
Technical Perspective:
A Fresh Look at Stream Computation through DSP Glasses

Dan Olteanu
Department of Informatics, University of Zurich

dan.olteanu@uzh.ch

DBSP (Data Base Stream Processing) is a simple yet ex-
pressive language for stream computation that draws inspira-
tion from DSP (Digital Signal Processing). In DBSP, stream
computation is expressed using circuits of stream operators
whose input and output are (possibly infinite) sequences of
database updates.

Queries in languages such as SQL and even Datalog with
recursion can be compiled into DBSP circuits in a modular
way, where logical relational algebra operators such as pro-
jection, selection, join, union, and di↵erence are compiled
into stream operators that are composed into a circuit im-
plementing the logic of the query. Special stream operators
are also used to delay streams, to gather the entire stream
into a database, and to generate the sequence of changes
between any two subsequent stream elements.

DBSP’s stream circuits are a powerful artifact. They
are an intermediate representation between the high-level
declarative queries and the low-level highly e�cient code.
They can be optimized by merging operators and by trans-
forming them using rewrite rules. A notable optimization
is for the recursive Datalog program that computes reach-
ability in a graph. The circuit obtained for this program
implements the classical näıve computation of reachability:
Each iteration adds the pairs of start and end nodes of in-
creasingly longer paths. Its optimization naturally recovers
the classical semi-näıve evaluation: Now each iteration only
adds those pairs of start and end nodes of paths that do not
have shorter paths between them, so these pairs were not
already discovered in earlier iterations.

Most importantly for stream computation, the circuits can
be automatically incrementalized: For DBSP, there is a sim-
ple and elegant procedure that turns any circuit that com-
putes a query over a database into a circuit that incremen-
tally maintains the query under the stream of changes to the
database. At its core, this procedure uses the property that
a composite query can be incrementalized by incrementaliz-
ing each of its subqueries independently. A prime example
is the automatic incrementalization of the equality join op-
erator. The DBSP framework recovers the well-known delta
rule for a join: Given the join of two relations and changes
to both relations, the change to the join result is the union
of (i) the join of the changes; (ii) the join of the first rela-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

tion and of the change to the second relation; and (iii) the
join of the second relation and of the change to the first rela-
tion. Query incrementalization, which lies at the foundation
of incremental view maintenance, is proved formally in the
context of DBSP using a theorem prover.

A further key ingredient of the DBSP framework is the
use of Z-sets to keep track in a uniform way of the nature
and amount of changes: Changes consist of database tuples
annotated with multiplicities. Inserts are expressed using
tuples with positive multiplicities, whereas deletes are ex-
pressed using tuples with negative multiplicities. Allowing
negative multiplicities in the database o↵ers great flexibility
when dealing with out-of-order updates. To see this, con-
sider an insert and a delete of the same tuple. Regardless
of the order of their arrival, the DBSP framework concludes
that the two updates cancel each other. Virtually all com-
mercial database systems, which provide support for incre-
mental view maintenance, follow a non-confluent update se-
mantics as they obtain di↵erent outcomes depending on the
order of the two updates: the tuple is (not) in the database
if the delete (insert) comes first. The latter update seman-
tics can also be recovered by DBSP using a distinct operator
in DBSP circuits. Using tuple multiplicities for incremen-
tal view maintenance goes back to the counting algorithm
by Gupta et al from 1993. These days, Z-sets are used criti-
cally in research prototypes such as DBToaster, F-IVM, and
Crown and in the RelationalAI commercial engine. It is sur-
prising that despite the clean update semantics and rather
small implementation overhead of Z-sets, so far their use
remains limited.

Overall, DBSP is a fresh look at the long-standing problem
of maintaining the result of relational queries under updates
to the input database. Thanks to its unifying treatment
of both non-recursive and recursive queries, DBSP follows
in the footsteps of Di↵erential Dataflow, a much celebrated
framework that caters for general stream computation. The
intermediate representation remains however the key feature
of DBSP: High-level query languages can be compiled into
circuits, which are more fine-grained than queries and al-
low for lower-level optimization and generation of e�ciently
executable code. It would be exciting to investigate how re-
cent maintenance strategies, which achieve (amortized) con-
stant time per single-tuple update for several classes of non-
recursive queries, can be adapted to the DBSP framework.
This would require extensions with stream operators that
maintain state in the form of auxiliary data structures, with
worst-case optimal join algorithms, and with factorized join
computation and maintenance.

86 SIGMOD Record, March 2024 (Vol. 53, No. 1)


