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OPEN CHALLENGES
Graphs are ubiquitous data structures used in

a large spectrum of applications, spanning from
transportation networks, financial networks, social
networks, product-order transactions and biomedical
applications [33]. A recent survey on the usage of
graph applications from real users has highlighted
the fact that analytics is the most time-consuming
task as opposed to testing, cleaning and ETL [32].

Despite the industrial needs of graph analytics,
the area is still in its infancy needing standardization
and integration into current graph systems.

To understand the burden of graph analytics [44],
one has to resort to the data processing pipeline be-
hind it. Graph data is manipulated and queried with
online transactional processing (OLTP) operations,
such as selections, joins and transitive closures ex-
pressed in concrete ISO/IEC standard graph query
languages [15,16]. While the results of graph queries
in the first versions of these standards are sets of
relational tuples, their extensions to return and ma-
nipulate paths is expected in future versions. In
particular, graph OLTP operations would then ma-
nipulate paths instead of tuples, as shown in recent
work on graph path algebras [6]. The data is further
analyzed, enriched, and condensed with online an-
alytical processing (OLAP) operations, such as (1)
grouping, aggregating, slicing, dicing, and roll-up,
(2) graph algorithms, such as shortest path count-
ing [42], in-betweenness centrality and PageRank
and (3) a handful of user-defined functions. These
OLAP operations can again be defined on paths
and subgraphs, apart from tuples. Finally, graph
data is disseminated and consumed by a variety of
applications, including machine learning, such as
ML libraries and processing frameworks, and large
language models (LLMs), under the form of RAG
(retrieval-augmented generation) [29].

Graph databases have extensive applications across
various industries [26, 39, 40, 43], including fraud
detection in finance and insurance (commonly in-

volving graph pattern matching queries), bill-of-
materials analysis in manufacturing and supply chain
(typically utilizing graph traversal queries), and cus-
tomer segmentation and recommendation in market-
ing (often leveraging graph algorithms).

How might forthcoming graph processing systems
deliver extensive scalability, e�ciency, and versatile
querying and analytical functionalities to meet the
diverse demands of real-world scenarios?

Whereas standardization is already taking place
for graph query and update languages [9], it would
also be worthwhile to reach a common understand-
ing of the building blocks of graph algorithms and
analytical APIs for graphs. Graph abstractions, such
as graph pattern calculus and graph algebra [6,7] for
graph transformations and queries, need to cater for
analytical operators and to be extended to include
linear algebra operators.

Novel graph processing and graph database archi-
tectures are then needed to ensure the unification
of OLTP and OLAP operations. The data injected
in these future graph systems is expected to be of
di↵erent format and might require multi-model, con-
verged and/or polystore databases [38].

The panel (moderated by Angela Bonifati) dis-
cussed the following research questions:

• Q1: Is there a demand for more expressive lan-
guages and libraries for analyzing relationships in
a graph?

• Q2: Do we need OLAP/OLTP architectures or
their hybrid version (HTAP for graphs) in order to
execute graph analytical workloads? Is on cloud
better than on premise?

• Q3: What are the requirements in terms of scala-
bility, performance and benchmarking?

• Q4: Are graph-only stores su�cient or are poly-
stores needed for the future of graph analytics?

• Q5: What is needed in terms of DSL and APIs
for enabling graph analytics for data science and
ML (and LLM) tasks?
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• Q6: Since graphs are continuously evolving data
structures, what is desirable in terms of analytical
operators for dynamic, incremental and streaming
graphs?

In the remainder, we present discussions for each
of the challenges around the development of research
and industrial applications for graph analytics.1

Q1 – EXPRESSIVENESS
MTO: We want languages that are su�ciently ex-
pressive to accomplish what we want. In general,
graph query languages should support two funda-
mental functions: navigation (path queries) and
subgraph matching. In addition, they should have
the following capabilities: ability to query both the
graph topology and the graph properties (assuming
we are in the property graph domain), aggregation
operations, support for paths as first-class objects,
closedness to facilitate query composition similar
to relational languages, ability to be mapped to
algebraic operators for processing [6], and incremen-
tal computation that is important for dynamic and
streaming graphs. This should be the minimal ca-
pability set, only partially covered by the recent
SQL/PGQ [15] and GQL [16].
Related to analytics, it is important to fix what

we mean by graph analytics. One definition charac-
terizes it as workloads that (a) traverse the entire
graph, and (b) iterate until a fixpoint or a termi-
nation condition is reached. These include, for ex-
ample, PageRank computation, all-paths shortest
path, connected components, and many machine
learning tasks. This definition is used in contrast to
what are called online queries that typically access
a portion of a graph that can be aided by indexes,
and even if they access the entire graph, they are not
iterative (e.g., reachability, recursive path queries,
single-source shortest path, subgraph matching). If
this type of graph analytics workload is targeted,
then one set of features is required in the language.
However, there is another definition of graph an-

alytics more aligned with how we define analytics
in relational DBMSs: OLAP over graphs. In this
case, the language will need to have additional fea-
tures supporting drill-down, roll-up, slide-and-dice.
The language requirements in this case have been
discussed by Gómez et al [12].
YT: The short answer is yes—new use cases con-
tinually demand more expressive languages and li-
braries for graph analysis. Graph workloads are
diverse, each requires di↵erent levels of expressive-
ness and user interface capabilities. For instance,
1The following abbreviations are used: MTO (M. Tamer
Özsu), YT (Yuanyuan Tian), HV (Hannes Voigt), WY
(Wenyuan Yu), WZ (Wenjie Zhang).

Graph Traversal, Pattern Matching, and BI use lan-
guages like Cypher [10], Gremlin [30], GQL [16],
and SPARQL [41], with growing demand for more
advanced constructs. Graph algorithms rely on li-
braries like Pregel API for complex computations,
where customization and built-in algorithms are in-
creasingly needed. In Graph ML, libraries are essen-
tial for integrating machine learning with graph data.
The emerging field of Graph + LLM further empha-
sizes the need for expressive tools combining graph
reasoning with natural language understanding.

While expressiveness is important, ease of use is
equally critical. Today, the barrier to entry for work-
ing with graphs is still quite high, limiting it to a
niche group of graph specialists. To broaden adop-
tion among SQL users, data scientists, and business
users, it’s important to meet users where they are,
whether that’s through familiar interfaces like SQL
(e.g., SQL/PGQ), Python, or even natural language.
Powerful yet user-friendly tools can greatly improve
adoption and productivity.

HV: In the current analytics space, there is indeed a
demand for more expressive languages and libraries
to analyze relationships in a graph. For products,
this space is highly dynamic, with constant pres-
sure to incorporate the latest machine learning (ML)
and artificial intelligence (AI) algorithms. Presently,
most analytic capabilities are provided through li-
braries, which play a crucial role by o↵ering complex
algorithms behind relatively simple APIs, e.g. [5].
This allows for high-value, rapid results for cus-
tomers while maintaining an easy learning curve for
developers and users. These libraries are designed
with only a few built-in assumptions, making them
flexible and easy for vendors to extend. Currently,
no alternative abstraction o↵ers the same balance
of learning ease and value delivery that libraries
provide, making them the go-to solution. While this
could evolve in the future, there is little indication
of such a shift occurring at the moment.

WY: Yes, there is a clear demand for more ex-
pressive languages and libraries for graph analysis,
driven by the diversity and fragmentation of its ap-
plications. However, increasing expressiveness in
languages and libraries comes with costs, includ-
ing greater complexity and potential performance
trade-o↵s. While there is a clear distinction between
tasks like graph traversal, pattern matching, analyt-
ics, and what graph neural networks (GNNs) can
accomplish, there is also some overlap in their char-
acteristics. Designing languages and libraries that
can cater to these diverse needs while maintaining
usability and performance is a significant challenge.
Looking ahead, natural languages enhanced by large
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language models (LLMs) could provide a promising
solution for simplifying complex queries and improv-
ing accessibility. Future directions may focus on
balancing expressiveness with performance, poten-
tially leveraging LLMs to bridge current gaps.
WZ: Yes, the demand is growing as graph databases
expand their capabilities to support more complex
and diverse analyses at various levels. Current graph
analytics support in main-stream graph platforms
can be summarized as: (1) Node-level: Algorithms
like centrality, node similarity, and coreness are com-
monly supported to measure node importance or
influence. (2) Path-level: Standard graph traversal
methods (DFS/BFS, shortest paths) and more ad-
vanced algorithms (MST, Steiner trees) are widely
used to study connectivity. (3) Subgraph-level: Com-
munity detection, motif counting, and label propaga-
tion are essential for identifying clusters or patterns.
(4) Learning-oriented: Machine learning integration,
such as node embedding and dynamic graph in-
ference, is becoming increasingly important, with
graph databases like Neo4j, TigerGraph, Alibaba
GraphScope, and Amazon Neptune implementing
these algorithms. The demand for more expres-
sive languages and libraries stems from user and
domain-specific workloads. Future graph analytics
may include supporting new graph types such as
bipartite graphs and emerging applications such as
integration with LLMs.

Q2 – OLAP/OLTP/HTAP & Cloud
MTO: The answer to both questions is yes. Graph
research is divided into three categories: knowledge
graphs and semantic web, graph DBMSs executing
the online queries, and graph systems executing some
understanding of graph analytics. The first category
typically uses RDF graphs and SPARQL, while the
other two use property graphs. There are real use
cases that require a combination of at least two of
these categories, so HTAP makes sense. However, it
is not clear how to architect these systems.

The move to the cloud is unmistakable. Foundry
Cloud Computing reported in 2023 that the cloud
deployments were already higher than on premise
deployments (52% to 48%). Their forecast was that
in 18 months these ratios would tip further in favour
of cloud deployments: 63% to 37%. The challenge is
that the architecture of cloud-based graph systems
will be di↵erent than what we are working on now.
It may be useful to focus on cloud architectures.
YT: When it comes to architecture, one size defi-
nitely doesn’t fit all. Similar to relational databases,
graph OLTP and OLAP workloads di↵er signifi-
cantly. Graph OLTP focuses on low-latency traver-
sal and pattern matching, requiring e�cient indexing

for performance. In contrast, graph OLAP processes
the entire graph in long, iterative operations where
indexing o↵ers little benefit. This di↵erence is why
most graph databases use separate architectures for
OLTP and OLAP workloads. However, from a user
interface perspective, it is highly desirable to have a
unified front-end that abstracts these complexities.

As for the question of cloud versus on-premise,
the trend is unmistakably towards the cloud, due
to the scalability support, ease of management, and
better support in integrating graph and non-graph
workloads within a single application.

HV: Cloud adoption is rapidly accelerating, becom-
ing the norm for modern enterprise systems. When
deciding between cloud and on-premise for graph
analytical workloads, it’s less about technical su-
periority and more about meeting business needs.
Graphs represent an organization’s domain knowl-
edge, helping answer business questions in high-value
use cases like detecting fraud [24], digital twins [25],
inventory management [23], supply chain optimiza-
tion, customer 360 and product 360. Many use
cases blend transaction processing and graph ana-
lyticsbecause timely insights and decision-making
often require analyzing relationships and patterns in
interconnected data while simultaneously updating
and managing that data through transactions. How-
ever users care less about these technical distinctions
and more about delivering business value. Cloud
platforms simplify this by hiding technical complex-
ity, enhancing ease of use compared to on-premise
solutions. This flexibility allows vendors to o↵er a
seamless, integrated experience for managing both
transactional and analytical graph workloads.

WY: While there is a need for solutions to e�-
ciently execute graph analytical workloads, com-
bining OLAP and OLTP into a single system may
not always be necessary. Many hybrid approaches
currently employ a decoupled design, typically us-
ing a graph database for transactional or online
requests while relying on specialized systems for
OLAP tasks. However, these solutions often en-
counter challenges related to consistency, capabil-
ity, complexity, and data freshness, especially when
the primary data is stored in relational databases.
At GraphScope [13], we propose an alternative ap-
proach, GART [36], which involves managing trans-
actional requests within relational databases while
processing OLAP tasks on a synchronized graph that
streams data from the relational database’s binlog.
This method can enhance scalability, consistency,
and overall capability.

Cloud-based solutions o↵er advantages like scal-
ability, flexibility, and easier integration into exist-
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Dataset |V | |E| Size Single Machine

Live Journal ⇠ 4M ⇠ 68M 1.08GB 6.3GB

USA Road ⇠ 24M ⇠ 58M 951MB 9.09GB

Twitter ⇠ 41M ⇠ 1.4B 26GB 128 GB

UK0705 ⇠ 82M ⇠ 2.8B 48GB 247GB

World Road ⇠ 682M ⇠ 717M 15GB 194GB

CC2014 ⇠ 1.7B ⇠ 64.4B 1.3TB Out of memory

Table 1: Expansion of Graph Data when Loaded
(CC2014 stands for CommonCrawl2014)

ing big data and AI infrastructures. However, on-
premise solutions may still hold benefits, especially
for leveraging specialized hardware for processing
tasks or for organizations with strict data security
and privacy requirements.

WZ: Given the growing complexity and adoption
of graph workloads in industry, there is a clear and
increasing demand for OLAP/OLTP architectures
or their hybrid variant, namely HTAP for graphs.
When comparing Cloud vs. On-Premise solutions,
cloud-based options generally o↵er greater flexibility,
scalability, and cost-e�ciency, making them well-
suited for graph workloads. The ability to scale re-
sources up or down based on demand is particularly
advantageous for managing the high concurrency
and large datasets typically associated with graph
workloads. Cloud-native graph architectures and
HTAP on the cloud are likely to play a significant
role in the future of graph processing. However,
on-premise solutions may still be preferable for or-
ganizations that prioritize enhanced security, strict
compliance requirements, or need for specific infras-
tructure customization.

Q3 – SCALABILITY & PERFORMANCE
MTO: Scalability is a major pain point – see our
surveys [31,32]. One way of addressing scalability is
through “scale-up” – using multithreading and addi-
tional resources on a single machine [19]. The main
argument is that graph data sets are of reasonable
size and can fit in the main memory of a modern
large workstation. However, in the long run, scale-
out on a parallel cluster is required [34]. Scale-up
is important, but relying alone on that is challeng-
ing. The raw datasets may be small, but when they
are loaded to a real graph DBMS for processing
with appropriate data structures, their size balloons.
Table 1 reports an experiment we performed using
PowerLyra [8]. The heavy computation of graph pro-
cessing along with the advantages of computation
parallelization should also be considered.

Performance of these systems is another pain point
as highlighted in our above cited survey. Part of
this is due to the fact that the community has been
predominantly focused on algorithmic issues and

less attention has been paid to the architectural con-
cerns. Hardware accelerators (predominantly GPUs)
have been studied to address performance, but these
are mostly singular solutions. Incorporating these
accelerators into a complete system execution in a
deep way remains an issue.

Finally, there is the issue of performance bench-
marks. Although there are graph DBMS bench-
marks, how well they represent real user applica-
tions is questionable. In addition to application-
level (or macro)benchmarks, there is a need for mi-
crobenchmarks to test system architectural design
decisions [20].

YT: Scalability is critical, and scale-out architec-
tures are a must. The survey in [31] identified scala-
bility as a key challenge for users. I also observed
that most graph customers require the ability to
scale out their graph databases, even if their current
datasets can still be managed by a single-node, scale-
up solution. When they invest in a graph solution,
they are not just addressing their current needs but
are also planning for future growth. Performance
is another area where continuous improvement is
essential. Customers consistently demand lower la-
tency and higher throughput to meet the increas-
ingly complex and real-time requirements of their
graph workloads. When it comes to benchmark-
ing, the requirements are diverse, reflecting the wide
range of graph use cases. Although lacking standard
benchmarks, the Linked Data Benchmark Council
(LDBC) has made significant strides in this area by
providing a comprehensive suite of benchmarks [1].
A broader adoption of such benchmarks will be cru-
cial in setting performance standards and guiding
future development in graph analytics.

HV: Scalability is a critical requirement for graph
analytics, involving both scale-out and scale-up strate-
gies. It’s not just about handling larger data sizes
but also managing growing workloads. While scala-
bility is important, single query performance, query
throughput, and update performance also matter,
making it a multi-dimensional challenge. The prior-
ities depend on the specific use case, organization,
and data. Moreover, achieving correct, reliable, and
trustworthy distributed computing is a complex task,
particularly when sharding graphs, given their highly
interconnected nature. There is no one-size-fits-all
solution; it requires a blend of techniques that will
mature over time, creating an adaptable system
capable of meeting diverse scalability needs.

WY: Future requirements for graph analytics in
terms of scalability, performance, and benchmarking
may include more e�cient integration with upstream
and downstream AI and big data systems to provide
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holistic insights and value. Achieving end-to-end
scalability and performance is important; it is not
only about optimizing graph computations but also
about managing data format transformations, load-
ing and writing costs, and ensuring these processes
work e↵ectively with other types of workloads. Ad-
ditionally, future benchmarking e↵orts could benefit
from covering more real-life scenarios, including a
wider variety of graph types from di↵erent domains,
expanding workloads beyond common algorithms
like Connected Components (CC) and PageRank,
and considering factors such as single-machine ver-
sus distributed environments, as well as the ease of
programming and integration with existing systems.
WZ: Large-scale graphs pose challenges in real-time
query response. Techniques like scale-out/scale-up
and query-specific summarization or indexing can
help improve performance. Well-designed query sets
are as important as datasets for ensuring meaningful
performance evaluations.

Q4 – GRAPH STORES
YT: In real-world applications, workloads are rarely
homogeneous. Graph analytics are often intertwined
with SQL queries, machine learning (ML), and other
forms of data analysis. Users don’t want fragmented
silos—they seek a unified platform that can seam-
lessly support various types of analytics.
In this context, polystores o↵er a significant ad-

vantage by providing a flexible environment where
di↵erent data models and analytics can coexist and
interact within a single system [11]. However, graph-
only stores aren’t necessarily limited in this regard.
They can also be closely integrated with other data
engines within a unified platform, enabling them to
support diverse analytics needs e↵ectively. For ex-
ample, Neo4j recently announced a deep integration
with Microsoft Fabric [21].
HV: Graph platforms are crucial for future graph
analytics, enabling organizations to quickly derive
business value by representing their business domain
as a graph. This provides an intuitive way to explore
relationships between entities, a common focus of
high-value questions. A robust graph platform must
also support various data types—temporal, spatial,
nested, and vectors—to meet diverse use case needs.
Vector support is vital for generative AI (GenAI)
applications, especially in retrieval-augmented gen-
eration (RAG), which contextualizes large language
models (LLMs) with structured knowledge. Despite
vector importance, graphs remain the most natural
way to represent interconnected data.
WY: We believe that a “one-size-fits-all” approach
is insu�cient, as the choice of storage solutions de-
pends on specific scenarios. Given the diversity of

storage options, including both graph stores and
polystores, it is crucial to focus on how to share
graph data between them and make it accessible
across various systems. At GraphScope, we have
taken two key initiatives to address this challenge.
First, to manage exchange graphs and graphs on
data lakes, we developed GraphAr [2], an open-
source, standard data file format for e�cient graph
data storage and retrieval. Second, we proposed
GRIN [3], a common graph retrieval interface aimed
at unifying graph data access across di↵erent sys-
tems. These e↵orts make it easier to share graph
data and ensure accessibility across di↵erent storage
systems, whether they are graph-only or polystores.
WZ: Graph-only stores may not be su�cient for
the future of graph analytics. While they excel
at graph-specific tasks like graph traversals and
graph algorithms, many applications require inte-
grating graph data with relational, document-based,
or other unstructured data. Polystores enable seam-
less interaction between these data types, providing
more comprehensive analytics for various applica-
tions. Additionally, legacy systems and existing data
sources pose challenges that polystores can address.
As graph analytics evolves, polystores will become
crucial for managing complex, multi-modal data.

Q5 – DSL & API
MTO: We have witnessed a surge of APIs and DSLs
for graphs. For instance, Blueprints is an API for
the property graph model, underlying many graph
databases, e.g. Neo4j and Titan. As DSLs, sev-
eral graph databases and parallel graph analytics
started with their own, such Green-Marl [14] and
PGQL [35] – as front-ends with which users describe
their custom graph algorithms or pattern-matching
queries in Oracle PGX. This fragmented landscape
has been unified with the first versions of standard
graph query languages, such as SQL/PGQ and GQL,
respectively in 2023 and 2024, concerning pattern
matching in the DSL. A similar e↵ort is highly de-
sirable for the graph analytics counterparts.
YT: In my opinion, the focus shouldn’t be solely on
developing new DSLs or APIs. Instead, the key is
unification. To avoid creating isolated graph silos, we
need to lower the barriers between graph databases
and other data systems, making it easier to integrate
graph analytics with broader data science, ML, and
LLM tasks. As mentioned before, it’s essential to
meet users where they are. This means providing
seamless integration with the tools and languages
that data scientists and engineers are already using,
such as SQL, Python, or even natural language
interfaces.
HV: To enable analytics on graph structures for
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data science, machine learning (ML), and large lan-
guage model (LLM) tasks, three factors are key.
First, ease of use through simple APIs and tools
that enhance developer productivity. Second, seam-
less cloud integration to support scalable workflows.
Third, enabling ML/AI applications requires ad-
vanced graph algorithms like embeddings and model
training to be easily accessible. This involves pack-
aging powerful algorithms behind simple APIs, with
tools for data ingestion, orchestration, and result
integration. DSLs and APIs must also integrate
smoothly with the generative AI (GenAI) stack to
fully unlock the potential of graph analytics.
WY: Specific DSLs and APIs may be needed to en-
able seamless analytics on graph structures for data
science, ML, and LLM tasks. ML and LLMs can
naturally interact with graphs in various ways, such
as representing them as sparse tensors for GNNs or
using them as knowledge bases through knowledge
graphs or GraphRAG [4] in LLMs. Furthermore, an
“ETL”-like DSL may assist in aligning and transform-
ing existing graph data into formats that are more
compatible with ML and LLM inputs, potentially
enabling more e↵ective integration and utilization
of graph data in these advanced tasks.

Q6 – ANALYTICAL OPERATORS
MTO: There are few real static graphs, despite
an inordinate amount of research e↵orts devoted
to them. Most real graphs are dynamic – they are
entirely availability to the system (at least the vertex
set), but see updates, usually in the form of edge
additions and (sometimes) deletions. Theoreticians
usually call these semi-streaming graphs [37].
Majority of the focus has been on dealing with

topological dynamicity, i.e., changes graph topol-
ogy with updates to structure. However, in the
domain of property graphs, updates to vertex and
edge attributes are also important. The languages
need to support predicates on both topology and
attributes, and execution strategies need to optimize
those queries that include both predicates.

More challenging are streaming graphs that emerge
over time and are fundamentally unbounded. They
are more challenging since the graph is never fully
available to the system [27,28].
The features that are needed for addressing dy-

namic and streaming graphs are, at a minimum, the
following: incremental computation (to avoid batch
computation from scratch every time), nonblocking
operators for streaming graphs since the graphs as
operands are unbounded, windowed operators if we
want to do analytic computation requiring multi-
ple passes over data (windows provide a means of
batching), and support for temporality (somehow

keeping track of evolution of the graph) if we wish
to do time-travel (temporal) queries to determine
trends over time. If temporality is desired, it needs
to be added as a first-class object to the language.
YT: In most of today’s graph databases, time is
treated as just another property of vertices and
edges. To e↵ectively support dynamic, incremental,
and streaming graphs, time needs to be elevated to
a first-class concept within graph structures. An-
other critical requirement is the seamless integration
with streaming ingestion systems like Kafka [17] and
Event Hubs [22]. Finally, in a world where data
streams in continuously, we want to avoid recom-
puting everything from scratch each time new data
arrives. Therefore, better support for incremental
updates of analytical results is crucial.
HV: In terms of analytical operators for dynamic,
incremental, and streaming graphs [45], it is impor-
tant to recognize that most organizations’ analytical
needs are not limited to pure streaming but also
involve historical and master data. Event-driven
processing plays a crucial role, especially in coordi-
nating multiple subsystems within a data ecosystem—
Kafka [17,18] is a prime example of a tool used for
this purpose. One essential capability in this context
is enabling the ecosystem around a graph to react to
changes in real time. Change Data Capture (CDC)
allows organizations to track and capture modifica-
tions to the graph database as they happen. By com-
bining CDC, event-streaming connectors like Kafka,
and high-throughput scalability, organizations can
meet many of their analytical requirements. Purer
forms of streaming are currently less prevalent and
remain an evolving area for the future.
WY: The requirements will likely depend on specific
scenarios, encompassing a broad range of existing
dynamic, incremental, and streaming processing ca-
pabilities found in relational data systems. Key
considerations may include stream processing, mate-
rialized views, time-series graphs, incrementalization
of existing graph algorithms, and designing a dy-
namic, incremental, and streaming graph store to
handle these complex needs e↵ectively.
WZ: Incremental updates are crucial for handling
evolving graphs to avoid recomputation from scratch.
However, e�ciently identifying the a↵ected sub-
graphs and limiting the computation to them is
challenging, calling for a trade-o↵ between recompu-
tation and incremental updates. In evolving graphs,
such as dynamic or streaming graphs, e↵ectively
managing and analyzing temporal information is
also crucial. The operators need to support tempo-
ral queries in addition to structure-based queries to
ensure comprehensive analytics.
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