
Reminiscences on Influential Papers

This issue’s contributors dive into a history of
concurrency control and storage hierarchy for database
and data-intensive systems. Enjoy reading!

While I will keep inviting members of the data
management community, and neighboring commu-
nities, to contribute to this column, I also welcome
unsolicited contributions. Please contact me if you
are interested.

Pınar Tözün, editor
IT University of Copenhagen, Denmark
pito@itu.dk

Goetz Graefe
Google - Madison, WI, US
goetzg@google.com

H. T. Kung and John T. Robinson.
On optimistic methods for concurrency con-

trol.

In ACMTransactions on Database Systems (TODS),
Volume 6, Issue 2, pages 213-226, 1981.

This fall I will teach “topics in database systems”
at UW-Madison. When I took this course as a first-
year graduate student four decades ago, David De-
Witt had his students read two then-recent papers
that he correctly expected to become classics: “Ac-
cess Path Selection. . . ” [29] and “On Optimistic. . .
Concurrency Control”[21]. Of these, the former still
strikes me as brilliant for constructing join plans us-
ing dynamic programming, for its focus on“interest-
ing orderings” in complex-object assembly (joining
and grouping on, e↵ectively, object identifiers), and
for its clear-eyed perspective on the perils of car-
dinality estimation. Kooi’s impressive thesis soon
addressed some of these perils with multiple kinds
of histograms [20].

The latter one of these two classic papers res-

onates with the saying that “it’s easier to ask for
forgiveness than for permission” but clearly there is
much more to it. Many people, it sometimes seems,
remember the paper’s title but have not really stud-
ied the text. They may rely on the title’s promise
but ignore multiple pitfalls. Many pitfalls have been
called out by Theo Härder and C. Mohan [19, 25] –
below is one further perspective.

First, the original design of optimistic concur-
rency control assumes page-level concurrency con-
trol. This was competitive at the time, e.g., with
page-level locking in System R [8], but it is not com-
petitive with record-level locking [22, 24, 27]. The
introduction of record-level concurrency required new
techniques for logging and recovery, e.g., compensa-
tion or update-back log records [14, 26], and for con-
currency control, e.g., locking gaps between index
entries or between key values [13]. More specifically,
equivalence to a serial execution requires repeatable
read plus phantom protection [9]. For example, in
an ordered database index, a search with an empty
result set requires concurrency control for gaps be-
tween key values, as does a range scan.

Second, optimistic concurrency control requires
transaction-private update bu↵ers, which are a form
of multi-version storage. A fair comparison of op-
timistic and pessimistic concurrency control (i.e.,
end-of-transaction validation versus pre-access lock-
ing) must consider locking in a multi-version con-
text, not in single-version storage. In a multi-version
store, locking can ignore read-write (rw-) conflicts
and wr-conflicts until the updating transaction at-
tempts to commit. Detecting ww-conflicts upon the
first conflicting access prevents conflicting writers
and doomed transactions, saves wasted work and
its rollback, ensures at most one uncommitted ver-
sion (per granule of concurrency control), and per-
mits creating new versions directly in the database
(or its shared bu↵er pool) - all with the hope and
expectation that rw- and wr-conflicts rarely delay
transaction commit. This optimism is the founda-

SIGMOD Record, September 2024 (Vol. 53, No. 3) 27

tion and essence of deferred lock enforcement [12].

Third, validation and write phases together must
be atomic, as described in the original 1981 paper.
For transactional durability [18], the write phase is
more than draining a transaction’s private update
bu↵er into the system’s shared bu↵er pool: each
transaction’s write phase must include forcing the
commit log record to stable storage. With fairly
long atomic validation-and-write phases, shared data-
base servers require concurrent validation. Transac-
tions validating concurrently must share informa-
tion about their read- and write-sets. The required
data structure manages, in a thread-safe manner,
a many-to-many relationship between transactions
and database objects - very much like a traditional
lock manager. In this way of thinking, optimistic
concurrency control is a form of deferred lock acqui-
sition [12]. Its expectations for performance, scal-
ability, conflicts, and system throughput are near
but not quite equal to deferred lock enforcement.

Fourth, participants of distributed transactions
transition from optimism to pessimism when they
vote in a two-phase commit. More accurately, they
pledge to wait for and to implement the coordina-
tor’s global commit decision. This pledge must be
firm; “asking for forgiveness” is no longer an option
so that “asking for permission” is required, i.e., lock
acquisition. Again, optimistic concurrency control
is a form of deferred lock acquisition. Participants
must retain both shared and exclusive locks until
they receive the global commit decision [11]. In-
creasing concurrency during the commit process be-
yond the traditional level has been described as con-
trolled lock violation [15]. Other transactions may
read and modify recent updates but they must not
commit until the commit logic of the earlier up-
dater completes successfully. In a sense, controlled
lock violation is an optimistic technique within pes-
simistic concurrency control.

In summary, optimism in concurrency control is
found in both deferred lock enforcement and con-
trolled lock violation, which are advanced locking
techniques with optimism, with perfect equivalence
to a serial execution, with early detection of doomed
transactions, with no need or overhead for transaction-
private update bu↵ers, and with fewer false con-
flicts than traditional optimistic or pessimistic con-
currency control. Even if these locking techniques
supplant the original design for optimism in con-
currency control, they are continuations and refine-
ments of the classic 1981 paper on optimistic con-
currency control.

Raja Appuswamy

EURECOM, France

raja.appuswamy@eurecom.fr

Jim Gray and Franco Putzolu.

The 5 minute rule for trading memory for

disc accesses and the 10 byte rule for trading

memory for CPU time.

In Proceedings of the 1987 ACM SIGMOD Inter-
national Conference on Management of Data, pages
395–398, 1987.

In 1998, Richard Snodgrass edited a new column
in SIGMOD Record entitled “Reminiscences on In-
fluential Papers”. In the introduction to this col-
umn, he wrote “The researcher comes across a pa-
per that touches something deep inside, triggering a
radical restructuring of their mental model and al-
lowing them to see things in a new light.” When Pı-
nar reached out to me for a contribution, for which
I am very thankful, I instantly knew which paper I
had to choose.

Over the years of my research career, I have worked
on several systems that rely on caching at various
levels of the memory hierarchy. I had always viewed
caching from an algorithmic point of view. The
most interesting part in caching, I had thought, was
the design of clever algorithms that could identify
the optimal data items to cache. I was fascinated by
the simplicity of design and the incredible potential
of the Adaptive Replacement Cache [23] when it was
introduced by IBM and adopted by ZFS, and toyed
around with extending it to a multi-level memory
hierarchy [4] during my PhD years when I designed
the Loris file system for MINIX 3. And then, I read
the five-minute rule paper, and as Richard said in
1998, it definitely triggered a radical restructuring
of my mental model.

Jim Gray and Franco Putzolu introduced the five-
minute rule in 1987 [17]. In a surprising twist, Jim
and Franco turned the caching problem into an eco-
nomic one. They argued that bringing disk-resident
data to memory is not only time consuming, but is
also economically expensive. At the time, the Tan-
dem disk cost $15K and could provide 15 accesses
per second. Thus, it cost $1K per access per sec-
ond. Add in support for CPUs to handle interrupts
and channel/controller costs to manage the disks,
you get to $2K per access per second. A Kilobyte
of main memory, in contrast, costs only $5. So,
assuming you have 1KB of data that you access ev-
ery second, if you “rent” 1KB of memory and keep
your data in it, you can save $2K worth of disk

28 SIGMOD Record, September 2024 (Vol. 53, No. 3)

accesses–a fantastic bargain. If you access the 1KB
every 10 seconds, that is 0.1 accesses/second, you
can still save $200 of disk access by spending $5 to
rent memory. Continuing this argument, it turns
out that accessing data once every 400 seconds be-
comes the break-even point, when accessing data
from disk is as expensive as renting memory. Re-
stating Jim and Franco, “as 400 seconds is about
five minutes, hence the name five-minute rule”.

I love this paper for several reasons. First, it is
written by one of the titans of computing I respect
deeply–Jim Gray. My first encounter with Jim’s
work was the seminal tome on transaction process-
ing. While writing this article, I found out that Jim
himself had contributed an article to this very col-
umn back in 1998, where he describes the story of
how TPC-A and TPC-D benchmarks came about,
and why SIGMOD sort trophies used to be awarded
on April Fools Day! His description of the mem-
ory hierarchy in the popular “How Far Away is the
Data” example is yet another masterpiece like the
five-minute rule that breaks down a complex topic
into a fun, easy-to-understand exposition that I rou-
tinely use in my lectures.

Second, in the paper, Jim and Franco provide a
quantitative framework for making informed deci-
sions about memory and disk usage. Using a case
study, they even show how the five-minute rule was
used in practice to help a designer choose an ap-
propriate configuration (hybrid memory-disk versus
all-in-memory) for a database server. Storage tech-
nology and economics have changed radically since
the rule was introduced in 1987. Yet, the framework
proposed in the original paper is general enough to
apply to various levels of today’s three-tier (per-
formance with DRAM/SSD/PMEM, capacity with
HDD, and archival with tape) memory hierarchy.
Thus, the rule has been revisited three times, in
1997 [16], 2008 [10], and 2019 [3], with each itera-
tion providing surprising insights into the behavior
of “media-du-jour”, be it NAND flash in 2008 or
persistent memory in 2019.

Third, this paper really made me think about how
other aspects of data management in addition to
caching would change if we considered economics,
and cost of data engineering, as first class citizens
instead of performance. This made me focus my
research over the past few years on the lower two
tiers of the storage hierarchy. Focusing on the ca-
pacity tier, I was inspired by Pelican [5]–a rack-
scale cold storage system that packed thousands of
HDDs in a single rack that was right-provisioned
to service only a fraction of HDDs running simulta-
neously. Pelican provided accesses latencies in sec-

onds, between HDD and tape, and provided near-
line data access for “cold”, or infrequently accessed,
data items. Applying the five-minute rule frame-
work to such cold storage devices (CSD) showed
us that it might be economically beneficial to leave
cold data in such devices and perform query exe-
cution directly on the CSD rather than moving it
to HDD. This motivated us to develop the Skipper
query-processing framework [7]. Focusing on the
archival tier, I came across the work on database
preservation by the Digital Preservation commu-
nity that made me realize that long-term archival
of databases is an incredibly challenging problem,
both from technical and economic points of view. I
wrote about some of these challenges in the SIG-
MOD Record Brainstorming article [1] “Towards
Passive, Migration-Free, Standardized, Long-Term
Database Archival”. Around this time, storage re-
searchers were starting to investigate radically new
archival media, and synthetic DNA was one such
media that got a lot of attention [6]. This triggered
our work on project OligoArchive [2], where we in-
vestigated the use of DNA for long-term database
archival.

Fourth, the paper’s history teaches an important
life lesson for academics: rejection, just like awards
in some cases, is not a concrete predictor of im-
pact. Despite being such an insightful piece of work,
this paper was rejected during its first round of sub-
mission. Quoting David Patterson [28], “Jim Gray
wrote to Jim Larus: The B-tree paper was rejected
at first. The Transaction paper was rejected at first.
The data cube paper was rejected at first. The five-
minute rule paper was rejected at first. But linear
extensions of previous work get accepted. So, re-
submit! PLEASE!!.” I have had my papers rejected
enough times now to know and tell my students that
it is a part of academic life. But using THE five-
minute rule from a titan such as Jim Gray as an
example of rejection usually sends home the mes-
sage right away.

1. REFERENCES
[1] Raja Appuswamy. Towards Passive,

Migration-Free, Standardized, Long-Term
Database Archival. SIGMOD Rec.,
51(2):61–62, jul 2022.

[2] Raja Appuswamy, Kevin Le Brigand, Pascal
Barbry, Marc Antonini, Olivier Madderson,
Paul S. Freemont, James McDonald, and
Thomas Heinis. OligoArchive: Using DNA in
the DBMS storage hierarchy. In 9th Biennial

Conference on Innovative Data Systems

Research, CIDR 2019, Asilomar, CA, USA,

SIGMOD Record, September 2024 (Vol. 53, No. 3) 29

January 13-16, 2019, Online Proceedings.
www.cidrdb.org, 2019.

[3] Raja Appuswamy, Goetz Graefe, Renata
Borovica-Gajić, and Anastasia Ailamaki. The
five-minute rule 30 years later and its impact
on the storage hierarchy. Commun. ACM,
62(11):114–120, oct 2019.

[4] Raja Appuswamy, David C. van Moolenbroek,
and Andrew S. Tanenbaum. Cache, cache
everywhere, flushing all hits down the sink:
On exclusivity in multilevel, hybrid caches. In
2013 IEEE 29th Symposium on Mass Storage

Systems and Technologies (MSST), pages
1–14, 2013.

[5] Shobana Balakrishnan, Richard Black, Austin
Donnelly, Paul England, Adam Glass, Dave
Harper, Sergey Legtchenko, Aaron Ogus, Eric
Peterson, and Antony Rowstron. Pelican: A
building block for exascale cold data storage.
In Proceedings of the 11th USENIX

Conference on Operating Systems Design and

Implementation, OSDI’14, page 351–365,
USA, 2014. USENIX Association.

[6] James Bornholt, Randolph Lopez, Douglas M.
Carmean, Luis Ceze, Georg Seelig, and Karin
Strauss. A DNA-Based Archival Storage
System. In Proceedings of the Twenty-First

International Conference on Architectural

Support for Programming Languages and

Operating Systems, ASPLOS ’16, page
637–649, New York, NY, USA, 2016.
Association for Computing Machinery.

[7] Renata Borovica-Gajić, Raja Appuswamy,
and Anastasia Ailamaki. Cheap data analytics
using cold storage devices. Proc. VLDB

Endow., 9(12):1029–1040, aug 2016.
[8] Donald D. Chamberlin, Morton M. Astrahan,

Michael W. Blasgen, James N. Gray,
W. Frank King, Bruce G. Lindsay, Raymond
Lorie, James W. Mehl, Thomas G. Price,
Franco Putzolu, Patricia Gri�ths Selinger,
Mario Schkolnick, Donald R. Slutz, Irving L.
Traiger, Bradford W. Wade, and Robert A.
Yost. A history and evaluation of System R.
Commun. ACM, 24(10):632–646, oct 1981.

[9] K. P. Eswaran, J. N. Gray, R. A. Lorie, and
I. L. Traiger. The notions of consistency and
predicate locks in a database system.
Commun. ACM, 19(11):624–633, nov 1976.

[10] Goetz Graefe. The five-minute rule 20 years
later (and how flash memory changes the
rules). Commun. ACM, 52(7):48–59, jul 2009.

[11] Goetz Graefe. On Transactional Concurrency

Control: A Problem in Two-Phase Commit,

pages 321–326. Springer International
Publishing, Cham, 2019.

[12] Goetz Graefe. On Transactional Concurrency

Control: Deferred Lock Enforcement, pages
327–365. Springer International Publishing,
Cham, 2019.

[13] Goetz Graefe. On Transactional Concurrency

Control: Orthogonal Key-Value Locking, pages
159–210. Springer International Publishing,
Cham, 2019.

[14] Goetz Graefe, Wey Guy, and Caetano Sauer.
Instant Recovery with Write-Ahead Logging:

Page Repair, System Restart, Media Restore,

and System Failover, Second Edition.
Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2016.

[15] Goetz Graefe, Mark Lillibridge, Harumi Kuno,
Joseph Tucek, and Alistair Veitch. Controlled
lock violation. In Proceedings of the 2013

ACM SIGMOD International Conference on

Management of Data, SIGMOD ’13, page
85–96, New York, NY, USA, 2013.
Association for Computing Machinery.

[16] Jim Gray and Goetz Graefe. The five-minute
rule ten years later, and other computer
storage rules of thumb. SIGMOD Rec.,
26(4):63–68, dec 1997.

[17] Jim Gray and Franco Putzolu. The 5 minute
rule for trading memory for disc accesses and
the 10 byte rule for trading memory for CPU
time. In Proceedings of the 1987 ACM

SIGMOD International Conference on

Management of Data, SIGMOD ’87, page
395–398, New York, NY, USA, 1987.
Association for Computing Machinery.

[18] Theo Haerder and Andreas Reuter. Principles
of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287–317, dec 1983.

[19] Theo Härder. Observations on optimistic
concurrency control schemes. Information

Systems, 9(2):111–120, 1984.
[20] Robert Philip Kooi. The optimization of

queries in relational databases. PhD thesis,
USA, 1980. AAI8109596.

[21] H. T. Kung and John T. Robinson. On
optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226,
jun 1981.

[22] David B. Lomet. Key Range Locking
Strategies for Improved Concurrency. In
Proceedings of the 19th International

Conference on Very Large Data Bases, VLDB
’93, page 655–664, San Francisco, CA, USA,
1993. Morgan Kaufmann Publishers Inc.

30 SIGMOD Record, September 2024 (Vol. 53, No. 3)

[23] Nimrod Megiddo and Dharmendra S. Modha.
ARC: A Self-Tuning, Low Overhead
Replacement Cache. In 2nd USENIX

Conference on File and Storage Technologies

(FAST 03), San Francisco, CA, March 2003.
USENIX Association.

[24] C. Mohan. ARIES/KVL: A key-value locking
method for concurrency control of multiaction
transactions operating on B-tree indexes. In
Proceedings of the Sixteenth International

Conference on Very Large Databases, page
392–405, San Francisco, CA, USA, 1990.
Morgan Kaufmann Publishers Inc.

[25] C. Mohan. Less optimism about optimistic
concurrency control. In [1992 Proceedings]

Second International Workshop on Research

Issues on Data Engineering: Transaction and

Query Processing, pages 199–204, 1992.
[26] C. Mohan, Don Haderle, Bruce Lindsay,

Hamid Pirahesh, and Peter Schwarz. ARIES:
A transaction recovery method supporting
fine-granularity locking and partial rollbacks

using write-ahead logging. ACM Trans.

Database Syst., 17(1):94–162, mar 1992.
[27] C. Mohan and Frank Levine. ARIES/IM: An

e�cient and high concurrency index
management method using write-ahead
logging. In Proceedings of the 1992 ACM

SIGMOD International Conference on

Management of Data, SIGMOD ’92, page
371–380, New York, NY, USA, 1992.
Association for Computing Machinery.

[28] David A. Patterson. How to Build a Bad
Research Center. Technical Report
UCB/EECS-2013-123, Jun 2013.

[29] P. Gri�ths Selinger, M. M. Astrahan, D. D.
Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database
management system. In Proceedings of the

1979 ACM SIGMOD International

Conference on Management of Data,
SIGMOD ’79, page 23–34, New York, NY,
USA, 1979. Association for Computing
Machinery.

SIGMOD Record, September 2024 (Vol. 53, No. 3) 31

