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ABSTRACT
Data files serve as a vital resource for all data-driven appli-

cations. Among these, comma-separated value (CSV) files
are particularly popular with users and businesses due to
their flexible standard. However, also due to this loose stan-
dard, the data in these files are often indeed “raw”, fraught
with many types of structural inconsistencies that hinder
seamless ingestion into a data system. We say that rows in
CSV files with such structural inconsistencies are ill-formed.

Traditionally, data practitioners write custom code to re-
pair the structure and format of ill-formed rows, even before
they can leverage data cleaning tools and libraries, which
typically assume that data are already properly loaded. Writ-
ing such code and configuring loading scripts is tedious,
time-consuming, and requires both expertise and frequent
human intervention.

To address these challenges, we present Tasheeh – a sys-
tem that automatically detects ill-formed rows containing
data and then standardizes their structure into a uniform
format based on the structure of well-formed rows. By au-
tomating these essential steps, our system frees up valuable
time and resources, enabling practitioners to focus on down-
stream stages of the data processing pipeline.

1. REPAIRING ILL-FORMED DATA ROWS
Preparing or wrangling data, including raw data in files,

is a decades-old problem. For raw data, comma-separated
value (CSV) files, due to their flexible standard, are particu-
larly popular among business users, data storage companies,
and researchers to collect and share data [3, 4, 29, 31, 32, 39,
41]. Our recent data loading benchmark, Pollock [47], sur-
veyed 17 governmental data portals across six continents and
found that CSV files are the second most popular file format,
making up over 31% of their datasets, emphasizing their crit-
ical role in data processing pipelines. However, their popu-
larity, driven by their flexible format, demands much e↵ort
for data practitioners during pre-processing: due to their
loose format, these files appear in various dialects [9, 12, 46]
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Figure 1: A sample of a raw CSV file with ill-formed rows
due to structural inconsistencies.

deviating from the RFC standard [20]. In addition, they
often contain various structural inconsistencies [15,24].

According to the Pollock survey, an analysis of 3 712
real-world CSV files from the Mendeley data-sharing plat-
form1 and the UK Government data portal2 revealed wide-
spread deviations from the RFC standard. Specifically, 1 040
files exhibited inconsistent row lengths, caused by schema
drift, preamble lines, or mismatched column counts. Re-
garding delimiters, 943 files did not use the standard comma
delimiter, including 834 that used semicolons, 101 that re-
lied on combinations of commas with whitespace or tabs,
and 8 that exclusively used tabs or whitespace, introducing
inconsistencies across rows. Furthermore, 476 files contained
multiple header lines, of which 94 had multirow table head-
ers spanning two or three lines, and 282 included pream-
ble rows separating comments or metadata from the table.
Newline sequences also varied: instead of following the stan-
dard combination of carriage return and line feed (CRLF),
1 691 used only line feed (LF), and 7 relied solely on car-
riage return (CR). These results underscore the prevalence
and diversity of structural challenges encountered in real-
world CSV data.

1https://www.mendeley.com/
2https://www.data.gov.uk/
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Consequently, it is challenging to load these files correctly
into data-driven systems without prior data preparation steps
[14, 47]. Developers and scientists spend much of their de-
velopment time cleaning and organizing data in these files,
leaving less time for analytical tasks [19,34,45].

Recently, our community has begun recognizing such short-
comings as research opportunities and has developed solu-
tions for preparing and cleaning data [5–7, 15, 24, 28, 35, 38,
40, 44]. However, we are still far from creating a fully au-
tomated data processing pipeline, in part due to the open
challenges of handling raw CSV files.

Among the many challenges, detecting and cleaning “ill-
formed” rows (see Section 3.3 for a formal definition) in CSV
files are di�cult problems [15]. Such ill-formed rows occur in
raw data due to loosely defined schemata, incorrect format-
ting of values, discrepancies in row structures, etc. They can
lead to aborted loading processes, incorrectly parsed data,
and can interfere with the training process of machine learn-
ing algorithms. Figure 1 shows an example of a raw CSV file
taken from a government data portal. It highlights groups
of ill-formed rows with di↵erent inconsistencies. Our goal is
to automatically detect those rows that contain data, which
we call wanted rows (see Section 3.1 for a formal definition),
and automatically repair their structural inconsistencies.

These detection and repair tasks are challenging, because
some rows are ill-formed and contain no data, e.g., table
titles, footnotes, or empty rows. We call these rows ill-
formed unwanted. Other rows may contain data yet be
ill-formed, e.g., because they contain additional structural
or formatting information and possibly additional columns.
We refer to these rows as ill-formed wanted. To detect ill-
formed rows, we make use of our pattern-based system, Su-

ragh [15], which abstracts row structures into structural
patterns based on a syntactic pattern grammar. Here, we
extend the use of our syntactic pattern grammar with our
new system Tasheeh

3. The goal of Tasheeh is to improve
the classification of ill-formed rows by recognizing wanted
and unwanted ill-formed rows, but in particular to auto-
matically clean wanted rows.

In the following, we discuss structural challenges using the
example file shown in Figure 1.

Example 1. The real-world file in Figure 1 contains, among
other inconsistencies, cell values with either a non-standard
quote character or a missing quote escape character, e.g.,
""5,249"" (row 30). The RFC standard for CSV files [20]
states: 1) Each field must be enclosed in double-quotes if
its value contains a character used as a field delimiter; and
2) a double-quote appearing inside a field must be escaped
by preceding it with another double quote. With those rules,
the standardized versions of the value should either appear
as "5,249" as per the Rule 1 if the cell value is a number
5,249, or as """5,249""", as per Rule 2 if the cell value is a
string value "5,249" (with quotations included). Loading the
file as-is in a downstream application might lead to a shift
of values across columns.

Example 2. Another example of structural inconsistency
in the file of Figure 1 is data and metadata appearing in the
same row (row 84). We also observed this inconsistency ap-
pear in the opposite order as data next-to metadata. In both

3
Tasheeh (tas-heeh) is an Urdu word that means correc-

tion or rectification.

combinations, metadata appear mainly in the form of com-
ments, where users leave notes for reference or try to explain
data in that row. Another cause is manual data entry or au-
tomatic data integration from multiple sources, where users
or automated scripts miss the newline separator, resulting
in a di↵erent number of columns across rows.

Tasheeh aims to help streamline a data processing pipeline
by automating preparation tasks at the structural level and
minimizing the burden of manual data preparation. More-
over, a comprehensive demo integrating our error detection
system, Suragh, and the correction system, Tasheeh, was
presented at CIKM 2023 [16]. The demo features a mini-
malist, user-friendly graphical interface designed to detect
and correct errors in CSV files with just a few clicks.

Our work makes the following main contributions:

1. A formalization to describe ill- and well-formedness of
rows, wanted and unwanted rows, and row structure
standardization.

2. A set of files from four open data sources, with each
row annotated for ill-formedness or well-formedness,
and for wantedness or unwantedness, for a total of
200 351 rows. The files, together with the classifica-
tion annotations, manually cleaned wanted rows, and
code, are publicly available4.

3. A system, Tasheeh, that automatically recognizes ill-
formed wanted rows and cleans their structure using a
novel pattern transformation algebra.

4. A wide range of experiments conducted to validate
Tasheeh for both classification and transformation of
ill-formed rows.

The rest of the paper is organized as follows: Section 2
presents related research e↵orts and tools addressing data
preparation challenges. Section 3 defines the relevant con-
cepts related to pattern extraction and ill- and well-formed-
ness of rows, and provides formal definitions. Section 4 illus-
trates the workflow of Tasheeh and presents the processes
of classifying and transforming ill-formed rows. Section 5
presents the experimental evaluation of Tasheeh. Section 6
provides a summary of this study and discusses data prepa-
ration opportunities beyond Tasheeh.

2. STATE-OF-THE-ART IN DATA PREPA-
RATION

While structural inconsistencies in CSV files have been
underexplored, there have been some notable attempts in re-
lated work to comprehend the structure of tabular data. We
provide a succinct overview of these approaches and briefly
describe the pertinent research directions that can be com-
plemented by our research.

Table extraction.
Extracting relational tables from diverse sources has led

to the development of several tools [4, 5, 10, 11, 25, 27]. No-
table examples include Tegra [5] (for web lists), Table-

Sense [10] (for spreadsheets), and Pytheas [4] (for CSV
files). Tegra optimizes row splits to ensure column align-
ment, TableSense uses deep learning to segment tables in
4https://github.com/HMazharHameed/TASHEEH
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spreadsheets, and Pytheas employs machine-learned rules
to detect tables in CSV files by identifying the position of
data rows. While these systems do not explicitly focus on
cleaning structural issues, which is the primary focus of our
research, we experimentally compare Tasheeh with Pyth-

eas, as it is designed for CSV files and e↵ectively identifies
data rows, enabling a direct comparison with our classifica-
tion component (Section 5.2). In contrast, Tegra assumes
that delimiters are consistent across all rows, while Table-

Sense relies on the structured format of spreadsheets with
clearly defined cell boundaries. These assumptions limit
their applicability to the less structured and more variable
nature of CSV files, rendering a direct comparison unfair.

Row and cell type detection.
In plain text files like CSV, not every row may contain

data [29]. Therefore, accurately identifying the cell and row
boundaries and comprehending their underlying semantics
are essential for e�cient data processing. Researchers have
devised various tools employing both supervised and unsu-
pervised approaches to classify cells and rows within tabu-
lar data [2, 14, 24, 26, 33]. Among these approaches, Jiang
et al. proposed the state-of-the-art Strudel approach [24]:
Strudel is a multi-class random forest classifier that lever-
ages three types of features: content, context, and compu-
tational features to classify rows in CSV files. Although
its primary focus is not on structure-cleaning, we include it
in our comparative analysis by evaluating its performance
against Tasheeh’s classification component (Section 5.2).

File structure preparation.
In the context of non-standardized CSV files, various struc-

tural inconsistencies can arise when processing data using
di↵erent tools or parsers [47]. Among these, one notable is-
sue is the occurrence of shifted column values. Sun et al.
introduced the SRFN system [42] to address this specific
problem. The approach focuses on repairing shifted values
by leveraging the likelihood of neighboring attribute values
and determining the correct position for swapping values
among columns. It is the sole solution that attempts to ad-
dress one structural problem in CSV files. In our evaluation
(Section 5.3), we compare the performance of the Tasheeh

transformation component with the SRFN system.

Commercial Tools for Data Preparation.
The widespread adoption of commercial data preparation

tools underscores the market’s recognition of their vital role
in modern data pipelines [14]. Tools like OpenRefine [22],
Tableau [43], and Trifacta [23] cater to diverse use cases,
streamlining error detection, data transformation, and inte-
gration tasks. However, as highlighted in our survey of com-
mercial tools [14], these solutions often rely on pre-processed
and well-structured input data, struggling to handle raw,
non-standardized CSV files. This gap emphasizes the need
for more adaptive solutions to address challenges like struc-
tural inconsistencies in raw data, providing a strong impetus
for systems like Tasheeh.

3. SYNTACTIC ROW PATTERNS
In this section, we first define wanted and unwanted rows

and present our problem definition. Following that, we pro-
vide a brief overview of our previous work, Suragh, which

Figure 2: Selected rows of the CSV file of Figure 1 with
well-formed rows (green), ill-formed wanted rows (blue), and
an ill-formed unwanted row (red). The dominant pattern at
the bottom corresponds to the file structure as automatically
detected by SURAGH.

we use as an initial step in Tasheeh.

3.1 Problem Definition
The input to our approach is a file that is composed of a

number of rows. A row is a sequence of characters termi-
nated by a newline separator. Further, let T be a relational
table serialized in a CSV file F and let R be the set of rows
of F . Every tuple t 2 T contains data from one or possi-
bly multiple rows (e.g., due to a misplaced line separator).
Moreover, due to missing or misplaced line separators, a sin-
gle row may contain data for two tuples. Formalizing these
concepts, we define wanted and unwanted rows as follows:

Definition 1. Let T be a relational table serialized in a
CSV file F , and let � : T ! 2R be a function that maps
every tuple t 2 T to a non-empty set of rows in F from
which it can be parsed. A row r 2 R is called wanted, if it
serializes data from any tuple of T , i.e., if 9t 2 T : r 2 �(t),
and unwanted otherwise.

Since at parsing time we do not know the relational ta-
ble serialized in a file F (nor do we know �), classifying
rows as wanted or unwanted is often not trivial and leads
to a trade-o↵ between the two data quality dimensions com-
pleteness and soundness. If we mistakenly label a ‘wanted’
row as ‘unwanted’, it leads to information loss, causing the
loaded table to miss some data and thus becoming incom-
plete. Vice versa, if an ‘unwanted’ row is erroneously classi-
fied as ‘wanted’, it introduces incorrect information into the
table.We now define the problem we address as follows:

Given as input a raw data file F with a set of
rows, identify the structure of the table T serial-
ized in F and transform all wanted rows to follow
that structure, while retaining all of their data
values.

To solve this problem, we need to perform three steps:
(1) structure detection to identify the table T , (2) row classi-
fication to separate wanted and unwanted rows, and (3) row
transformation to standardize the structure of wanted rows
into a uniform format.

We have addressed the first step of the problem in our pre-
vious work, Suragh, using a pattern-based approach [15].
Suragh takes a CSV file as input and e↵ectively classifies
its rows as ill-formed or well-formed based on the dominant
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Figure 3: The workflow of TASHEEH

row pattern(s) (see Figure 2). For the next steps, we devel-
oped Tasheeh that utilizes the pattern language introduced
in Suragh and further enhances the process by classifying
ill-formed rows into wanted and unwanted rows. Figure 2
shows the example results of Tasheeh’s classification pro-
cess on the results of Suragh.

In the following sections, we briefly explain how Suragh

extracts dominant row patterns from CSV rows, a basic step
for row classification and transformation in Tasheeh. Note
that we assume the transformations should only clean the
structure of the rows and should neither lose data nor invent
new information that was not present in the input file.

3.2 Pattern Modeling
The goal of Suragh is to understand the structure of rows

in an input file, abstracting it with patterns. To generate
patterns, Suragh defines a grammar to map cell values into
abstract representations. We refer to the production rules of
this grammar as abstractions, which are of two types: (1) en-
coder and (2) aggregator. The encoder abstractions convert
single characters into a more general representation, e.g.,
the character “A” is represented with hULi, for “Upper Let-
ter”. The aggregator abstractions combine representations
resulting from other encoder and aggregator abstractions
based on a given rule, e.g., the character sequence “ABC”
is first encoded as hULihULihULi, and then can be combined
into the single abstraction hSEQULi, for “Sequence of Up-
per Letters”. Using the given pattern grammar, including
21 abstractions, Suragh generates syntactic cell patterns
for each cell value [15]. Abstractions are weighted based on
their specificity to later prune overly general patterns.

3.3 Pattern Extraction
After generating patterns for each cell value, Suragh ag-

gregates them for each column, creating syntactic column
patterns. Among all possible cell patterns within a column,
it retains only those with a su�ciently high specificity and
with enough coverage of actual cells in the column. For the
example input file in Figure 1, the three selected column
patterns for the column “Percentage” are hSEQDi.hSEQDi%,
hDi.hDihDi%, and hDihDi.hDihDi%.

A syntactic row pattern is obtained by combining one col-
umn pattern for each of the input file columns. To identify
good row patterns that represent one or more rows, Suragh

inspects all combinations of columns patterns, again select-
ing those with high specificity and coverage. For the input
file in Figure 1, two of the syntactic row patterns are shown
in the following table where cell separators indicate the “De-

limiter” hDELi abstraction, which we omit to save space:

# Syntactic Row Patterns

P1 hDihDihDihDi hULihSEQLLi hDihDihDi hDihDihDi hDi.hDihDi %
P2 hDihDihDihDi hULihSEQLLi hDihDihDi hSEQDi hSEQDi.hSEQDi %

Row patterns that are not a proper subset of another pat-
tern are called dominant patterns. To avoid pattern redun-
dancy, Suragh detects and removes all non-dominant pat-
terns. For example, for the input file in Figure 1, the row
pattern P2 is a dominant row pattern (see Figure 2), as it is
not a subset of any other row pattern.

Finally, the constructed set of dominant row pattern(s) is
used to classify individual rows as ill-formed or well-formed:
A row conforms to a dominant row pattern if it has the
same number of columns as the dominant pattern, and all
column values of the row conform to the corresponding col-
umn patterns of the dominant pattern. We call such a row
well-formed, and ill-formed otherwise [15]. Tasheeh uses
dominant patterns as a filter in the classification phase and
as the target of the transformation phase: all wanted rows
should conform to a dominant pattern (see Section 4).

4. THE TASHEEH SYSTEM
Tasheeh operates in three phases (see Figure 3). In the

first phase, it uses Suragh to classify rows as ill-formed
or well-formed using dominant row patterns (Pd). For ill-
formed rows, it incrementally generates patterns, referred
to as potential row patterns (Pp), until all such rows have
corresponding patterns (see Section 4.1).

The second phase classifies ill-formed rows as wanted or
unwanted using incrementally generated patterns and a pat-
tern level distance measure derived from sequence alignment
methods [13]. Section 4.2 explains this step in detail.

In its third and final phase, Tasheeh collects wanted
rows, well-formed rows, and their patterns from the pre-
vious phases. It then uses a pattern transformation algebra
to transform the wanted rows into well-formed ones – Sec-
tion 4.3 explains the details.

4.1 Incremental Pattern Generation
Suragh generates dominant row patterns to classify rows

as ill-formed or well-formed, retaining only dominant pat-
terns and originally discarding others. However, Tasheeh

requires these additional patterns because (1) their abstraction
facilitates e↵ective comparison with dominant patterns, and
(2) transforming general patterns covering multiple rows is
more e�cient than transforming individual rows.

To generate such further patterns, Tasheeh incrementally
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Table 1: Example set of dominant and potential row patterns (aligned by delimiters); Pd corresponds to well-formed rows
(Figure 2 ! rows 6-8), Pp1 corresponds to an unwanted row (Figure 2 ! row 5), Pp2 corresponds to wanted rows (Figure 2 !
rows 30-32), and Pp3 corresponds to a wanted row (Figure 2 ! row 84).

Dominant Row Pattern:
Pd hDihDihDihDi hDELi hULihSEQLLi hDELi hDihDihDi hDELi hSEQDi hDELi hSEQDi.hSEQDi%
Potential Row Patterns:
Pp1 Fiscal Year hDELi Month hDELi Total SSR hDELi Internet SSR hDELi Percentage
Pp2 2011 hDELi hULihSEQLLi hDELi ””hDi hDELi hDihDihDi ”” hDELi ””hDi hDELi hDihDihDi ”” hDELi hSEQDi.hSEQDi%
Pp3 2015 hDELi hULihSEQLLi hDELi 359 hDELi 1 hDELi 0.0% # in progress

executes Suragh, updating the classification criteria in each
iteration. Each iteration excludes previously identified well-
formed rows and re-assesses ill-formed ones, dynamically re-
fining well-formedness definitions. For example, for the in-
put file in Figure 1, three of the potential row patterns along
with the dominant row pattern are shown in Table 1.

After obtaining dominant and potential patterns for well-
and ill-formed rows, Tasheeh processes them further to clas-
sify ill-formed rows into wanted and unwanted – see next.

4.2 Row Classification
In this phase, Tasheeh calculates the minimum pattern-

level distance between dominant and potential patterns. It
then identifies the closest dominant pattern for each poten-
tial pattern and classifies ill-formed rows as wanted or un-
wanted, based on the distance score.

4.2.1 Pattern sequence aligner
The potential patterns generated by Tasheeh may or may

not correspond to data rows. To measure their similarity
to dominant patterns, we introduce a pattern-level distance
measure derived from sequence alignment methods. Simi-
lar to edit distance frameworks for string matching [48], se-
quence alignment applies operations, such as “match”, “mis-
match”, and“indel” (insertion or deletion), with user-defined
operation costs. With this in mind, we introduce a distance-
based alignment framework for pattern-to-pattern alignments,
where the input sequences are entire row patterns [17]. The
input patterns are compared column by column, splitting
them on the delimiter character of a raw CSV file.

Consider the dominant pattern Pd and a potential pat-
tern Pp from Table 1. Our alignment framework generates
P 0

d and P 0
p, ensuring the same number of column patterns by

padding the shorter sequence with a gap character “-” based
on the minimum cost edit path. Using a dynamic program-
ming approach, similar to other sequence alignment meth-
ods [30], the framework finds the alignment with the lowest
distance. To find an alignment between the two patterns
Pd and Pp, we instantiate a matrix M where the position
at element i, j represents the minimum cost to transform
Pp[0, . . . , j] into Pd[0, . . . , i]. The matrix is initialized with
M[i][0] = i and M[0][j] = j, and then all other costs are
filled using Equation (1):

M(Pd, Pp)[i][j] = min

8
>><

>>:

M [i� 1] [j] + 1,
M [i] [j� 1] + 1,
M [i� 1] [j� 1] +

D(Pd[i� 1], Pp[j � 1])

(1)

Here, the cost of the insertion and deletion is set to 1
(first and second lines of Equation (1)). To determine the
cost between individual column patterns, we define a pat-
tern distance function D by enumerating four possible cases,

which are summarized in Equation (2):

D(↵,�) =

8
>>>>>><

>>>>>>:

0, if ↵ = �

1, if ↵ 2 {‘-’, hEV i} or � 2 {‘-’, hEV i}
1, if ↵ = hDELi and � /2 {‘-’, hEV i hDELi}

1 �

P
i=l,d,s

min(|↵i|, |�i|)

max(|↵|, |�|)
, otherwise

(2)
The pattern distance formula in Equation (2) is inspired

by the string-by-string alignment approach [18], which we
adapted to define the distance function D between column
patterns (↵, �) using abstractions [15]. We consider the typ-
ical three groups of abstraction classes: letters “l”, digits
“d”, and symbols “s”. Moreover, hEV i represents an empty
value, while hDELi denotes delimiter abstractions (see de-
tails in [15]). This choice of quantifying distance between
string patterns is motivated by the need to capture struc-
tural similarities. For example, the values“123 Main Street,
New York, NY”and“789 Broadway Avenue, New York, NY”
exhibit a significant structural similarity despite high Lev-
enshtein, Jaccard, and Hamming distances.

The aforementioned dynamic programming approach solves
the following optimization:

D(Pd, Pp) = min
P0

d,P0
p

1
|P 0

p|

|P0
p|X

k=1

D(P 0
d[k], P 0

p[k]) (3)

Here, Pd and Pp are the original input row patterns, while
P 0

d and P 0
p are padded row patterns to obtain the same num-

ber of columns. Note that the special gap symbol can be
padded at any position in the pattern sequence to minimize
the pattern distance.

4.2.2 Pattern classification
Potential patterns that are close to a dominant pattern

have a lower distance score. In cases with a single dominant
pattern (e.g., Figure 2), potential patterns are aligned to
it to calculate their distance. For files with multiple domi-
nant patterns, distances are calculated for each combination
of dominant and potential patterns. These distances are
then passed to the pattern classifier, which uses a thresh-
old ✓ to label potential patterns as wanted (distance  ✓)
or unwanted (distance > ✓), indicating whether the corre-
sponding rows contain data. With the experiments detailed
in Section 5.2 we determined that ✓ = 0.3 yielded the highest
F-1 score.

4.3 Row Structure Transformation
In this phase, Tasheeh collects the ill-formed wanted rows,

well-formed rows, their patterns, and the corresponding dy-
namic programming matrices M from the previous phase.
First, it chooses the best alignment between dominant and
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Table 2: Row pattern transformation operators

Operator Description

Drop Returns an empty column pattern.
Extract Extracts a (wanted) part from a column pattern.
Ignore Returns the unchanged input column pattern.
Move Relocates a column pattern from one position to

another.
Merge Concatenates column patterns and appends the

merged column pattern to the specified position.
Pad Pads a row pattern with empty cell(s).
Permute Rearranges a column pattern set with a given or-

der.
Re-quote Adds or removes quotes from a column pattern.
Re-escape Adds or removes escapes from a column pattern.
Re-delimit Adds or removes a field separator from a column

pattern.
Re-line Adds or removes a row separator from a column

pattern.
Replace Replaces abstractions in a column pattern.

Table 3: Pattern sequence alignment operators, where under-
lined transformation operators were used for both TASHEEH
and BASELINE transformation strategies.

Alignment
operator

Transformation
direction

Corresponding transformation
operator(s)

Match Diagonal Ignore
Mismatch Diagonal Drop, Extract, Ignore, Replace,

Re-delimit, Re-quote, Re-escape,
Re-line

Insert Vertical Pad, Permute
Delete Horizontal Merge, Drop, Extract, Move,

Re-delimit, Re-quote, Re-escape,
Re-line

wanted patterns, determining the necessary transformations
to clean up the structure of wanted patterns. Then, the
transformations identified at the pattern level are used to
transform the wanted rows into well-formed ones.

Table 2 presents a set of operators to transform one pat-
tern into another. This set is also the basis to later trans-
form the corresponding rows from ill-formed ones to well-
formed ones. The pattern transformation operators take
one or more input column patterns and output up to one
column pattern with a possibly transformed structure.

In the following sections, we explain how to obtain a com-
plete pattern-level edit path and the functionalities of the
transformation operators.

4.3.1 Minimum cost edit path
To align a dominant pattern with a wanted pattern, we

trace back from the bottom-right of their matrix M. A
graph is constructed on M, where each node represents a
matrix cell containing a pair of column patterns, and edges
indicate alignment operations (“match”, “mismatch”, “in-
sert”, and “delete”) with weights based on transformation
costs. Edge weights guide the selection of the best align-
ment, with the minimum cost path representing the optimal
transformation. The alignment operations and their corre-
sponding transformations are detailed in Table 3.

Next, we employ Dijkstra’s shortest path algorithm [8] to
compute the minimum cost edit path, defining the alignment
between dominant and wanted patterns (see Table 4). The
alignment process results in aligned row patterns (Pd, Pp2)

and marked alignment operators, which the transformation
engine later uses (see next).

4.3.2 Pattern wrangler
Tasheeh collects the aligned patterns and their minimum

cost alignment from the previous step. It passes each aligned
column pattern from the row patterns to the transforma-
tion engine, the pattern wrangler, which applies the required
transformations. The engine stores the transformation re-
sults in a queue and continues processing the remaining col-
umn patterns (see Algorithm 1). After completing all trans-
formations, the preferred results are applied to the corre-
sponding data rows.

Algorithm 1: Pattern Wrangler

Input: Dominant pattern Pd, Potential pattern Pp,
alignment A between Pd, Pp

Output: List of Transformations T
1 T  []
2 foreach 0  i  |Pp| do
3 transformations 

ApplicableTransformations(Pd[i], Pp[i], A[i])
4 Tc  GenerateCombinations(transformations)

5 T  T [ arg min
c2Tc

✓
Distance

⇣
Pd[i], c

�
Pp[i]

�⌘◆

6 end
7 return T

In the following, we briefly outline the alignment opera-
tors listed in Table 3 and their corresponding transformation
operators from Table 2 in the context of the pattern wran-
gler.

Match. When aligning row patterns, identical column pat-
terns that require no transformation are marked with the
“match” alignment operator with the corresponding Ignore
transformation operator. For example, in Table 4, matched
column patterns indicate no transformation is needed.

Mismatch. For mismatched patterns, the engine selects op-
erators based on the abstractions present. When dialect
characters (e.g., delimiter, quotes, escapes) are absent, op-
erators, such as Re-quote, Re-escape, and Re-delimit are ex-
cluded. Instead, it uses Drop, Replace, and Extract, priori-
tizing the latter two to reduce the pattern distance between
the transformed and the dominant pattern, with Drop as the
least preferred.

Insert. As previously stated, CSV files often have rows with
varying column counts, causing misaligned patterns. The
transformation engine detects missing columns using the“in-
sert” alignment operator and resolves inconsistencies by ap-
plying Pad or Permute, typically padding extra columns at
the start or end with field separators. A more complex sce-
nario arises when columns must be added in the middle of
a row, requiring precise placement. The transformation en-
gine resolves this by iterating through possible alignment
index combinations to determine the optimal position.

Delete. If a wanted row pattern has more columns than
the dominant pattern, the alignment framework inserts gaps
and marks the extra columns with the “delete” operator to
address inconsistencies from shifted values or missing delim-
iters. The transformation engine starts with the Merge oper-
ator to combine patterns and update positions. It then ap-
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Match Match Match Match Delete Match Delete Match Match
hDihDihDihDi hDELi hULihSEQLLi hDELi hDihDihDi _ _ hDELi hSEQDi _ _ hDELi hSEQDi.hSEQDi%
2011 hDELi hULihSEQLLi hDELi ""hDi hDELi hDihDihDi"" hDELi ""hDi hDELi hDihDihDi"" hDELi hSEQDi.hSEQDi%

Table 4: Minimum cost edit path alignment between row patterns Pd (Figure 2 ! rows 6-8) and Pp2 (Figure 2 ! rows 30-32)

plies Re-quote, Re-escape, and Re-delimit operators to stan-
dardize quotes, escapes, and delimiters, ensuring compliance
with RFC 4180.

4.3.3 Row wrangler
The row wrangler takes the sequence of transformations

from the transformation queue and applies them to all data
rows of the pattern at hand, thus cleaning the structure of
the ill-formed but wanted rows. As a final result, Tasheeh

usually outputs a clean and structured CSV file.

5. EXPERIMENTS
This section provides an overview of our experimental re-

sults, starting with the datasets and annotation details. We
then present the performance of our pattern classifier at
various distance score thresholds, followed by comparisons
with a Baseline approach and state-of-the-art row classi-
fiers. Next, we analyze the e↵ectiveness of Tasheeh’s trans-
formations. Finally, we provide a brief summary of a user
study comparing manual wrangling to our system. Further
experiments are detailed in [17].

5.1 Datasets and Annotation
We used datasets collected from four open data sources:

DataGov, Mendeley, GitHub, and UKGov, leveraging files
from our previous work Suragh [15], and supplementing
them with additional files. The statistics for these data
sources are summarized in Table 5.

Table 5: Datasets: number of files (F), average number of
rows (R), average well-formed (WF) rows per file, average
ill-formed wanted (IFW) rows per file, and average ill-formed
unwanted (IFU) rows per file.

Source # F Avg # R Avg # WF Avg # IFW Avg # IFU

DataGov 62 877.7 819.9 51.5 6.2
Mendeley 34 2909.6 2841.4 51.0 17.2
GitHub 28 662.1 627.7 17.4 17.1
UKGov 24 1186.2 1153.3 30.4 2.5

Building on our previous work [15], we extended the anno-
tated data following the same annotation strategy, labeling
200 351 rows as ill-formed or well-formed and further refin-
ing them into wanted and unwanted rows. Additionally, we
created a ground truth of manually cleaned wanted rows for
each file across all datasets for transformation experiments.
The code artifacts together with datasets and annotations
are publicly available.

5.2 Classification Performance Evaluation
This section evaluates Tasheeh’s classification compo-

nent, including finding the best distance threshold setting.
In accordance with Definition 1, a detected ill-formed wanted
row is a true positive if its ground truth label matches; oth-
erwise, it is a false positive. We use the standard precision P
and recall R metrics to assess the e↵ectiveness of our system.

Figure 4: Precision, recall and F-1 measures at di↵erent dis-
tance score threshold values

Table 6: Row classification comparison overview (F1-scores)

Source # rows
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DataGov 54 416 0.54 0.66 0.84 0.89 0.96
Mendeley 98 927 0.51 0.61 0.79 0.86 0.93
GitHub 18 538 0.56 0.67 0.76 0.81 0.95
UKGov 28 469 0.62 0.74 0.87 0.93 0.98

We experimented with di↵erent threshold values to op-
timize the classification task. Figure 4 shows precision, re-
call, and F-1 scores for the DataGov and Mendeley datasets.
Similar results were observed for UKGov and GitHub data-
sets (not shown due to space constraints), with a threshold
of 0.3 yielding the highest F-1 score.

We compared Tasheeh’s row classification component with
four other approaches: a Baseline classifier, inspired by
Tabular [1], which identifies rows as complete or erroneous
based on whether their column count matches the header,
and the related work approaches Pandas [37], Pytheas [4],
and Strudel [24]. Table 6 summarizes the row classification
results, reporting F1-scores for each system. Tasheeh out-
performed all other systems, achieving the highest F1-scores
across all datasets. Further details about these experiments
are discussed in [17].

5.3 Transformation Performance Evaluation
We evaluated the e↵ectiveness of Tasheeh’s transforma-

tions by measuring the accuracy of correctly cleaned ill-
formed rows against the manually created transformation
ground truth. A row is considered correctly cleaned only if
the system’s output matches exactly with the ground truth.
For unwanted rows, the correct operation is deletion.

As noted in Section 2, no prior work addresses automatic
cleaning of ill-formed rows in CSV files. Thus, we compared
Tasheeh with a Baseline transformation strategy that em-
ploys a simplified set of operations, underlined in Table 3.

96 SIGMOD Record, March 2025 (Vol. 54, No. 1)



To evaluate the transformation performance of both Tas-

heeh and the Baseline, we opted to use Tasheeh as the
row classifier, since it outperformed the other row classi-
fiers. Additionally, we evaluated our approach using a Per-

fect row classifier with manually annotated ground truth
for comparison.

Figure 5: BASELINE and TASHEEH transformation e↵ec-
tiveness with TASHEEH and PERFECT row classifiers

5.3.1 Ill-formed rows transformation evaluation
Figure 5 presents the results for the DataGov and Mende-

ley datasets, showing the performance of both transforma-
tion strategies combined with the Tasheeh and the Per-

fect classifiers. We observed similar results for the UKGov
and GitHub datasets. The Baseline strategy performed
well in files with errors limited to unwanted rows, where only
deletion was required, and in cases involving padding cells.
Overall, the combination of Tasheeh transformation and a
Perfect classifier achieved the best results. However, us-
ing Tasheeh for both classification and transformation pro-
duced comparable performance, underscoring the e↵ective-
ness of its classifier and transformation strategy in handling
ill-formed rows. Further details can be found in [17].

5.3.2 SRFN - TASHEEH comparison
As described in Section 2, SRFN is the only other system

that addresses a specific type of structural inconsistency in
data rows: entries shifted into incorrect columns by “swap-
ping repair using a fixed set of neighbors” [42]. We evalu-
ated SRFN using artifacts from its GitHub repository5 on
our dataset, as the authors’ dataset was unavailable. SRFN
requires users to specify fixed attributes, rows for repair, and
the number of nearest neighbors (k). Following the authors’
guidelines, we tested k values from 2 to 864, depending on
file length. While SRFN can address issues like swapping
misplaced name and passport values, it failed to resolve any
inconsistencies (e.g., shifted values) in our datasets across all
settings, achieving an overall transformation accuracy of 0.

5.4 Usability Case Study
We conducted a user study measuring the time and accu-

racy of cleaning raw data files both manually and with Tas-

heeh. We invited five computer scientists with data clean-
ing expertise, not involved in our project, to clean a random
sample of ten files from our real-world datasets, using any
tool they preferred. Manually cleaning required a significant
amount of time, averaging 67±18 minutes across all experts.
5https://github.com/SwappingRepair/SRFN

Figure 6: Results of our usability study, comparing time and
accuracy of manual cleaning with TASHEEH.

Additionally, the average accuracy achieved is 83 ± 17 %:
sometimes experts simply removed the inconsistencies they
did not understand, e.g., misplaced delimiter. In contrast,
with Tasheeh, the accuracy is significantly higher, with 8
out of 10 files achieving a perfect cleaning result, averaging
87% at a fraction of the time: averaging 6.80±0.34 minutes
(across three experimental runs). To summarize, the use of
Tasheeh not only significantly reduces the overall cleaning
time but also delivers improved accuracy compared to a fully
manual approach.

6. CONCLUSION
While many data science pipelines and data cleaning meth-

ods assume data to be preloaded into some system, data
practitioners know that even achieving that premise is both
challenging and tedious. Our work introduces Tasheeh, a
data preparation system designed to identify and clean ill-
formed data rows in raw CSV files, thus pushing the bound-
ary of automatic data cleaning to the very beginning of data
processing. Tasheeh utilizes the pattern language intro-
duced in our previous work Suragh [15], which classifies
rows as either ill-formed or well-formed, based on the domi-
nant row patterns. Tasheeh further classifies the ill-formed
rows as wanted (data) or unwanted (non-data) and ulti-
mately repairs the structural inconsistencies in the ill-formed
wanted rows using a pattern transformation algebra.

Tasheeh automatically generates accurate transformations
for 86% of ill-formed rows across all files, thus automatically
recovering much data that could otherwise not be ingested.

Building on its robust capabilities, Tasheeh can serve as
a critical pre-processing step for integrating raw CSV data
into modern data platforms. Tools like Pandas [37], which is
widely used in machine learning workflows, and open-source
database systems, such as DuckDB [36], are e↵ective for
parsing structured files, but skip or log faulty rows when
structural issues occur. Similarly, modern data integration
platforms like Airbyte [21], though adept at connecting di-
verse data sources, rely on well-structured inputs for seam-
less operation. These limitations emphasize the necessity for
systems like Tasheeh, which can proactively address struc-
tural inconsistencies, e↵ectively bridging the gap between
raw data and seamless integration into data pipelines.
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Wörtwein, Matthew Zeitlin, Vytautas Jancauskas, Ali
McMaster, and Thomas Li. pandas-dev/pandas:
Pandas 1.4.3, June 2022.

[38] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and
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