
Reminiscences on Influential Papers

This issue’s contributors cover papers that fo-
cus on di↵erent aspects of accessing data: RDFs,
approximate nearest neighbor search, and compact
hash tables. Furthermore, they all highlight the im-
pact of the papers not only on their own research
and career but also for the community in general.
Enjoy reading!

While I will keep inviting members of the data
management community, and neighboring commu-
nities, to contribute to this column, I also welcome
unsolicited contributions. Please contact me if you
are interested.

Pınar Tözün, editor
IT University of Copenhagen, Denmark
pito@itu.dk

Zoi Kaoudi

IT University of Copenhagen, Denmark
zoka@itu.dk

Thomas Neumann, Gerhard Weikum.
RDF-3X: a RISC-style engine for RDF.

In Proceedings of the VLDB Endowment, Volume
1, Issue 1, pages 647-659, 2008.

At the time that this paper [7] was published, I
was doing my PhD and I was (feeling) part of the
Semantic Web community. My topic was on dis-
tributed RDF query processing, optimization, and
reasoning, so the paper was quite relevant to my
work. Back then, there had been several propos-
als on di↵erent centralized RDF stores mostly from
the Semantic Web community. Then, the RDF-
3X paper appeared at VLDB and it really made
a di↵erence for me (and probably others). Its so-
lution seemed very simple and elegant and its per-
formance on runtime and scalability was remark-
able. Although I continued my PhD by publishing

in Semantic Web conferences, this paper, somehow
subconsiously, played a role into deciding to change
my career after my PhD and become part of the
database community.

The paper proposed RDF-3X, an e�cient and
scalable RDF store engine. In contrast to most
of the works so far that were proposing to store
triples by splitting them in one table per property,
it proposed to store the triples into a single gigan-
tic 3-column table. Importantly, RDF-3X used all
possible column permultations as indices together
with dictionary encoding, and compression. This
idea is so simple yet so powerful that made an im-
pression on me. Later on, when I had already joined
the database community, I also heard that the pro-
posal of exhaustive indexing led to many interest-
ing and controversial discussions among database
researchers!

In the paper, the authors showed that having
all these indices stored not only improves data ac-
cess but makes the entire query processing faster.
RDF-3X query processor followed a RISC-style de-
sign philosophy: it relied mostly on merge joins over
sorted index lists. This was made possible thanks
to its exhaustive indexing scheme. RDF-3X also
encompassed a cost-based query optimizer to de-
termine the right join ordering. It achieved very
e�cient cardinality estimation by utilizing the ex-
tensive indices and by maintaining an additional set
of RDF-specific statistics for joins. The evaluation
results showed huge performance benefits over sim-
ply loading the RDF data into a column-based or a
row-based relational database. Interestingly, none
of the open-source systems provided by the Seman-
tic Web community could scale to the dataset sizes
used in the experiments.

To conclude, I believe this paper has been very in-
fluencial across two di↵erent research communities
(Semantic Web and databases) thanks to its simple
idea and e↵ective results. The fact that the system
was also available to use gave the opportunity to

SIGMOD Record, June 2025 (Vol. 54, No. 2) 43



many researchers to come up with multiple follow-
up works. I find it very inspiring to see simple ideas
having such large impact in our research communi-
ties. I hope everyone takes that into account when
reviewing papers nowadays.

Fatemeh Nargesian

University of Rochester, NY, USA
fnargesian@rochester.edu

Aristides Gionis, Piotr Indyk, Rajeev Motwani.
Similarity Search in High Dimensions via

Hashing.

In Proceedings of the International Conference on
Very Large Data Bases, pages 518-529, 1999.

When I saw Pınar’s email asking for a couple of
paragraphs for this column, one clear choice came
to mind - and it remained unchanged despite all my
procrastination. This paper [3] belongs to the line
of work on Approximate Nearest Neighbor (ANN)
Search.

The paper introduces the Locality-Sensitive Hash-
ing (LSH) technique for approximate similarity search
in high-dimensional spaces. The motivation is the
ine�ciency of traditional nearest neighbor search
methods as dimensionality increases - a phenomenon
known as the curse of dimensionality. The paper
defines a family of hash functions for Euclidean dis-
tance such that the probability of collision is much
higher for closer items than for others. These hash
functions help build small-footprint signatures, con-
sisting of hash values, that are similarity-preserving.
This property enables the e�cient retrieval of sim-
ilar items without exhaustive comparisons. LSH
achieves this by mapping fragments of signatures
to buckets using standard hash functions. During
query time, only the subset of buckets that have the
same signatures as the query are searched. This
drastically reduces computation cost. The paper
provides provable guarantees on query time and ap-
proximation quality, specifically targeting (r, c·r)-
nearest neighbor search (i.e., returning a point within
distance c·r if any point exists within r).

I used various nearest neighbor search algorithms
for my PhD research to overcome the scalability and
e�ciency challenges of data search in open reposi-
tories. While I always found these algorithms neat
and useful, it was not until the thesis and paper-
writing phase that I truly began to appreciate the
elegance of LSH techniques. And, it was not until
I started teaching the fundamentals of ANN search

to my students that I came to appreciate the knitty
gritty details of this paper and its previous and
follow-up work around it.

Following the body of work that has built upon
and around this paper has taught me a mindset and
connected me to a broader world of practical re-
search problems. While the VLDB’99 paper focuses
on Euclidean space, the family of LSH has been de-
veloped for a variety of similarity measures: Co-
sine, Dot Product, etc. In recent years, indexes for
approximate nearest neighbor search have regained
popularity due to vector databases. More recent
ANN indexes are shown to be more e�cient and
scalable in practice. Graph-based techniques, such
as HNSW [6], NSG [2], and DiskANN [5], achieve
search times of (poly/)logarithmic complexity by
building proximity graphs with long-range and short-
range links. The inverted index-based techniques
such as FAISS, build an inverted index on the cen-
troid of data partitions and only search for nearest
neighbors within the partition associated with the
closest centroid. Some of these techniques are in-
memory and some are disk-based; some use prod-
uct quantization and compression to reduce mem-
ory footprint; and, almost all scale to benchmark
datasets of billions of points and are deployed in
industry applications. The main di↵erence, how-
ever, between the LSH family and the new genera-
tion of ANN, as shown by recent studies [4], is in
their worst-case performance. The VLDB’99 paper
shows that LSH has truly sublinear search time de-
pendence on data size. Whereas, almost all others,
with the exception of DiskANN, su↵er from worst-
case linear search time. Even DiskANN, which of-
fers an improved worst-case complexity, does so at
the cost of very slow preprocessing.

In the era of transformers and super-fast search
techniques and all that give us great results and
spark our curiosity to ask “why does it work and
when not?”, this paper has remained, for me, an
example to follow in my own research; a reminder
for when settling on an approximation for time-
tradeo↵, think about the guarantees of how fast and
approximate our approximation is.

Niv Dayan

University of Toronto, Canada

nivdayan@cs.toronto.edu

John G. Cleary.

Compact hash tables using bidirectional lin-

ear probing.

44 SIGMOD Record, June 2025 (Vol. 54, No. 2)



In IEEE Transactions on Computers, Volume C-
33, Issue 9, pages 828-834, 1984.

My first encounter with Bloom filters was a love
at first sight. A Bloom filter is a space-e�cient
probabilistic data structure that allows you to test
whether a key is definitely not in a set, or possibly
is. By compressing a set of keys into a compact bit
array in memory, Bloom filters enable fast mem-
bership tests that help avoid expensive storage or
network lookups when the key in question is absent.

Originally proposed in 1970, Bloom filters have
become a mainstay in modern systems. Yet, despite
their widespread use, they su↵er from two impor-
tant limitations. First, they do not support dele-
tions or dynamic expansion as the dataset grows.
Second, they only support point queries-checking
for the presence of individual keys-but not range
queries, which are essential in many database ap-
plications that need to determine whether an entire
range is empty.

Over the past few years, our lab has been ex-
ploring ways to overcome these limitations. A key
source of inspiration in our journey has been the
paper “Compact Hash Tables Using Bidirectional
Linear Probing” by John G. Cleary from 1984 [1].
This paper presents a compact hash table design
built on four major ideas:

1. Quotienting – storing only the su�x of a key,
inferring the prefix from its location.

2. Robin Hood Hashing – resolving hash colli-
sions by searching sequentially for a nearby
available slot, while keeping colliding entries
adajcent.

3. Dual bitmaps – marking the start and end of
clustered entries that map to the same slot.

4. Prefix sum arrays – aggregating the 1s in the
bitmaps to support e�cient navigation and search.

I appreciate this paper not only for its technical
contributions, but also for its clarity—it explains
complex concepts in intuitive, problem-driven terms
without compromising on rigor. Many filter data
structures developed over the past 15 years have
drawn from this framework to provide more memory-
e�cient alternatives to Bloom filters that also sup-
port deletions.

These ideas have directly informed our research.
In our InfiniFilter (SIGMOD 2023) and Aleph Fil-
ter (VLDB 2024) papers, we designed filters that
can dynamically expand while maintaining a sta-
ble false positive rate. We achieve this by using

variable-sized fingerprints padded with unary codes.
Supporting this feature required a hash table whose
collision resolution does not depend on the finger-
prints themselves, unlike in Cuckoo filters. The
Cleary data structure was an ideal fit.

Our recent work on range filters has also benefited
from this foundation. Memento Filter (SIGMOD
2025), for instance, stores variable-length payloads
alongside keys—something that’s naturally supported
by Robin Hood hashing, where entries can simply be
pushed and pulled in sequence. Our newest range
filter, Diva (currently under submission to VLDB
2025), goes a step further by encoding key infixes
and relying on the Cleary structure being order-
preserving. Interestingly, the Cleary data structure
wasn’t originally proposed with these use-cases in
mind, yet it turns out to be exactly what we needed
for each of the above projects.

We would also like to acknowledge the influential
paper“A General-Purpose Counting Filter: Making
Every Bit Count” by Pandey et al. from SIGMOD
2017 [8]. This work demonstrated how to search
similar structures using rank and select primitives
implemented e�ciently using CPU instructions in-
troduced in Intel’s Haswell line of processors (Bit
Manipulation Instruction Set 2). It also showed how
to succinctly encode counters to allow representing
multisets. We built on top of this excellent design
and its codebase in many of our projects.

Of course, these are just a few highlights among
the many foundational papers that have shaped our
thinking. Our pursuit may be compact data struc-
tures, but the foundation beneath them is anything
but small.

1. REFERENCES
[1] J.G. Clerry. Compact Hash Tables Using

Bidirectional Linear Probing. IEEE
Transactions on Computers, C-33(9):828–834,
1984.

[2] Cong Fu, Chao Xiang, Changxu Wang, and
Deng Cai. Fast approximate nearest neighbor
search with the navigating spreading-out graph.
Proc. VLDB Endow., 12(5):461–474, 2019.

[3] Aristides Gionis, Piotr Indyk, and Rajeev
Motwani. Similarity Search in High Dimensions
via Hashing. In Proceedings of the 25th
International Conference on Very Large Data
Bases, page 518–529, 1999.

[4] Piotr Indyk and Haike Xu. Worst-case
Performance of Popular Approximate Nearest
Neighbor Search Implementations: Guarantees
and Limitations. In Proceedings of the 37th
International Conference on Neural

SIGMOD Record, June 2025 (Vol. 54, No. 2) 45



Information Processing Systems, NIPS ’23,
2023.

[5] Ravishankar Krishnaswamy, Magdalen Dobson
Manohar, and Harsha Vardhan Simhadri. The
DiskANN library: Graph-Based Indices for
Fast, Fresh and Filtered Vector Search. IEEE
Data Eng. Bull., 48(3):20–42, 2024.

[6] Yury A. Malkov and Dmitry A. Yashunin.
E�cient and robust approximate nearest
neighbor search using Hierarchical Navigable
Small World graphs. CoRR, abs/1603.09320,

2016.
[7] Thomas Neumann and Gerhard Weikum.

RDF-3X: a RISC-style engine for RDF. Proc.
VLDB Endow., 1(1):647–659, 2008.

[8] Prashant Pandey, Michael A. Bender, Rob
Johnson, and Rob Patro. A General-Purpose
Counting Filter: Making Every Bit Count. In
Proceedings of the 2017 ACM International
Conference on Management of Data, page
775–787, 2017.

46 SIGMOD Record, June 2025 (Vol. 54, No. 2)


