GPTuner: An LLM-Based Database Tuning System

Jiale Lao
Sichuan University

Jianping Wang
Northwest Normal University
2022222119@nwnu.edu.cn

Yibo Wang
Sichuan University

solidlao.jiale@gmail.com wangyibo.cs@gmail.com

Yunjia Zhang
University of
Wisconsin-Madison

Yufei Li
) Sichuan University
liyufeievangeline@gmail.com

Zhiyuan Cheng
Purdue University

cheng443@purdue.edu

yunjia@cs.wisc.edu

Wanghu Chen
Northwest Normal University
chenwh@nwnu.edu.cn

ABSTRACT

Selecting appropriate values for the configurable knobs of
Database Management Systems (DBMS) is essential to im-
prove performance. But because the complexity of this task
has surpassed the abilities of even the best human experts,
the database community turns to machine learning (ML)-
based automatic tuning systems. However, these systems
still incur significant tuning costs or only yield suboptimal
performance, attributable to their overly high reliance on
black-box optimization and the lack of integration with do-
main knowledge, such as DBMS manuals and forum dis-
cussions. Hence, we propose GPTuner, a manual-reading
database tuning system that extensively leverages domain
knowledge to automatically optimize the search space and
enhance the runtime feedback-based optimization process.
Firstly, we develop a Large Language Model (LLM)-based
pipeline to collect and refine heterogeneous knowledge, and
propose a prompt ensemble algorithm to unify a structured
view of the refined knowledge. Secondly, using the struc-
tured knowledge, we (1) design a workload-aware, training-
free knob selection strategy, (2) develop a search space opti-
mization technique considering the value range of each knob,
(3) propose a Coarse-to-Fine Bayesian Optimization Frame-
work to explore the optimized space. Finally, we evaluate
GPTuner under different benchmarks (TPC-C and TPC-H),
metrics (throughput and latency) and DBMS (PostgreSQL
and MySQL). Compared to state-of-the-art methods, GP-
Tuner identifies better configurations in 16x less time on av-
erage. Moreover, GPTuner achieves up to 30% performance
improvement over the best-performing alternative.

* The corresponding author.

(© Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment. This is a minor
revision of the paper entitled “GPTuner: A Manual-Reading
Database Tuning System via GPT-Guided Bayesian Opti-
mization”, published in PVLDB, Vol. 17, No. 8, 2150-8097.
DOI: https://dl.acm.org/doi/10.14778/3659437.3659449

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2025 ACM 0001-0782/24/0X00 ...$5.00.

SIGMOD Record, March 2025 (Vol. 54, No. 1)

Mingjie Tang*
Sichuan University
tangrock@gmail.com

Jianguo Wang
Purdue University

csjgwang@purdue.edu

1. INTRODUCTION

Database Management Systems (DBMS) expose hundreds
of configurable parameters (i.e., knobs) that control their
runtime behavior [32]. Selecting appropriate values for these
knobs is essential to optimizing system performance [42].
Given the large number of knobs with continuous or cate-
gorical domains, database administrators (DBAs) face sig-
nificant challenges in identifying effective configurations, es-
pecially in the cloud environment where workloads and un-
derlying physical configurations can vary significantly over
time and across different DBMS instances [33].

To reduce manual tuning efforts of DBAs, state-of-the-art
approaches automate the knob tuning via Machine Learn-
ing (ML) techniques, including Bayesian Optimization [18,
41, 45, 13, 46, 22] and Reinforcement Learning [43, 12, 38].
These ML-based tuning systems follow the main concept of
“trial and error” to explore the configuration space itera-
tively, balancing between the exploration of unseen regions
and the exploitation of known space.

Although these methods possess the potential to eventu-
ally identify well-performing configurations, they still incur
significant tuning costs [21, 22]. Previous studies [12, 45,
44] have revealed that state-of-the-art systems still require
hundreds to thousands of iterations to find an ideal configu-
ration, with each iteration taking minutes or more to execute
the target workload. Such high tuning costs stem from their
inefficiency in handling: (1) the large number of knobs that
requires tuning, and (2) the wide search space of possible val-
ues for each knob. For the first difficulty, most approaches
either select a fixed subset of knobs [12, 21, 13, 18, 43, 49],
sacrificing the flexibility to choose workload-relevant knobs,
or execute workloads numerous times to identify important
knobs [44, 41, 20], which is resource-intensive. Regarding
the second difficulty, most approaches use the default value
ranges provided by DBMS vendors [18, 41, 45, 13, 46, 22,
43, 12]. However, the default value ranges are excessively
broad for flexibility, which complicates the tuning process
and introduces the risk of system crashes [33, 42].

In contrast to ML-based tuning approaches that adjust
DBMS solely based on performance statistics, human DBAs
often rely on domain knowledge (DBMS manuals and fo-
rum discussions). Unlike performance statistics, external
domain knowledge directly reveals tuning hints, including
important knobs and typical value ranges for each knob.

101

Table 1:

Tuning Knowledge Utilization

Knob shared_buffers random_page_cost

Default Range [0.125MB, 8192 GB [0, 1.79769 x 10°°%]

Guidance “shared_buffers” “random_page_cost”
can be 25% of the can be 1.x if disk
RAM but no more has a speed similar
than 40% ... [4] to SSDs ... [1]

DBA The machine has The machine uses
a 16 GB RAM. SSDs as disks.

Thus we can set
“shared_buffers”
from 16 GB x

Thus we can set
“random_page_cost”
to a value from 1.0

25% = 4 GB to 16 to 2.0.
GB x 40% = 6.4
GB.

Improved Range [4 GB, 6.4 GB] [1.0, 2.0]

First, there are discussions on which knobs significantly im-
pact DBMS performance. In web forums like Hacker News,
it is widely discussed that parallel knobs (e.g., “max_para
llel_workers_per_gather”) are crucial for OLAP work-
loads, while I/O-related knobs (e.g., “max_wal_size”) are
important for OLTP workloads [3]. Second, there are typi-
cal value ranges summarized for knobs. Table 1 provides two
examples of extracting improved value ranges from natural
language tuning guidance. For knob “shared_buffers”, in-
stead of using the default value range [0.125 MB, 8192 GB],
the improved value range can be [4 GB, 6.4 GB] since the
guidance suggests setting the value between 25% and 40%
of the RAM (on a machine with 16 GB of RAM). For knob
“random_page_cost”, we can try out value range [1.0, 2.0]
rather than [0, 1.79769 x103%®] if the machine uses SSDs as
disks. We can observe that these hints are highly valuable
in reducing the search space of ML-based methods and thus
expedite convergence and achieve better performance.

Therefore, to mitigate the high tuning costs of ML-based
techniques, it is desirable to design a knob-tuning system
capable of leveraging domain knowledge. However, this is
non-trivial for the following challenges. C1. It is challeng-
ing to unify a structured view of the heterogeneous domain
knowledge. Domain knowledge typically comes in the form
of DBMS manuals and web forum discussions, which can be
in various formats. To leverage such knowledge, we need
to transform it into a unified machine-readable format (i.e.,
structured data). However, preparing such a structured view
involves a complex and lengthy workflow: data ingestion,
data cleaning, data integration and data extraction [30]. Ex-
isting approaches cannot meet the trade-off between cost
and quality. They either demand domain-specific training
[34], which is more complicated in our scenario since it re-
quires expert knowledge to annotate DBMS knowledge, or
they rely on strong assumptions that lack flexibility (e.g.,
focusing on specific document format) [16]. C2. FEven with
the prepared structured knowledge, we lack a way to integrate
the knowledge into the optimization process. The inherent
design of optimization algorithms like Bayesian Optimiza-
tion and Reinforcement Learning does not support the inte-
gration of external domain knowledge directly, necessitating
extensive modifications to their standard workflows. For ap-
proaches that manually summarize static rules from domain
knowledge, the resulting rules cannot capture the nuances
of all workloads, and the updates of environments can make
them out of date [15].

To address the challenges above, we propose GPTuner,
a manual-reading database tuning system that extensively

102

leverages domain knowledge to automatically enhance the
optimization process. Facing the challenge C1, we develop a
Large Language Model (LLM)-based pipeline to collect and
refine heterogeneous knowledge, and propose a prompt en-
semble algorithm to unify a structured view of the refined
knowledge. In light of the brittle nature of LLM and its in-
evitable hallucination problem, we utilize the self-evaluation
and self-correction ability of LLM to incorporate two error
correction mechanisms in the pipeline. Regarding challenge
C2, we use structured knowledge to optimize the search
space and enhance the space exploration process. Before the
tuning process, we optimize the search space in terms of the
space dimensionality and the values in each dimension. For
dimensionality, we propose a workload-aware and training-
free knob selection strategy by leveraging the text analy-
sis ability of LLM to simulate the knob selection process
of DBAs, considering the characteristics of DBMS, work-
loads, specific query and knob dependencies. We further
optimize the values in each dimension by using structured
knowledge to discard meaningless regions, highlight promis-
ing space and take special situations into consideration. Fi-
nally, we develop a novel Coarse-to-Fine Bayesian Optimiza-
tion Framework to explore the optimized search space. Since
it is non-trivial to reduce the size of search space while still
retaining the potential for optimal results [19], we seek help
from domain knowledge to carefully design two search spaces
of different granularity. The two spaces are explored sequen-
tially by BO from coarse to fine granularity, with a bootstrap
technique to serve as a bridging mechanism. This balances
well between the efficiency of coarse-grained search and the
thoroughness of fine-grained search.

We compare GPTuner against state-of-the-art approaches.
We consider different benchmarks (TPC-C and TPC-H),
metrics (throughput and latency), and DBMS (PostgreSQL
and MySQL). GPTuner identifies better configurations in
16x less time on average, achieving up to 30% performance
improvement over the best-performing alternative. In addi-
tion to effectiveness, we manually prepare and open-source
two datasets for LLM evaluation [2], and conduct exper-
iments to evaluate GPTuner’s robustness and scalability.
Moreover, we analyze the overheads introduced in GPTuner
using different language models, and open-source the built
domain knowledge to enable the further study within the
database community.

2. BACKGROUND AND RELATED WORK

2.1 Database Knob Tuning

The DBMS tuning problem is to select an appropriate
value for each knob to optimize the DBMS performance
(e.g., throughput or latency) on a certain workload (e.g.,
a workload is a set of SQL statements). Formally, given
a set of configurable knobs 61,...,0, along with their do-
mains O1, ..., 0,, the configuration space is defined as @ =
O X -+ X O,. We want to find a configuration 8* € © to
maximize DBMS performance f:
0" = arg max f(6) (1)

6c®
Finding an optimal solution for this problem has proven to
be NP-hard [36] and three kinds of approaches are proposed.
e Heuristic-based. Rule-based methods rely on manually
created rules to explore the space in a predefined way [15].

SIGMOD Record, March 2025 (Vol. 54, No. 1)

GPTUNER

Fine Stage Coarse Stage

|
@ Knowledge Preparation Knowledge Handler :
T+—> Tuning Lake ; Structured Knowledge i
1 E i knob special_value = s.g.t. min suggested_value = s.g.t. max E :
i ; !
i Knob: shared_buffers G i random_page_cost null 1.0 1.2 2.0 : :
i | [PaavETER Fo ! wal_buffers -1 64KB [| t6MB [
Client : Ik E)s::rzglz:fers,, can be | max_connections ~ null 48 [120 E :
@ User Request | 1[4 {25% of the RAM but no ©Knowledge | gared buffers nul 275GB 27.5GB acB |,
1, | Y more than 40% Structuralization | L 1 ! ! i
Target 1 e N R L [1
Workload 1 : " I 1 == |
1 Knowledge-Based Knowledge-Based Search Space Optimizer 1 | 1 1
— 1 | | Config Recommender |~ . I o ”—é ——————————— SRSt U fommmmmmme 1
| @ Bayesian Optimization o D onality Optimization i Range Optimization *
H L
: work_mem i discard Lt min sgt min s.gt. max d.f.t max
! jit x work mem 1 Tiny
| 1! feasible
! huge_pages huge_pages : | space
< - wal_buffers 1 — — = — —
v wal_buffers Virtual ! control_knob
trace_sort X knol

Region 1

3

| special knob normal_kiob
V/I L =
O 0 LS

s.gt.max d.ft. max

xtension

)

dft.min s.g.t min

i
1 R
i
B
i
R
Nl
! h,fz i B e Ly !
ALt min s.gt hin 1/4] | o[set- maxd.tt. max é :
HE
1l
'
i
!
iR
'
1

Figure 1: System Overview of GPTuner

Search-based methods explore the space following several
heuristics (e.g., avoid revisiting the explored regions and ex-
plore nearby regions to improve current optimum) [49, 10].
e BO-based. BO-based methods [18, 41, 45, 13, 46, 22| fol-
low the generic BO framework to search the space by (1) fit-
ting a surrogate model to map the relation between the knob
configurations and the DBMS performance, (2) selecting the
next configuration that maximizes an acquisition function.
e RL-based. RL-based methods explore the space in a trial-
and-error manner. The essence is to balance between explor-
ing unexplored space and exploiting known regions, achieved
by the interactions between an agent (e.g., neural networks)
and the environment (e.g., DBMS) [43, 12, 40].
Performance Comparison. According to [44], a BO-based
method, Sequential Model-based Algorithm Configuration
(SMAC) [26] yields the best performance since it is efficient
in modeling the heterogeneous search space. We view it as
the current state-of-the-art that does not take text as input
and aim to improve it further.

2.2 Language Models for Database

Natural Language Processing has seen great progress with
the advent of LLM, where GPT-4 [31] has demonstrated
great prowess across a wide range of tasks. This impact
further extends beyond the scope of NLP to the database
community, experiencing a surge in the adoption of LLM to
enhance DBMS, including data profiling [47, 37], code gen-
eration [39, 14], and table-based question answering [48].
When using LLM, there are three typical choices: (1) train-
ing a model from scratch, (2) fine-tuning an existing model,
and (3) using a pre-trained model without parameter mod-
ifications. The first two options require a relatively large
amount of resources, including hardware resources and train-
ing data. Given the impressive in-context learning ability of
GPT-4, we have chosen the third option and use GPT-4 as
our default model unless noted otherwise.

We are aware of only one work DB-BERT [38] utilizes a
pre-trained language model to read manuals and uses the
mined hints to guide a reinforcement learning algorithm. It
exhibits rapid convergence as it benefits from the informa-
tion gained via text analysis. However, it only yields subop-

SIGMOD Record, March 2025 (Vol. 54, No. 1)

timal performance since it utilizes the knowledge narrowly
and suffers from the inadequate exploration of search space.
GPTuner tackles these limitations and thus achieves faster
convergence and better performance. Please refer to our
research paper [23] for a comprehensive comparison.

3. OVERVIEW OF GPTUNER

Workflow. GPTuner is a manual-reading database tuning
system to suggest satisfactory knob configurations with re-
duced tuning costs. Figure 1 presents the tuning workflow.
@ User provides the DBMS to be tuned (e.g., PostgreSQL or
MySQL), the target workload, and the optimization objec-
tive (e.g., latency or throughput). & GPTuner collects and
refines the heterogeneous knowledge from different sources
(e.g., GPT-4, DBMS manuals and web forums) to construct
Tuning Lake, a collection of DBMS tuning knowledge. @&
GPTuner unifies the refined tuning knowledge from Tun-
ing Lake into a structured view accessible to machines (e.g.,
JSON). ® GPTuner reduces the search space dimensional-
ity by selecting important knobs to tune (i.e., fewer knobs
to tune means fewer dimensions). © GPTuner optimizes
the search space in terms of the value range for each knob
based on structured knowledge. ® GPTuner explores the
optimized space via a novel Coarse-to-Fine Bayesian Op-
timization framework, and finally @ identifies satisfactory
knob configurations within resource limits (e.g., the maxi-
mum optimization time or iterations specified by users).
Components. GPTuner consists of three components which
are discussed in the following sections.

4. KNOWLEDGE HANDLER

4.1 Knowledge Preparation

Knowledge Preparation is to collect tuning knowledge from
various sources, filter out noisy contents, summarize the le-
gal parts and make sure the summarization is factual con-
sistent with source contents. We provide a running example
in our technical report [7] and a demonstration [24] for ease
of understanding. The ultimate output is a Tuning Lake
defined as follows:

103

Definition 1 (Tuning Lake). Tuning Lake £ = {d1,dz,...dn}
is a set of n texts, where n is the number of configurable
knobs and d; is the natural language tuning knowledge for
i-th knob. For example, “set shared_buffers to 25% of
the RAM?” (denoted as d;) is the tuning knowledge for knob
“shared_buffers” (the i-th knob).

Step 1: Extracting knowledge from LLM. Except for the
common tuning knowledge sources (e.g., manuals and web
contents), we propose utilizing LLM as a knowledge source
as well. Since GPT is trained on a vast corpus related to
database [9], GPT itself is an informative manual and allows
us to retrieve the knowledge through prompt. In practice, we
surprisingly find that GPT can give reasonable suggestions
that are not included in the manuals. Such suggestions come
from web contents summarized by DBAs and were used as
training data for GPT. Since it is impossible to provide all
web contents to any system and GPT already knows much
of it, it is reasonable to use GPT as a complementary source
of knowledge. We handle the case that GPT gives nonsense
suggestions in the next step.

Step 2: Filtering noisy knowledge. The tuning knowledge
comes from various sources and its quality cannot be guar-
anteed. Thus we filter out noisy knowledge by modeling
this process as a “binary classification problem” and utilize
LLM to solve it. We provide LLM with the candidate tun-
ing knowledge for a knob and an official system view for
this knob (e.g., pg_settings from PostgreSQL). Moreover, we
give a few examples in the prompt to utilize the in-context
learning ability of LLM. LLM evaluates whether the tuning
knowledge conflicts with the system view and we discard any
knowledge that does conflict.

Step 3: Summarizing knowledge from various sources. There
can be multiple tuning knowledge for a knob. While such
tuning guidance obeys the official system view (Step 2), they
could conflict with each other (e.g., different manuals pro-
vide distinct recommended values for the same knob). We
handle this by manually setting priority for each information
source based on its reliability. For example, official manuals
are authoritative and thus have the highest priority, while
LLM has the lowest priority due to its hallucination problem.
We summarize the non-contradictory guidance and delete
the content with low priority for the contradictory parts.

Step 4: Checking factual inconsistency. In the last step,
the summary task is completed by LLM and the generated
summaries may be factually inconsistent (i.e., the summary
includes information that does not appear in the source con-
tents or even contradicts it). Since GPT outperforms previ-
ous methods as a factual inconsistency evaluator [28], we
utilize GPT to check this inconsistency. For each knob,
the summarization and the source contents are included in
prompt for GPT to determine whether there is an incon-
sistency. If an inconsistency is detected, GPT is prompted
to recreate the summarization. This newly generated sum-
mary, along with its source contents, are once again provided
to GPT. This process is repeated until no error is detected.
Robustness Study. It is important to note that hallucina-
tion still remains a challenge in the NLP field, and thus
we propose two error correction mechanisms to minimize
such impact as much as possible. To quantify the relia-
bility, we manually prepare and open-source two datasets,
and conduct experiments. Moreover, we study the effect
of domain knowledge quality (e.g., outdated and incorrect

104

knowledge), and the LLM ability on GPTuner’s tuning per-
formance. More details are provided in Section 7.4.

4.2 Knowledge Transformation

Knowledge transformation is to build a structured view of
the Tuning Lake such that it can be utilized by ML.

Definition 2 (Structured Knowledge). Structured Knowledge
S maintains a structured view s; for each tuning knowl-
edge d; from Tuning Lake L, where s; is a set of attributes
A={ai,as,...,an} (e.g., a1 = suggested_values) with cor-
responding values V = {v1,v2,...,vn} (e.g., 1 =4 GB).

e Determining the Attributes. In the context of DBMS knob
tuning, we primarily consider four types of attributes: sug-
gested_values, min_value, maz_value and special_value. First,
the most typical hint to consider is the recommended val-
ues for a knob since they performed well in the past prac-
tice and can serve as good starting points for new scenario.
Second, we take into account the minimum and maximum
values suggested in the tuning knowledge. This is because
the default value ranges provided by DBMS vendors are ex-
cessively broad, complicating the optimization process (e.g.,
there will be a large number of values whose effect on the
DBMS performance is unknown and this means ML models
require much more iterations to converge to good configura-
tions) and introducing the risk of system crashes (e.g., set
memory-related knobs to values higher than the available
RAM can crash the DBMS). Finally, there are knobs with
“special values” and these values are hard to be modeled by
ML models since they lead to distinct behaviours of DBMS.
Thus we use special_value to handle such special situations.
How to use these values are detailed in Section 5.2.

e Determining the Attribute Values. Extracting specific
knob values for certain attributes from given texts is chal-
lenging due to the brittle nature of LLM (i.e., small modifi-
cations to the prompt can cause large variations in the LLM
outputs [25]). Since it is useful to acquire a more reliable
result by aggregating multiple imperfect but effective results
[11], we develop a Prompt Ensemble Algorithm to determine
the attribute values effectively. Specifically, it involves three
steps: modeling the extracting task as a Natural Language
Problem such that it can be answered by LLM, varying the
prompts to prepare multiple results, and aggregating these
results to produce the final result.

Step 1: we model the transformation as a series of in-
formation extraction problems. At first, we decompose the
transformation task into two subtasks of extracting (1) sug-
gested_values, min_value, maz_value and (2) special_value,
respectively. We tackle special_value separately because spe-
cialvalue has its own context to be discussed in Section
5.2. Next, we prepare the prompt for each subtask. The
{target_values} is a placeholder to be determined by task
type (e.g., it is replaced with the definition of special values
if we want to extract specialvalue from the {knowledge}).

Step 2: we vary the prompts by changing the examples
provided for few-shots learning. We manually prepare K
examples and store them in an Fzample Pool. Then we ran-
domly sample n examples for each prompt (n < K). Specif-
ically, we manually prepare 10 examples (K = 10) since 10
examples are empirically good enough to meet the diver-
sity requirement of ensemble algorithms [8]. More examples
can be added if domain experts are available. Regarding

SIGMOD Record, March 2025 (Vol. 54, No. 1)

the n, more sampled examples might provide better results.
However, this leads to a longer prompt with more tokens to
be processed, resulting in longer processing time and higher
monetary costs. Moreover, since too many examples might
lead to long-context errors, we use n = 3 as suggested [11].
Step 3: we aggregate the results via a majority vote strat-
egy. LLM generates a candidate JSON for each prompt
and we aggregate the results by taking an Element- Wise
Magority Vote strategy, where Element refers to our target
attribute. For each attribute, we rank the values extracted
based on occurrence frequency and choose the value of the
highest frequency as the final result for that attribute. The
resulting JSON is stored in the Structured Knowledge S.

S. SEARCH SPACE OPTIMIZER

5.1 Dimensionality Optimization

We identify knobs that have a significant impact on the
DBMS performance and only tune these important knobs.
Motivation. While there are hundreds of knobs in DBMS
(e.g. PostgreSQL v14.9 has 346 knobs), not all of them sig-
nificantly impact DBMS performance, and it is infeasible to
consider all knobs due to the curse of dimensionality. Recent
studies have shown that tuning a small number of knobs is
enough to yield near-optimal performance while significantly
reducing tuning costs [42, 20], thus we only select important
knobs to tune. Existing methods rely on ML-based algo-
rithms to select important knobs and this requires hundreds
to thousands of evaluations on DBMS under different work-
loads and configurations [20, 44, 41]. Differently, DBAs seek
help from manuals to select which knobs are worth tuning
and this yields better performance [42]. However, it takes
significant burden for DBAs to handle hundreds of knobs.
Therefore, we prompt LLM to simulate DBA’s empirical
judgment to achieve a workload-aware and training-free ap-
proach, considering following factors:

(1) System-Level selects knobs based on the specific DBMS
product. After years of tuning practice, it is empirically
known which knobs are important for a certain DBMS prod-
uct. For instance, it is widely discussed that we can gain sub-
stantial performance improvement by tuning “shared_buff
ers” and “max_wal_size” from PostgreSQL, “innodb_buff
er_pool_size” and “innodb_log_file_size” from MySQL
[42]. More importantly, we find such wisdom is included in
the corpus of GPT-4 [31] and we can extract it by prompting
it to recommend knobs based on the DBMS product.

(2) Workload-Level selects knobs based on workload types.
The workload type is informative for selecting important
knobs since different workload types have distinct require-
ments on DBMS resources, which are regulated by knobs.
For I/O-intensive OLTP workload, where write operations
compete for the limited disk I/O, we can tune disk-related
knobs like “effective_io_concurrency”. For OLAP queries,
we can tune planning and resource-related knobs to handle
their complex structure and resource-intensive nature.

(3) Query-Level selects knobs based on the query bottle-
neck. DBAs always delve into the execution plan of the
time-consuming and frequently executed queries, diagnos-
ing performance bottlenecks and focusing on related knobs.
Given the analysis ability of LLM, we can include the ex-
ecution plan in the prompt such that LLM can choose the
bottleneck-aware knobs. If LLM detects “Sequential Scan”
in the execution plan and the target table contains a large

SIGMOD Record, March 2025 (Vol. 54, No. 1)

number of rows, LLM will recommend adjusting scan-related
knobs like “random_page_cost” to control PostgreSQL query
planner’s bias towards index scans or sequential scans.

(4) Knob-Level complements interdependent knobs to a
given target knob set. One important reason why ML tech-
niques outperform DBA is that they can handle the depen-
dencies between knobs [42]. However, if the given knob set
contains important knobs but excludes the interdependent
knobs, such ability is wasted. Since many dependencies are
explicitly mentioned in the manuals, we can prompt LLM to
read the manuals and capture such knobs. For example, the
official PostgreSQL document suggests “Larger settings for
shared_buffers usually require a corresponding increase in
checkpoint_segments” [5], indicating that we should con-
sider the two knobs at the same time.

Based on the above four factors, we develop an LLM-based
Knob Selection Algorithm. It aspires to utilize LLM to select
important knobs from the complete knob set of a DBMS tai-
lored to a specific workload. The algorithm starts by prepar-
ing a configurable set of knobs and excluding knobs related
to debugging, security and path-setting. Next, it selects
knobs from the four levels. In System Level, DBMS product
is provided and knobs known to hugely influence its perfor-
mance are identified. For the Workload Level, we provide
LLM with the type of the workload (OLTP or OLAP) and
the optimization target (throughput or latency) for further
selection. Query Level Selection retrieves the execution plan
of each query, and utilizes LLM to analyze plans and select
knobs by diagnosing performance bottlenecks and identify-
ing the related knobs. Finally, given the already selected
knobs, we leverage LLM to replenish interdependent knobs.

5.2 Range Optimization

Given each knob’s unique semantics and associated tuning
knowledge, we optimize the value range of each knob.
Region Discard. We utilize min_value and maz_value to dis-
card some regions for the following cases. (1) The regions
are unlikely to result in promising performance. For knob
“random_page_cost”, the value range regulated by DBMS
is [0,1.79 x 10%°%]. Given the large value range, the search
algorithm is likely to sample very large values. However this
will lead to poor performance since it is suggested to set it to
“l.z” if the disk has a random access profile similar to that
of SSDs [1]. Equipped with this prior knowledge, we release
the burden for optimizers to trial vast but meaningless space.
(2) The regions could seize too many system resources. For
resource-related knobs like shared_buffers, a value close to
the maximum system resource could be detrimental to other
services that are running on the same machine. (3) The
regions that can make DBMS crash. For resource-related
knobs, setting a value that exceeds the available resources
could prevent the DBMS from starting (cannot set memory-
related knobs to values higher than the available RAM).
Finally, the recommended range [min_value, maz_value] is
much more narrow than the range provided by DBMS.
Tiny Feasible Space. We use suggested_values from Struc-
tured Knowledge to define a discrete space for each knob.
Such values are valuable since they performed well in the
past and can serve as good starting points for new scenario.
However, they may not be suitable for all cases, as the opti-
mal knob setting depends on the specific environment, which
can be diverse. Instead of relying on these values only, we
can apply a set of multiplicators for each suggested value

105

of all numerical knobs. The intuition behind is to deviate
the suggested value in different directions (smaller or bigger)
with different extents. Formally, given a set of multiplica-
tors M = {mi,ma,...,my,} and a suggested value V for a
knob k, the search space () for this knob is defined as:

Qk)={a-V|aec M} (2)

However, this heuristic approach ignores the value ranges of
knobs and the multiplication results could be useless. For ex-
ample, knob “checkpoint_timeout” has a value range from
30 to 86400 with 90 as a recommended starting point [6].
Given the maximum factor 4 used in DB-BERT [38], the
maximum value to try is 90 x 4 = 360 and this is much
smaller than 86400, meaning a lot of promising values are
ignored. Thus we address this limitation by considering the
value range and calculating the multiplicators dynamically.
For knob k, we denote its maximum (minimum) value as U,
the multiplicator is calculated by the following formula:

a=1+ é(U—V)7 Be{r,r,..
where [is a scaling coefficient with a value from 0 to 1,
and the n candidate values r; are predefined by users. The
choice of U determines the deviation direction (e.g., maxi-
mum makes value bigger while minimum makes it smaller)
and [controls the changing extends. Specifically, V remains
the same or is extended to the maximum (minimum) when
[is set to 0 and 1, respectively. For 8 value between 0 and
1, suggested value V' moves proportionally to its maximum
(minimum). In our experiments, 8 € {0,0.25,0.5}. We con-
duct this deviation process for all numerical knobs and the
resulting discrete space is our Tiny Feasible Space, where
Tiny means the number of values for knobs is significantly
reduced, and Feasible indicates the values are promising.
Virtual Knob Extension. This extension is to handle knobs
that use special values to do something different from what
the knobs normally do [33]. For example, “lock_timeout”,
with a value range from 0 to 2147483647, controls the maxi-
mum allowed duration of any wait for a lock. When it is set
to zero, the timeout function is disabled, making “0” a special
value. However, optimizers may never trial this value (even
though it could be optimal) since the likelihood of sampling
it is extremely low and DBMS performance will be modeled
to degrade as the knob value converges to zero [33]. Thus, we
develop a Virtual Knob Extension. Firstly, we utilize Struc-
tured Knowledge to select which knobs have special values.
Such information is explicitly provided in official documents
[5] and thus can be extracted by Knowledge Handler (Sec-
tion 4.1). Secondly, we add “virtual knobs” (control_knob,
normal_knob and special_knob) for these knobs. control_knob
is a knob with a value of zero or one to determine which value
range will be used. normal_knob and special_knob represent
the normal and the special value range of the original knob,
respectively. Specifically, when control_knob is set to 0, the
normal value range of the knob is considered. If it is set to
1, then the special value range of the knob is used. So in
every tuning iteration, based on the value of control_knob,
only one of normal_knob and special_knob will be activated.
Above technique makes the special values of these knobs to
be considered by optimizers.

S| i€ 0,11} (3)

6. CONFIGURATION RECOMMENDER

106

Basic Idea of Bayesian Optimization. BO is a sequential
model-based algorithm [35] consisting of two components:
the surrogate model and the acquisition function. The model
takes a configuration as input and predicts DBMS perfor-
mance. The acquisition function evaluates the utility of
candidate configurations (e.g., Expected Improvement (EI)),
and we choose the next configuration with the maximum
utility. After the surrogate model is initialized, BO works
iteratively: (1) selecting the next configuration by maximiz-
ing the acquisition function, (2) evaluating the configuration
on DBMS and updating the surrogate model with the new
observation. This is repeated until it runs out of resources.
Limitation of Bayesian Optimization. The key to the success
of BO is its surrogate model. Recent works utilize random
forest as the surrogate model to leverage its efficiency in
modeling high-dimensional and heterogeneous search space,
achieving the state-of-the-art performance [44]. However,
the number of samples required to have sufficient confidence
in predictions could still be significant [22, 21]. Specifically,
it requires hundreds of iterations to achieve satisfactory per-
formance, which is resource-intensive and time-consuming.
The key observation of this work is that such iteration cost
could be significantly reduced if we integrate the domain
knowledge into the optimization process, which motivates
the following novel optimization framework.

Algorithm 1: Coarse-to-Fine BO Framework. Blue
underlined text highlights differences to original BO.

Input: DBMS D; Surrogate Model M; Acquisition
Function A; Workload W; Structured
Knowledge S; Whole Space P; Coarse
Threshold C; Initial Number n.

Output: Knob Configuration X'.

Generate Tiny Feasible Space 7 from S;

-

[N

Generate n samples p; € 7 with space-filling design
(LHS);
Evaluate samples on D to get performance y;;
4 Update M with observations {(pi, yi)};
Coarse Stage:
for i =1 to C do
Z; < arg maxz. 1 A(T) ;

Y

Evaluate #; on D to get performance y;;
Update M with (25, v;);

end

Fine Stage:

10 Reuse the surrogate model M from Coarse Stage;

© o N o o

11 Apply Region Discard on P to get P’;

12 Apply Virtual Knob Extension on P’ to get P”;

13 while not stopping condition do

14 T; < arg maxzcprn A(Z);

15 Evaluate ; on D to get performance y;;
16 Update M with (25, v;);

17 end

18 X < argmax,. yi;
19 return X’;

Coarse-to-Fine Bayesian Optimization Framework. The intu-
ition is to take advantages of the efficiency of coarse-grained
search (aim to acquire non-optimal but effective solutions
with low expenses) and the thoroughness of fine-grained
search (aim to find the optimal solutions by exploring the
space thoroughly). Algorithm 1 describes the workflow.

SIGMOD Record, March 2025 (Vol. 54, No. 1)

Coarse-grained Stage. In the first stage, we only explore part
of the whole space. A widely adopted approach is to dis-
cretize the value ranges of parameters evenly for coarse-
grained search. However, this will lose too many promising
solutions because such a space reduction technique is in-
herently imprecise and non-adaptive. We instead seek help
from knowledge to reduce the space while still retaining the
potential for optimal results. We explore the Tiny Feasible
Space (Line 1) defined in Section 5.2, which is small but re-
liable because it comes from manuals. Following previous
works [18, 21, 44], we initialize the surrogate model with
ten samples (n = 10) generated by Latin Hypercube Sam-
pling (LHS) [29], which distributes samples evenly across
the whole space. Instead of sampling points from the whole
space P, we sample from the Tiny Feasible Space 7 (Line
2). After the samples are evaluated on D (Line 3) and the
surrogate model is initialized (Line 4), we explore T with the
BO algorithm for C iterations (Line 5-8). After the coarse-
grained stage, we try out n + C configurations and this al-
ready yields non-optimal but promising results in practice,
owing to the guidance of domain knowledge.

Fine-grained Stage. Since it is inevitable to lose some impor-
tant configurations for any space reduction technique, we
explore the space thoroughly until we run out of resource
limits (Line 13-17). However, this process could be exhaust-
ing, especially when there are hundreds of knobs to tune.
Thus we make optimizations to enhance the search: (1) we
bootstrap BO with the samples from the first stage (Line
10), (2) we narrow down space P with the Region Discard
technique (Line 11), and (3) we take into account the knobs
with special values with the Virtual Knob Eztension tech-
nique (Line 12). Please refer to our technical report [7] for
a detailed discussion on our bootstrap.

7. EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the effectiveness, scal-
ability, and robustness of GPTuner. We also analyze and
present the costs, and use an ablation study to reveal the ef-
fect of each component. We present only parts of the results
here, please refer to [23] for a complete evaluation.

7.1 Experimental Setup

Workloads. We use TPC-H (OLAP type) with scale factor
1 and TPC-C (OLTP type) with factor 200 as our bench-
marks. TPC-C uses ten terminals with unlimited arrival
rate and the implementations are from BenchBase [17].
Baselines. GPTuner is implemented with SMAC3 library
[27] and uses OpenAl completion API [31]. We compare
it with state-of-the-art methods: DDPG++ [42] is a RL-
based approach, GP is a Gaussian Process-based optimizer
used in iTuned [18] and OtterTune [41], SMAC [44] is the
best-performing BO-based method with random forest as its
surrogate, and DB-BERT is a database tuning tool [38] that
uses BERT for text analysis to guide a RL algorithm.
Tuning Settings. We run experiments with PostgreSQL v14.9
and MySQL v8.0. Following previous works [43, 21, 44], all
algorithms tune the same 60 and 40 knobs of PostgreSQL
and MySQL respectively. We run three tuning sessions for
each method, with each session consisting of 100 iterations
and each iteration requires a stress test for the target work-
load. Aligning with the latest experimental evaluation [44],
we optimize throughput for OLTP workload and 95-th per-
centile latency for OLAP workload, reporting the median

SIGMOD Record, March 2025 (Vol. 54, No. 1)

and quartiles of the best performances. Please refer to our
technical report for more details on the tuning settings [7].

—o— GPTuner —e— SMAC GP —— DB-BERT DDPG++

TPC-H Benchmark (bottom-left is better) TPC-C Benchmark (top-left is better)

w

T 1.50 == —~

8 &_‘1 X 3200
£ 125 bt

< S 3100
— Q.

[0} <

= 100 2 3000
e g

< 075 £ 2900
w

& 0 20 40 60 80 100 0 20 40 60 80 100

Iteration Iteration
Figure 2: Best performance over iterations on PostgreSQL

7.2 Performance Comparison

Optimizing for PostgreSQL. As shown in Figure 2, GPTuner
finds the best performing knob configuration with signifi-
cantly less iterations in both benchmarks. For example, GP-
Tuner rapidly achieves significant performance improvement
and reaches near-optimal latency (44.4% less latency) with
only 20 iterations in terms of TPC-H benchmark. Moreover,
GPTuner continues to achieve a 12.7% reduction of latency
after the 20-th iteration. While DB-BERT presents similar
performance in the first 20 iterations (37.5% less latency),
it fails to further reduce the latency (only 3.4% reduction).
For methods that do not use domain knowledge, they con-
verge much slower than GPTuner (26x slower on average)
and fail to find a configuration comparable to GPTUNER
(35.6% worse on average). The results on TPC-C are simi-
lar to that on TPC-H, where GPTuner converges 12.6x faster
and reaches the highest throughput. On average, GPTuner
takes 92.6% less optimization time to achieve the best base-
line performance.

Optimizing for MySQL. The results on MySQL are similar
to that on PostgreSQL, please refer to [23] for more details.

7.3 Scalability Study

Database Size. We study the impact of database size on
tuning performance by varying the scale factor of TPC-H
from 1 to 10 and 50. As shown in Figure 3, compared to
other methods, GPTuner finds better configurations in much
fewer iterations in all sizes. When the factor is 50, GPTuner
identifies a configuration better than any other methods just
in the 30-th iteration and finally achieves a 42.5% reduction
in latency. An interesting observation is that knowledge-
enhanced approaches (i.e., GPTUNER and DB-BERT) are
affected by the increasing of database sizes slightly, while
other methods suffer from it. This can attribute to the
fact that the complexity of modeling the relation between
configurations and DBMS performance is higher in larger
sizes, since more performance bottlenecks are revealed. GP-
Tuner learns such experience directly from domain knowl-
edge rather than through iterative trial and error, and thus
showcases superior performance, a result similar to [38].

Search Space Dimensionality. We study the impact of space
dimensionality on tuning performance by varying the num-
ber of target knobs from 50 to 100 and 150. Note that
DB-BERT is excluded in this experiment since it relies on
a frequency-based selection strategy to tune a fixed set of
knobs mentioned in the input documents, making it infeasi-
ble to manually control the number of target knobs [38]. As
shown in Figure 5, GPTuner consistently achieves the best

107

—o— GPTuner
Scale Factor = 1

—e— SMAC GP
Scale Factor = 10

DDPG++

—o— SMAC
—o— GPTuner
—&— GPTuner-82

—&— DB-BERT
Scale Factor = 50

GPTuner-50-1
—4— GPTuner-50-2

Z 150 Z 1y z @
5 (e 3 5 150
512 L»R g £ 5 125
3] © © 38 ©
° o 10 ° 2 1.00
£ 1.00 2 2 34 2
2 L 8 2 R 075
> 0.75 = = 30 A
I}] I} Y} 0 20 40 60 80 100
o 0 20 40 60 80 100 o 0 20 40 60 80 100 o 0 20 40 60 80 100 =] lteration
Iteration Iteration Iteration
Figure 4: Effect of Knowledge
Figure 3: Effect of Database Size on Tuning Performance (bottom-left is better) anlity (bottom-left is bette%)
—e— GPTuner —e— SMAC GP DDPG++ . —* GPTuner-4 —— DB-BERT
™ o~ — &L —e— GPTuner-3.5 DB-GPT-4
w 1,50 Knob Number = 50 w 150 Knob Number = 100 w 15 Knob Number = 150 > 1509
125 $ 495 84,4 § 125 L‘-;l
© T e T 2 100 %
o 1.00 o o =
= i = 1.00 =11 L 075
R e R R £
< 075 i e B 0 20 40 60 80 100
B 0 20 40 60 80 100 8 9750 20 40 60 80 100 8 0% 20 40 60 80 100 lteration

Iteration Iteration

Figure 5: Effect of Space Dimensionality on Tuning Performance (bottom-left is better)

performance in all space sizes. While other methods perform
well in low-dimensional case, their performance deteriorates
in high-dimensional cases. This is because although the di-
mensionality is fixed for all methods, GPTuner still benefits
from its Range Optimization discussed in Section 5.2.

7.4 Robustness Study

Effect of Domain Knowledge Quality. (1) Outdated Knowl-
edge. We use PostgreSQL manual of version 9.1 as the
knowledge input for GPTuner to tune PostgreSQL v14.9,
which is denoted as “GPTuner-outdated”. (2) Inaccurate
Knowledge. Firstly, we use domain knowledge with an ac-
curacy of 82% without using step 2 as a filter of step 1
(“GPTuner-82”) and compare it to the original GPTuner.
Next, among all the target knobs, we randomly select half
of them and assign the factual inconsistent knowledge to
them. This procedure is repeated five times and we present
two representative results, which are denoted as “GPTuner-
50-17 and “GPTuner-50-2”, respectively.

In Figure 4, the higher the knowledge quality, the bet-
ter the tuning performance. Note that outdated knowledge
only affects tuning performance slightly, while inaccurate
knowledge impacts tuning performance with different de-
grees. This relates to our motivation in Section 5.1, that
only some knobs are crucial to optimize DBMS performance.
GPTuner benefits a lot if the knowledge of these important
knobs is correct. In production environment, we encourage
users to double check such knowledge. Given that GPTuner
under noisy knowledge is still better than the best optimizer
without knowledge input (SMAC), we believe GPTuner is
robust enough to learn from mistakes in its BO stage and
achieve satisfactory performance optimization ultimately.
Effect of Different Language Models. We analyze the ef-
fect of LLM on tuning performance. Specifically, DB-BERT
is upgraded to use GPT-4 (“DB-GPT-4”), and GPTuner is
tested with “gpt-3.5-turbo” and “gpt-4” (“GPTuner-3.5” and
“GPTuner-4”). As shown in Figure 6, DB-BERT does not

108

Iteration
Figure 6: Effect of Language
Models (bottom-left is better)

benefit from the improvement of language model, implying
its design is less dependent on the quality of language model.
Both versions of GPTuner outperform DB-BERT methods,
and GPTuner significantly benefits from GPT-4, demon-
strating its ability to leverage more sophisticated LLM.

8. CONCLUSION AND OUTLOOK

We present GPTuner, a manual-reading database tuning

system that leverages domain knowledge to enhance the
knob tuning process. Extensive experiments have demon-
strated its effectiveness, scalability, and robustness.
LLM for DBMS Tuning. We are exploring opportunities to
further improve the tuning. First, GPTuner applies domain
knowledge to individual knobs independently, overlooking
interactions between multiple knobs. Second, incorporating
domain knowledge to exclude unsafe configurations can en-
hance reliability and enable support for online tuning. This
represents an exciting opportunity to bridge offline knob
tuning with online query optimization. Third, it is worth
investigating whether the tuning of Vector Databases can
benefit from lessons learned in tuning Relational Databases.
Finally, using LLM to directly recommend configurations of-
fers promising solutions to cold-start issues in DBMS tuning.
LLM for Databases. LLM and future database systems have
the potential to manage and query all the world’s data (text,
image, video). Integrating LLM into the design of future sys-
tems introduces both opportunities and challenges. Possible
areas include developing natural language query interface,
designing end-to-end pipelines to provide text-to-results con-
venience, creating query optimizers that leverage LLM (e.g.,
SQL rewrite) and support multi-modal data, utilizing LLM
for data discovery and processing, and rethinking fundamen-
tal data management principles for these advancements.

Acknowledgements

Mingjie Tang acknowledges the support of the National Sci-
ence Foundation of China under Grant Number 92470204.

SIGMOD Record, March 2025 (Vol. 54, No. 1)

—¥— GPTuner-outdated

9. REFERENCES

[1] PostgresqlCO.NF. https://postgresqlco.nf/.

[2] https://drive.google.com/file/d/
1Ss6EL-B31hKkwVNBW5vPu-JQ-IeldaUJ.

[3] HackerNews, 2021.
https://news.ycombinator.com/item?id=28869509.

[4] 2023. https://www.postgresql.org/docs/current/

runtime-config-resource.html.

PostgreSQL, 2023. https:

//www.postgresql.org/docs/current/index.html.

[6] EDB, 2023. https://www.enterprisedb.com/blog/

tuning-maxwalsize-postgresql.

[7] GPTuner: full version, 2024.

https://github.com/SolidLao/GPTuner/blob/main/

gptuner-technical-report.pdf.

Toufique Ahmed and Premkumar Devanbu. Few-shot

training llms for project-specific code-summarization.

In Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering, ASE

22, New York, NY, USA, 2023. Association for

Computing Machinery.

[9] Sihem Amer-Yahia, Angela Bonifati, Lei Chen,
Guoliang Li, Kyuseok Shim, Jianliang Xu, and
Xiaochun Yang. From large language models to
databases and back: A discussion on research and
education, 2023.

[10] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni,
Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: An
extensible framework for program autotuning. In
Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14,
page 303-316, New York, NY, USA, 2014. Association
for Computing Machinery.

[11] Simran Arora, Avanika Narayan, Mayee F. Chen,
Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
Frederic Sala, and Christopher Ré. Ask me anything:
A simple strategy for prompting language models,
2022.

[12] Baoging Cai, Yu Liu, Ce Zhang, Guangyu Zhang,

Ke Zhou, Li Liu, Chunhua Li, Bin Cheng, Jie Yang,
and Jiashu Xing. Hunter: An online cloud database
hybrid tuning system for personalized requirements. In
Proceedings of the 2022 International Conference on
Management of Data, SIGMOD ’22, page 646-659,
New York, NY, USA, 2022. Association for
Computing Machinery.

[13] Stefano Cereda, Stefano Valladares, Paolo Cremonesi,
and Stefano Doni. Cgptuner: A contextual gaussian
process bandit approach for the automatic tuning of it
configurations under varying workload conditions.
Proc. VLDB Endow., 14(8):1401-1413, apr 2021.

[14] Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li,
Rahul Nadkarni, Yushi Hu, Caiming Xiong, Dragomir
Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A.
Smith, and Tao Yu. Binding language models in
symbolic languages, 2023.

[15] Benoit Dageville and Mohamed Zait. Sql memory
management in oracle9i. In Proceedings of the 28th
International Conference on Very Large Data Bases,
VLDB ’02, page 962-973. VLDB Endowment, 2002.

[16] Xiang Deng, Prashant Shiralkar, Colin Lockard,

[5

8

SIGMOD Record, March 2025 (Vol. 54, No. 1)

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

27]

Binxuan Huang, and Huan Sun. Dom-lm: Learning
generalizable representations for html documents.
arXw preprint arXiv:2201.10608, 2022.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudré-Mauroux. Oltp-bench: An
extensible testbed for benchmarking relational
databases. PVLDB, 7(4):277-288, 2013.

Songyun Duan, Vamsidhar Thummala, and Shivnath
Babu. Tuning database configuration parameters with
ituned. Proc. VLDB Endow., 2(1):1246-1257, aug
2009.

Matthias Feurer and Frank Hutter. Hyperparameter
optimization. Automated machine learning: Methods,
systems, challenges, pages 3—-33, 2019.

Konstantinos Kanellis, Ramnatthan Alagappan, and
Shivaram Venkataraman. Too many knobs to tune?
towards faster database tuning by pre-selecting
important knobs. In Proceedings of the 12th USENIX
Conference on Hot Topics in Storage and File
Systems, HotStorage’20, USA, 2020. USENIX
Association.

Konstantinos Kanellis, Cong Ding, Brian Kroth,
Andreas Miiller, Carlo Curino, and Shivaram
Venkataraman. Llamatune: Sample-efficient dbms
configuration tuning. Proc. VLDB Endow.,
15(11):2953-2965, jul 2022.

Mayuresh Kunjir and Shivnath Babu. Black or white?
how to develop an autotuner for memory-based
analytics. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data,
SIGMOD 20, page 16671683, New York, NY, USA,
2020. Association for Computing Machinery.

Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang,
Yunjia Zhang, Zhiyuan Cheng, Wanghu Chen, Mingjie
Tang, and Jianguo Wang. Gptuner: A manual-reading
database tuning system via gpt-guided bayesian
optimization. Proc. VLDB Endow., 17(8):1939-1952,
May 2024.

Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang,
Yunjia Zhang, Zhiyuan Cheng, Wanghu Chen,
Yuanchun Zhou, Mingjie Tang, and Jianguo Wang. A
demonstration of gptuner: A gpt-based
manual-reading database tuning system. In
Companion of the 2024 International Conference on
Management of Data, SIGMOD/PODS ’24, page
504-507, New York, NY, USA, 2024. Association for
Computing Machinery.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei
Chen, Jian-Guang Lou, and Weizhu Chen. On the
advance of making language models better reasoners.
arXiv preprint arXiv:2206.02336, 2022.

Marius Lindauer, Katharina Eggensperger, Matthias
Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank
Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of
Machine Learning Research, 23(54):1-9, 2022.
Marius Lindauer, Katharina Eggensperger, Matthias
Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank
Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of

109

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

110

Machine Learning Research, 23(54):1-9, 2022.
Zheheng Luo, Qiangian Xie, and Sophia Ananiadou.
Chatgpt as a factual inconsistency evaluator for text
summarization, 2023.

Michael D. McKay. Latin hypercube sampling as a
tool in uncertainty analysis of computer models. In
Proceedings of the 24th Conference on Winter
Simulation, WSC 92, page 557-564, New York, NY,
USA, 1992. Association for Computing Machinery.
Fatemeh Nargesian, Erkang Zhu, Renée J Miller,

Ken Q Pu, and Patricia C Arocena. Data lake
management: challenges and opportunities.
Proceedings of the VLDB Endowment,
12(12):1986-1989, 2019.

OpenAl. Gpt-4 technical report. arXiv preprint
arXiv:2803.08774, 2023.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin
Lin, Jiexi Lin, Lin Ma, Prashanth Menon, Todd C
Mowry, Matthew Perron, lan Quah, et al. Self-driving
database management systems. In CIDR, volume 4,
page 1, 2017.

Andrew Pavlo, Matthew Butrovich, Lin Ma,
Prashanth Menon, Wan Shen Lim, Dana Van Aken,
and William Zhang. Make your database system
dream of electric sheep: Towards self-driving
operation. Proc. VLDB Endow., 14(12):3211-3221, jul
2021.

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa,
Ce Zhang, and Christopher Ré. Incremental
knowledge base construction using deepdive. In
Proceedings of the VLDB Endowment International
Conference on Very Large Data Bases, volume 8, page
1310. NIH Public Access, 2015.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing
systems, 25, 2012.

David G. Sullivan, Margo 1. Seltzer, and Avi Pfeffer.
Using probabilistic reasoning to automate software
tuning. In Proceedings of the Joint International
Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’04/Performance
'04, page 404-405, New York, NY, USA, 2004.
Association for Computing Machinery.

Immanuel Trummer. Can deep neural networks
predict data correlations from column names? arXiv
preprint arXiv:2107.04553, 2021.

Immanuel Trummer. Db-bert: A database tuning tool
that "reads the manual”. In Proceedings of the 2022
International Conference on Management of Data,
SIGMOD 22, page 190-203, New York, NY, USA,
2022. Association for Computing Machinery.
Immanuel Trummer. Demonstrating gpt-db:
Generating query-specific and customizable code for
sql processing with gpt-4. Proceedings of the VLDB
Endowment, 16(12):4098-4101, 2023.

Immanuel Trummer, Junxiong Wang, Ziyun Wei,
Deepak Maram, Samuel Moseley, Saehan Jo, Joseph
Antonakakis, and Ankush Rayabhari. Skinnerdb:
Regret-bounded query evaluation via reinforcement
learning. ACM Trans. Database Syst., 46(3), sep 2021.
Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,

42]

(43]

(4]

(45]

(46]

(47]

(48]

(49]

and Bohan Zhang. Automatic database management
system tuning through large-scale machine learning. In
Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17,
page 1009-1024, New York, NY, USA, 2017.
Association for Computing Machinery.

Dana Van Aken, Dongsheng Yang, Sebastien Brillard,
Ari Fiorino, Bohan Zhang, Christian Bilien, and
Andrew Pavlo. An inquiry into machine
learning-based automatic configuration tuning services
on real-world database management systems. Proc.
VLDB Endow., 14(7):1241-1253, mar 2021.

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao,
Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng
Cheng, Li Liu, Minwei Ran, and Zekang Li. An
end-to-end automatic cloud database tuning system
using deep reinforcement learning. In Proceedings of
the 2019 International Conference on Management of
Data, SIGMOD °’19, page 415432, New York, NY,
USA, 2019. Association for Computing Machinery.
Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian
Tan, Feifei Li, and Bin Cui. Facilitating database
tuning with hyper-parameter optimization: A
comprehensive experimental evaluation. Proc. VLDB
Endow., 15(9):1808-1821, may 2022.

Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin,
Jian Tan, Feifei Li, Tieying Zhang, and Bin Cui.
Restune: Resource oriented tuning boosted by
meta-learning for cloud databases. In Proceedings of
the 2021 International Conference on Management of
Data, SIGMOD ’21, page 2102-2114, New York, NY,
USA, 2021. Association for Computing Machinery.
Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li,
and Bin Cui. Towards dynamic and safe configuration
tuning for cloud databases. In Proceedings of the 2022
International Conference on Management of Data,
SIGMOD 22, page 631-645, New York, NY, USA,
2022. Association for Computing Machinery.

Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru
Krishnan, Andreas C Miiller, Dalitso Banda, Fotis
Psallidas, and Jignesh M Patel. Schema matching
using pre-trained language models. In 2023 IEEE 39th
International Conference on Data Engineering
(ICDE), pages 1558-1571. IEEE, 2023.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel.
Reactable: Enhancing react for table question
answering, 2023.

Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang
Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and
Yingchun Yang. Bestconfig: Tapping the performance
potential of systems via automatic configuration
tuning. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, page 338-350, New York,
NY, USA, 2017. Association for Computing
Machinery.

SIGMOD Record, March 2025 (Vol. 54, No. 1)

