
Technical Perspective: Efficient and Reusable
Lazy Sampling

Thomas Neumann
TUM

neumann@in.tum.de

When interactively working with data, query latency is
very important. In particular when ad-hoc queries are writ-
ten in an explorative manner, it is essential to quickly get
feedback in order to refine and correct the query based upon
result values. This interactive use case is di�cult to support
if the underlying data is large, as analyzing large volumes of
data is inherently expensive.

An attractive way to tackle this problem is to use ap-
proximate query processing (AQP). Instead of computing
the exact query result, the system produces an approximate
answer to the query, which is often good enough when still
interactively exploring the data, and sometimes even good
enough as the final answer [1]. The advantage of using ap-
proximate answers is that these can be computing much
more e�ciently, sometimes orders of magnitude faster than
the exact result. And if the user is only interested in a rough
overview over the data the full precision of, e.g., aggregate
values is not required anyway.

Approximate query processing is usually based upon sam-
pling techniques, that is the query is evaluated not on the
full data set but on a random sample of data [2], which is
much smaller but which exhibits the same data distribution
as the original data. For simple queries like

select avg(x) from R

that is straight forward, the query will produce roughly
the same result when executing on a random sample of R
instead of the full table. But when the query contains filter
predicates like

select avg(x) from R where y<4

the situation becomes more di�cult, as a random sample
might contain no or only a few tuples that satisfy the filter
condition.

To alleviate that systems have mainly two options: Either
they use larger samples, which makes it less likely that they
are unable to answer the query, but which increases the AQP
evaluation time and the storage costs. Or they use stratified
sampling, which means that they maintain samples for a
given predicate (or a given set of values).

Which allows for answering a query if a suitable sample is
present, even for selective predicates, but which makes sam-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2024 ACM 0001-0782/24/0X00 ...$5.00.

ples less versatile. For example a sample for the condition
y<4 can also be used to answer queries with a predicate y<3,
but not to answer queries with y<6. For very predictable
and repetitive queries that is less of an issue, but for the
interactive use cases that is a severe problem, as queries can
vary greatly.

Having one large sample over everything does not work
well for selective predicates, but computing a sample for
every predicate that we see in a query is not very practical,
as the number of combinations is very large and eagerly
computing samples is expensive.

The next paper tackles this problem by an interesting ob-
servation: We can construct a larger uniform random sam-
ple from two smaller uniform random samples over the same
domain if 1) both samples come from disjoint parts of the
original relation, and 2) we know how large the original data
partitions were. Basically we can union two existing samples
into a larger one, similar to a reservoir sampling strategy, but
we have to take into account the selection probabilities for
the elements were di↵erent. This allows for flexible stitch-
ing together available samples such that the query can be
answered with the available data, even if the samples do not
perfectly match the query.

There are more technical hurdles that have to be over-
come, and the system must make a decision which sampling
should be maintained given both the query and the already
existing sample, but for that read the paper.

1. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner,

S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In Z. Hanzálek, H. Härtig, M. Castro, and
M. F. Kaashoek, editors, Eighth Eurosys Conference
2013, EuroSys ’13, Prague, Czech Republic, April
14-17, 2013, pages 29–42. ACM, 2013.

[2] A. Birler, B. Radke, and T. Neumann. Concurrent
online sampling for all, for free. In D. Porobic and
T. Neumann, editors, 16th International Workshop on
Data Management on New Hardware, DaMoN 2020,
Portland, Oregon, USA, June 15, 2020, pages 5:1–5:8.
ACM, 2020.

32 SIGMOD Record, March 2024 (Vol. 53, No. 1)

