 . 1145 / 3318464 .

3389758.

[8] Vivek Narasayya and Surajit Chaudhuri. “Multi-
Tenant Cloud Data Services: State-of-the-Art,
Challenges and Opportunities”. In: Proceedings
of the 2022 International Conference on Man-
agement of Data. SIGMOD ’22. Philadelphia,
PA, USA: Association for Computing Machinery,
2022, pp. 2465–2473. isbn: 9781450392495. doi:
10.1145/3514221.3522566. url: https://doi.
org/10.1145/3514221.3522566.

[9] Vasily A Sartakov, Llúıs Vilanova, David Eyers,
Takahiro Shinagawa, and Peter Pietzuch. “CAP-
VMs: Capability-Based Isolation and Sharing for
Microservices”. In: Proceedings of Operating Sys-
tems Design and Implementation. OSDI ’22. 2022.

[10] Simon Shillaker and Peter Pietzuch. “Faasm:
Lightweight Isolation for E�cient Stateful Server-
less Computing”. In: 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). 2020.

[11] Minchen Yu, Tingjia Cao, Wei Wang, and
Ruichuan Chen.“Following the data, not the func-
tion: Rethinking function orchestration in server-
less computing”. In: 20th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI 23). 2023, pp. 1489–1504.

SIGMOD Record, June 2025 (Vol. 54, No. 2) 51


