If All Else Fails, Read the Instructions! A Perspective on
“GPTuner: An LLM-Based Database Tuning System”.

Immanuel Trummer

The performance of a database management system de-
pends on various tuning parameters. From the amount of
memory allocated to certain operators over the degree of
parallelism used in specific scenarios up to logging and recov-
ery behavior, almost every aspect of data processing can be
influenced by setting parameters accordingly. Those settings
can have a significant impact on the performance of database
systems. Default settings tend to work badly for any given
scenario. That motivates the question: how can we find pa-
rameter settings to optimize a specific performance metric
(e.g., run time or throughput) for a specific workload?

Following the well-known saying “If all else fails, read the
instructions!”, a human database administrator would prob-
ably start by reading the database manual. It explains the
semantics of various parameters and provides first hints on
how to set them appropriately for specific workloads and
hardware types. After reading the manual, the human ad-
ministrator might start browsing the web for tutorials on
database tuning, focusing primarily on tutorials that are
relevant to the specific database system, hardware and soft-
ware platform, and workload type of interest. After that,
the administrator might still skim a few blog entries, or re-
lated discussions on web forums like Stack Overflow. After
digesting all of that relevant information, the administra-
tor might try out a few combinations of parameter settings,
informed by the hints obtained from web text. For those
few settings, the administrator would probably evaluate the
performance on a representative workload sample and select
the best alternatives.

Until quite recently, automated tools for database tun-
ing [3, 2] would miss out on all of these valuable sources
of information. The space of possible parameter settings is
large, integrating hundreds of tuning parameters for mature
database systems such as PostgreSQL and MySQL. Unlike
other optimization problems in the database domain, no an-
alytical models are available that link tuning choices to per-
formance estimates. This means that finding optimal set-
tings requires actually executing and evaluating parameter
settings by running example workloads, e.g., in the context
of a reinforcement learning framework [2] (one of the most
popular approaches to database tuning). Without further
guidance enabling tools to prune and prioritize the search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2025 ACM 0001-0782/24/0X00 ...$5.00.

100

space, this approach is extremely expensive as it requires
many trial runs to find good configurations.

The advent of large language models (LLMs) opens up
new possibilities for database tuning. With almost human-
level text processing abilities, they unlock text documents
as an additional source of information for database tuning.
In other words, the saying “If all else fails, read the instruc-
tions!” now applies to automated tuning tools as well. GP-
Tuner [1] exploits LLMs to extract useful hints for database
tuning, e.g., a recommendation to set specific tuning param-
eters to specific values. Then, it explores a search space of
reduced size, informed by the information extracted from
text, to find good configurations quickly.

The GPTuner system dethrones DB-BERT [4], the system
pioneering the use of LLMs for database tuning, by innovat-
ing along multiple axes. First, it exploits the capabilities of
modern LLMs, including the likes of GPT-4, to gain more
information for database tuning, compared to prior work in
this space. For instance, it exploits LLMs to uncover incon-
sistencies between tuning recommendations made by differ-
ent sources. In addition, it takes into account the reliabil-
ity of different sources when aggregating recommendations.
Second, GPTuner innovates in the optimization phase, ex-
ploring a search space shaped by mined tuning hints via
trial runs. Different from prior work in that space, notably
DB-BERT, GPTuner replaces reinforcement learning with a
Bayesian Optimization framework. To make this work well,
GPTuner exploits LLMs again to reduce the number of con-
sidered tuning parameters and the value ranges considered
for each of them. The resulting system achieves new state-
of-the-art results for LLM-supported database tuning.

1. REFERENCES

[1] J. Lao, Y. Wang, Y. Li, J. Wang, Y. Zhang, Z. Cheng,

W. Chen, M. Tang, and J. Wang. GPTuner: A
Manual-Reading Database Tuning System via GPT-Guided
Bayesian Optimization. PVLDB, 17(8):1939-1952, 2024.

[2] G. Li, X. Zhou, S. Li, and B. Gao. QTune: A QueryAware
database tuning system with deep reinforcement learning.
PVLDB, 12(12):2118-2130, 2018.

[3] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,

P. Menon, T. C. Mowry, M. Perron, I. Quah, S. Santurkar,
A. Tomasic, S. Toor, D. V. Aken, Z. Wang, Y. Wu, R. Xian,
and T. Zhang. Self-driving database management systems.
In CIDR, pages 1-6, 2017.

[4] I. Trummer. DB-BERT: a Database Tuning Tool that
“Reads the Manual”. In SIGMOD, pages 190-203, 2022.

SIGMOD Record, March 2025 (Vol. 54, No. 1)

