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ABSTRACT
Over the last decade, worst-case optimal join (WCOJ) al-
gorithms have emerged as a new paradigm for one of the
most fundamental challenges in query processing: comput-
ing joins e�ciently. Such an algorithm can be asymptotically
faster than traditional binary joins, all the while remaining
simple to understand and implement. However, they have
been found to be less e�cient than the old paradigm, tradi-
tional binary join plans, on the typical acyclic queries found
in practice. In an e↵ort to unify and generalize the two
paradigms, we proposed a new framework, called Free Join,
in our SIGMOD 2023 paper. Not only does Free Join unite
the worlds of traditional and worst-case optimal join algo-
rithms, it uncovers optimizations and evaluation strategies
that outperform both.

In this article, we approach Free Join from the traditional
perspective of binary joins, and re-derive the more general
framework via a series of gradual transformations. We hope
this perspective from the past can help practitioners bet-
ter understand the Free Join framework, and find ways to
incorporate some of the ideas into their own systems.

1. INTRODUCTION
Over the last decade, worst-case optimal join (WCOJ) al-

gorithms [10, 14, 11, 9] have emerged as a breakthrough in
one of the most fundamental challenges in query process-
ing: computing joins e�ciently. Such an algorithm can be
asymptotically faster than traditional binary joins, all the
while remaining simple to understand and implement [11].
These algorithms opened up a flourishing field of research,
leading to both theoretical results [11, 6] and practical im-
plementations [14, 2, 4, 8].

Over time, a common belief took hold: “WCOJ is de-
signed for cyclic queries”. This belief is rooted in the ob-
servation that WCOJ enjoys lower asymptotic complexity
than traditional algorithms for cyclic queries [11], but when
the query is acyclic, classic algorithms like the Yannakakis
algorithm [16] are already asymptotically optimal. More-
over, traditional binary join algorithms have benefited from
decades of research and engineering. Techniques like column-
oriented layout, vectorization, and query optimization have
contributed compounding constant-factor speedups, making
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Q|(x, a, b, c) :- R(x, a), S(x, b), T (x, c).

SELECT * FROM R, S, T WHERE R.x = S.x AND S.x = T.x

R ={(x0, a0)}[{(x1, a
l

i),(x2, a
r

i ) | i 2 [1 . . . n]}

S ={(x0, b0)}[{(x2, b
l

i),(x3, b
r

i ) | i 2 [1 . . . n]}

T ={(x0, c0)}[{(x3, c
l

i),(x1, c
r

i ) | i 2 [1 . . . n]}

Figure 1: The clover query Q|, and an input instance. Note that

x0 is the only x-value in all three relations, therefore the only

output tuple is (x0, a0, b0, c0).

it challenging for WCOJ to be competitive in practice.
The dichotomy of WCOJ versus binary join has led re-

searchers and practitioners to view the algorithms as oppo-
sites. In our SIGMOD 2023 paper [15], we broke down this
dichotomy with a new framework called Free Join that uni-
fies WCOJ and binary join. Further more, we proposed new
data structures, evaluation algorithms, and optimizations to
make Free Join outperform both binary join and WCOJ.

In this article, we review Free Join from a new perspective:
starting from the traditional binary join algorithm, we ap-
ply a series of gradual transformations to arrive at the Free

Join algorithm as well as the WCOJ algorithm. We hope
this perspective from the past can help practitioners better
understand Free Join, and pave the way for its adoption into
existing systems.

This article is based on the paper Free Join: Unifying
Worst-case Optimal and Traditional Joins [15], published at
SIGMOD 2023.

2. FROM BINARY JOIN TO FREE JOIN
In this section we introduce the Free Join framework. Un-

like our SIGMOD paper [15] which defines Free Join from
the basic building blocks, here we start from the traditional
binary join and gently massage it into the more general Free
Join. To keep the presentation intuitive, we will be following
an example instead of defining the algorithm in full gener-
ality. We refer the reader to our SIGMOD paper [15] for a
more formal treatment.

2.1 Basic Concepts and Notations
For simplicity we consider only natural join queries, where

all joins are equijoins, and all input relations are joined over
common attributes. Such queries are also known as conjunc-
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Figure 2: Visualization of the input relations to Q|. Each binary

relation is represented as a set of edges on each side. The query

Q| looks for sets of 3 edges, one from each relation, that meet in

the middle (there is only one such set, at the center of the figure).

1 for ...:
2 m = M[x]?
3 ...

1 for ...:
2 if x not in M:
3 continue
4 else:
5 m = M[x]
6 ...

Figure 3: Example using the notation m = M[x]?. The two code

fragments are equivalent.

tive queries and can be written in “Datalog notation” as the
following example shows.

Example 1. Consider SQL query in Figure 1. The cor-
responding conjunctive query appears above it, where each
of R(x, a), S(x, b), and T (x, c) is called a body atom, and
Q|(x, a, b, c) the head atom.

It is often convenient to view a conjunctive query as a
hypergraph. The query hypergraph of Q consists of vertices
V and edges E , where the set of nodes V is the set of variables
occurring in Q, and the set of hyperedges E is the set of body
atoms in Q. The hypergraph for Q| has four vertices, each
for x, a, b, and c, and three edges, each for R(x, a), S(x, b),
and T (x, c). As standard, we say that the query Q is acyclic
if its associated hypergraph is ↵-acyclic1 [3]. Note that Q|
is acyclic, while an example of a cyclic query is the “triangle
query”:

Q4(x, y, z) :- U(x, y), V (y, z), W (z, x).

whose query hypergraph is a triangle.
We now introduce a notation to make pseudocode cleaner.

Inside a loop, we will write m = M[x]? for looking up x from
the hash map M ; if M contains x, we assign the result of the
lookup to m; otherwise, we continue to the next iteration of
the enclosing loop. In other words, the code fragments in
Figure 3 are equivalent.

2.2 Binary Join
The standard approach to computing a natural join of

multiple relations is to compute one binary join at a time.
A binary plan is a binary tree, where each internal node is a

1The reader does not need to be familiar with definitions of
acyclic queries to understand Free Join.

join operator 1, and each leaf node is one of the base tables
Ri. The plan is a left-deep linear plan, or simply left-deep
plan, if the right child of every join is a leaf node. If the plan
is not left-deep, then we call it bushy. For example, (R 1
S) 1 (T 1 U) is a bushy plan, while ((R 1 S) 1 T ) 1 U
is a left-deep plan. We do not treat specially right-deep or
zig-zag plans, but simply consider them to be bushy.

In this paper we consider only hash-joins, which are the
most common types of joins in database systems. The stan-
dard way to execute a bushy plan is to decompose it into
a series of left-deep linear plans. Every join node that is a
right child becomes the root of a new subplan, which is first
evaluated, and its result materialized, before the parent join
can proceed. As a consequence, every binary plan, bushy or
not, becomes a collection of left-deep plans. We decompose
bushy plans in exactly the same way, and we will focus on
left-deep linear plans in the rest of this paper. For example,
the bushy plan (R 1 S) 1 (T 1 U) is converted into two
plans: P1 = T 1 U and P2 = (R 1 S) 1 P1; both are
left-deep plans.

To reduce clutter, we represent a left-deep plan (· · · ((R1 1
R2) 1 R3) · · · 1 Rm�1) 1 Rm as [R1, R2, . . . , Rm]. Evalua-
tion of a left-deep plan is done using pipelining. The engine
iterates over each tuple in the left-most base table R1; each
tuple is probed in R2; each of the matching tuple is further
probed in R3, etc.

Example 2. A possible left-deep linear plan for Q| is
[R, S, T ], which represents (R(x, a) 1 S(x, b)) 1 T (x, c). To
execute this plan, we first build a hash table for S keyed on
x, where each x maps to a vector of (x, a) tuples, and a hash
table for T keyed on x, each mapped to a vector of (x, c)
tuples2. Then the execution proceeds as shown in Figure 4a.
For each tuple (x, a) in R, we first probe into the hash table
for S using x to get a vector of (x, b) tuples. We then loop
over each (x, a) and probe into the hash table for T with x.
Each successful probe will return a vector of (x, c) tuples, and
we output the tuple (x, a, b, c) for each (x, c). On the input
instance in Figure 1 (visualized in Figure 2), this algorithm
runs in time ⌦(n2).

2.3 Columnar Storage and Late Materializa-
tion

The first transformation we perform on the binary join
algorithm makes it work on column-wise storage instead of
a row-wise one. This is not yet an optimization because it
likely will not improve the performance, but this step serves
as an important bridge to the next optimizations. As Fig-
ure 4b shows, in the outermost loop we iterate over row in-
dices instead of tuples. For each row index i, we retrieve the
x-value R.x[i], as well as the corresponding a-value R.a[i].
The hash maps for S and T now map each x to a vector
of row indices, so we next look up into the hash map for S
using x to get a vector of j. In the second loop, we retrieve
the x-value and b-value from S for each j, then probe into
T to get a vector of k. Finally, we retrieve the x-value and
c-value from T for each k, and output the tuple (x, a, b, c).

A key ine�ciency of the algorithm in Figure 4b is that,
although the query only outputs a single tuple (x0, a0, b0, c0),
2When the relations are bags, then the hash table may con-
tain duplicate tuples, or store separately the multiplicity.
We also note that the question what exactly to store in the
hash table (e.g. copies of the tuples, or pointers to the tuple
in the bu↵er pool) has been studied for a long time, see [5].
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1 for (x,a) in R:
2 s = S[x]?
3 for (x,b) in s:
4 t = T[x]?
5 for (x,c) in t:
6 output(x,a,b,c)
7

8

9

10

(a) Binary Free Join.

for i in 0..R.len():
x = R.x[i]; a = R.a[i]
s = S[x]? # s:x->[j]
for j in s:
x = S.x[j]; b = S.b[j]
t = T[x]? # t:x->[k]
for k in t:
x = T.x[k]; c = T.c[k]
output(x,a,b,c)

(b) Columnar storage.

1 for i in 0..R.len():
2 x = R.x[i]; s = S[x]?
3 for j in s:
4 x = S.x[j]; t = T[x]?

5 for k in t:
6 x = T.x[k]
7 a = R.a[i]
8 b = S.b[j]
9 c = T.c[k]
10 output(x,a,b,c)

(c) Late materialization.

for i in 0..R.len():
x = R.x[i];
s = S[x]?; t = T[x]?
for j in s:

for k in t:
a = R.a[i]
b = S.b[j]
c = T.c[k]
output(x,a,b,c)

(d) Late iteration.

Figure 4: Execution of binary join for the clover query 4a, and three transformations. The first transformation 4b makes the algorithm

work on column-wise storage instead of a row-wise one; the second transformation 4c performs the classic late materialization optimization;

the last one is another transformation that we call late iteration 4d.

we still did a lot of work retrieving the di↵erent a, b, and
c values from their respective columns. For example, since
we iterate over the entire R relation, we retrieve all 2n +
1 a-values from R.a; even worse, since |R ./ S| = n2 +
1, we will access S.b ⌦(n2) times. A better strategy is to
delay the retrieval of these values until we actually need
them. In this case, we can delay the retrieval of a, b, and
c until we are ready to output the tuple (x, a, b, c). This
way we only need to access each of R.a, S.b, and T.c once,
instead of ⌦(n2) times. This is precisely the classic late
materialization optimization [1] now implemented in nearly
all modern database systems.

2.4 Late Iteration and Free Join
We can go one step beyond late materialization and fur-

ther optimize the code in Figure 4c. The key observation is
that, although we retrieve x from the di↵erent relations in
each loop level, they have to be the same value because x is
the join attribute! This means we can remove the last two
redundant retrievals of x and reuse the value from the out-
ermost loop, which corresponds to removing the underlined
code in Figure 4c. At this point, we can see that the remain-
ing body of the second loop, t = T[x]?, does not depend on
the loop variable j at all. We can therefore pull the lookup
out of the loop, resulting in the code in Figure 4d. In other
words, we delay the iteration over s until after the lookup
on T succeeds.

Note that this final optimization has improved the asymp-
totic run time of the algorithm: although late materializa-
tion already saves a quadratic number of accesses to the
relation columns, it still needs to iterate over ⌦(n2) row in-
dices, because the first two loop levels essentially compute
the join R ./ S. In contrast, the first loop level in Figure 4d
joins every tuple of R with S and T at the same time, and
the entire algorithm now runs in O(n) time.

At the moment, our optimizations may appear rather low-
level and ad-hoc. Taking a step back, we can understand
the execution of any join algorithm as a series of iterations
and lookups. The transformation from row-wise to column-
wise storage involves changing what to iterate over (row in-
dices instead of tuples); the late materialization optimiza-
tion changes what to look up and when to look up (look up
row indices first, then retrieve values later); finally, the late
iteration optimization reorders the iterations and lookups.

While columnar storage and late materialization have be-
come stables of modern database systems, the contribution

of the Free Join framework is a new abstraction to describe
the ordering of iterations and lookups that we call the Free

Join plan. The basic building blocks of a Free Join plan
are called subatoms, each of which is a subset of a relation
schema.

Definition 1. Given a relation schema R(x1, x2, . . .), a
subatom is of the form R(xi, xj , . . .) where {xi, xj , . . .} ✓
{x1, x2, . . .}.
For example, given the relation R with schema R(x, y), all
of the following are valid subatoms: R(), R(x), R(y), R(x, y).
A Free Join plan over a set of schemas is a sequence of groups,
where each group is a list of subatoms.

Definition 2. Given a join query Q over R1, R2, . . ., a
Free Join plan for Q is of the form:

[Ri(xi), Rj(xj), . . .], [Rk(xk), . . .], . . .

where each of Ri(xi), Rj(xj), Rk(xk), . . . is a subatom over
the schema of Ri, Rj , Rk, . . . respectively.

Each group in a Free Join plan corresponds to a loop level. At
each loop level, we iterate over tuples of the first subatom in
the group, and use the values to look up into the remaining
subatoms. For this reason, we will sometimes stylize a Free

Join plan as follows to emphasize the iterated subatom and
reflect the loop nesting:

[R1(x1) | R2(x2), R3(x3), . . .]

! [R4(x4) | R5(x2), . . .]

! [R6(x6) | . . .]

Example 3. The Free Join plan for the algorithm in Fig-
ure 4d is:

[R(x, a) | S(x), T (x)]

! [S(b) |]
! [T (c) |]

Although we only retrieve the value of a in the innermost
loop, each a-value one-to-one corresponds to each i, so the
plan iterates over both x and a at the first level.

Example 4. We can represent the binary join algorithm
in Figure 4a with the Free Join plan:

[R(x, a) | S(x)]

! [S(b) | T (x)]

! [T (c) |]
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1 attribute all attributes
2 relations

all relations

Generic-Join

Hash Team
Binary Join

Eddies

Generalized
Hash Team

Figure 5: Free Join plans represent a design space of join algo-

rithms that contains many existing algorithms.

if we ignore the redundant x at the inner loop levels.

In fact, every left-linear binary join plan [R1, R2, R3, . . .] can
be represented by a Free Join plan:

[R1(x1) |R2(x1 \ x2)]

! [R2( x2 \ x1) | R3(x2 \ x3)]

! [R3(x3 \ x2) | R4(x3 \ x4)]

...

As we will see in Section 2.5, we can also represent any
Generic Join plan with a Free Join plan. Free Join therefore
generalizes and unifies both binary join and Generic Join.
However, the true power of Free Join is its ability to rep-
resent algorithms like the one in Figure 4d that are neither
binary join nor Generic Join. Intuitively, a (linear) binary
join plan says which relation to process at each step, and al-
ways processes one additional relation at a time. A Generic

Join plan says which variable to process at each step, and
always processes one variable at a time. A Free Join plan
can process any number of relations and variables at a time.
As we show in Figure 5, this flexibilty allows Free Join to
represent a much larger space of algorithms, leading to per-
formance improvements beyond the existing algorithms.

2.5 Other Optimizations
In this section, we summarize a few additional optimiza-

tions introduced in our SIGMOD paper [15], as well as relate
Free Join to the Generic Join algorithm. To motivate these
optimizations, we will follow the new example query Q4 in
Figure 7, and visualize an input instance in Figure 8. Note
Q4 is now a cyclic query, because its hypergraph is a triangle
with three vertices x, y, and z and three edges corresponding
to R(x, y), S(y, z), and T (z, x).

Let us first consider the algorithm in Figure 6a. We show
the Free Join plan in the comments atop the figure, and
note that it is equivalent to binary join. To reduce clutter
we will stick with a row-wise notation while keeping in mind
the underlying columnar storage. We also remove redudant
values from the hash maps; for example, the hash map for
S in Figure 6a now maps every y to a vector of z (instead of
a vector of (y, z)). The binary join algorithm first iterates
over (x, y)-tuples in R, using each y to probe into S to get
a vector of z. For each z, it then probes into T to check
if (z, x) is in T , and outputs the tuple (x, y, z) if so. This
binary plan essentially computes the join R ./ S first before

discarding tuples that do not join with T . Because R ./ T
has size ⌦(n2), the algorithm runs in quadratic time. Since
the relations are symmetric, any binary join plan will have
the same asymptotic run time.

A di↵erent algorithm is shown in Figure 6b. Here, as we
iterate over tuples in R, we look up into S and T at the
same time. In other words we perform the late iteration op-
timization again, pulling up lookups to discard tuples early.
However, this is not su�cient, because every tuple in R does
in fact join with both S and T , so the first loop level discards
no tuples. As the second loop level iterates over s, we are
in e↵ect still computing the join R ./ S which takes ⌦(n2)
time. To overcome this ine�ciency, we now introduce a new
operator called intersection (\).

2.5.1 Intersection
In contrast, the algorithm in Figure 6c runs in linear time.

The small di↵erence is that we have replaced the inner loop
of Figure 6b, which iterates over s, with a loop iterating
over the intersection of s and t. When we compute the
intersection, we always iterate over the smaller set while
probing into the larger set. To analyze the run time of this
algorithm, we first assume we have built a hash map for S,
mapping each y to a hash set of z, and similar for T . Building
each hash map takes linear time. Then, as we iterate over
R, we consider three cases:

1. For tuple (x0, y0), s = S[y0] = {zi | i 2 [0, . . . , n]} =
T [x0] = t = s \ t, so we may iterate over either s or t
to compute s \ t in linear time.

2. For each tuple (x0, yi) | i > 0, t = {zi | i 2 [0, . . . , n]}
but s = S[yi] = {z0}, so we iterate over (the only
element of) s and probe into t to compute s \ t. This
takes constant time for each yi, so for all yi the total
time is linear.

3. The case for tuple (xi, y0) is symmetric to the previous
case, so it also takes linear time.

Overall, the algorithm in Figure 6c runs in linear time. An-
other way to think about the intersection operation is to
understand it as dynamically reording the iterations and
lookups: to compute s \ t, we switch between the plans
[S(z) | T (z)] and [T (z) | S(z)] depending on which one is
smaller.

2.5.2 Generic Join

We can now faithfully derive the Generic Join algorithm
as a special case of Free Join, using the itersection operator.
Suppose an instance of Generic Join follows the variable order
x1, x2, . . . , xn. The corresponding Free Join plan is:

[R1
1(x1) \ R2

1(x1) \ · · · ]
! [R1

2(x2) \ R2
2(x2) \ · · · ]

...

! [R1
n(xn) \ R2

n(xn) \ · · · ]

where Rj

i
is a relation that contains xi in its schema. When

computing a multiway intersection, we (dynamically) pick
the smallest set to iterate over and probe into the rest. For
any choice of the variable order, the Generic Join algorithm
is guaranteed to run in worst-case optimal time [14, 9, 10].
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1 # [ R(x, y) | S(y) ]
2 # -> [ S(z) | T(z, x) ]
3

4 for (x,y) in R:
5 s = S[y]? # S:y->[z]
6 for z in s:
7 if (z,x) in T:
8 output(x,y,z)

(a) Plan equivalent to binary
join.

# [ R(x, y) | S(y), T(x) ]
# -> [ S(z) | T(z) ]

for (x,y) in R:
s = S[y]?; t = T[x]?
for z in s:

if z in t:
output(x,y,z)

(b) Another Free Join plan.

1 # [ R(x, y) | S(y), T(x) ]
2 # -> [ S(z) \ T(z) ]
3

4 for (x,y) in R:
5 s = S[y]?; t = T[x]?
6 for z in s \ t:
7 output(x,y,z)
8

(c) Plan with intersect (\).

# [ R(y) \ S(y) ]
# -> [ S(z) \ T(z) ]
# -> [ T(x) \ R(x) ]
for y in R.y \ S.y:
for z in S[y] \ T.z:
for x in T[z] \ R[y]:
output(x,y,z)

(d) Plan equivalent to Generic

Join.

Figure 6: Four di↵erent Free Join plans for Q4 and their execution.

Q4 :- R(x, y), S(y, z), T (z, x).

SELECT * FROM R,S,T -- R(x,y), S(y,z), T(z,x)
WHERE R.y = S.y AND S.z = T.z AND T.x = R.x

R = {(x0, yi) | y 2 [0 . . . n]} [ {(xi, y0) | y 2 [0 . . . n]}
S = {(y0, zi) | y 2 [0 . . . n]} [ {(yi, z0) | y 2 [0 . . . n]}
T = {(z0, xi) | y 2 [0 . . . n]} [ {(zi, x0) | y 2 [0 . . . n]}

Figure 7: The triangle query Q4, and an input instance.

TT

SSRR

Figure 8: Visualization of input relations to Q4. Each relation is

represented by a set of edges. The query Q4 looks for triangles

formed by one edge from each relation (there are 10).

2.5.3 Lazy trie building
To explain the algorithm in Figure 6b we assumed to have

pre-built hash maps for S and T . A more e�cient strategy is
to lazily construct parts of the data structures as we iterate
over the relations. Specifically, we will only build the hash
set for s (or t) right before we need to probe into it. This way,
we can avoid building a linear number of (singleton) hash
sets that we only need to iterate over. In the full paper [15]
we describe a data structure, called Column-oriented Lazy
Trie (COLT), that generalizes this idea.

2.5.4 Vectorized Execution
A simple way to implement Free Join is to use a recursive

function, as shown in Figure 9. For every group in the Free

Join plan, we iterate over the first subatom and probe into
the remaining subatoms. If all probes are successful, we
append new values to the partial tuple, and recursively call
join on the remaining plan and sub-relations. This näıve
implementation su↵ers from poor temporal locality: in the

1 def join(plan, tuple, R, S, T, ...):
2 if plan is empty: output(tuple)
3 else:
4 let [ R(xs) | S(ys), T(zs), ... ] = plan[0]
5 for xs in R:
6 r = R[xs]?; s = S[ys]?; t = T[zs]?; ...
7 join(plan[1:], tuple ++ xs, r, s, t, ...)

Figure 9: Recursive formulation of Free Join.

1 def join(plan, tuple, R, S, T, ...):
2 if plan is empty: output(tuple)
3 else:
4 let [ R(xs) | S(ys), T(zs), ... ] = plan[0]
5 tup_rels = {} # map a partial tuple to sub-relations
6 for xs_batch in R.iter_batch():
7 for xs in xs_batch:
8 r = R[xs]?; s = S[ys]?; t = T[zs]?; ...
9 tup = tuple ++ xs
10 tup_rels[tup] = (r, s, t, ...)
11 for (tup, rels) in tup_rels:
12 join(plan[1:], tup, rels)

Figure 10: Vectorized execution for Free Join.

body of the loop, we probe into the same set of relations for
each tuple. But these probes are interrupted by the recursive
call at the end, which is itself a loop interrupted by further
recursive calls.

A simple way to improve locality is to perform a batch
of probes before recursing, just like the classic vectorized
execution for binary join. As shown in Figure 10, we call
iter_batch to retrieve a batch of tuples from R. For each
tuple in a batch, we probe into the relations to get the cor-
responding sub-relations. If all probes are successful, we
append new values to the partial tuple, and pair the tu-
ple with the respecitve sub-relations; otherwise we continue
onto the next tuple in the batch. Finally, for each tuple that
successfully probes into all relations, we call join recursively
on the remaining plan.

3. EXPERIMENTS
We implemented Free Join as a standalone Rust library.

The main entry point of the library is a function that takes
a binary join plan (produced and optimized by DuckDB),
and a set of input relations. The system converts the bi-
nary plan to a Free Join plan, optimizes it, then runs it us-
ing COLT and vectorized execution. We compare Free Join

against two baselines: our own Generic Join implementation
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Figure 11: Run time comparison on JOB. Each black dot com-

pares the run time of a query on Free Join and binary join, and a

black dot below the diagonal means Free Join is faster. The gray

dots compare Generic Join and binary join similarly.

in Rust, and the binary hash join implemented in the state-
of-art in-memory database DuckDB [13, 12]. We evaluate
their performance on the popular Join Order Benchmark
(JOB) [7]. We refer the reader to our SIGMOD paper [15]
for additional experiments that include other systems and
benchmarks, as well as detailed ablation studies of the opti-
mizations.

3.1 Setup
While we had easy access to optimized join plans produced

by DuckDB, we did not find any system that produces op-
timized Generic Join plans, or can take an optimized plan
as input. We therefore implement a Generic Join baseline
ourselves, by modifying Free Join to fully construct all tries,
and removing vectorization. We chose as variable order for
Generic Join the same as for Free Join.3

The JOB benchmark contains 113 acyclic join queries with
an average of 8 joins per query. Each query in the bench-
marks only contains base-table filters, natural joins, and a
simple group-by at the end, and no null values. The queries
works over real-world data from the IMDB dataset. We ex-
clude 5 queries that return empty results, since such empty
queries are known to introduce reproducibility issues4.

We ran all our experiments on a MacBook Air laptop with
Apple M1 chip and 16GB memory. All systems are config-
ured to run single-threaded in main memory, and we leave
all of DuckDB’s configurations to be the default. All sys-
tems are given the same binary plan optimzed by DuckDB.
Since we are only interested in the performance of the join
algorithm, we exclude the time spent in selection and ag-
gregation when reporting performance. This excluded time
takes up on average less than 1% of the total execution time.

3
Free Join defines only a partial order; we extended it to a

total order.
4See GitHub Issue #11: https://github.com/gregrahn/join-
order-benchmark/issues/11

111101
JOIN
| \________9775
1919495 company_name(cid)
JOIN
| \________1
8123586 company_type(ctid)
JOIN
| \________1
24740873 info_type1(iid1)
JOIN
| \________1
148621556 info_type2(iid2)
JOIN
| \________1
177388547 kind_type(kid)
JOIN
| \________2609129
20885030 movie_companies(mid, cid, ctid)
JOIN
| \________1380035
| JOIN
| | \_____1380035
| 2528312 movie_info_idx(mid, iid1)
| title(mid, kid)
14835720
movie_info(mid, iid2)

Figure 12: Query plan produced by DuckDB for JOB Q13a. We

show the join attributes next to each input relation, and label

each relation with its size as well as each join with its (actual)

cardinality.

3.2 Run time comparison
Figure 11 compares the run time of Free Join and Generic

Join against binary join on JOB queries. We see that almost
all data points for Free Join are below the diagonal, indicat-
ing that Free Join is faster than binary join. On the other
hand, the data points for Generic Join are largely above the
diagonal, indicating that Generic Join is slower than both bi-
nary join and Free Join. On average (geometric mean), Free
Join is 2.94x faster than binary join and 9.61x faster than
Generic Join. The maximum speedups of Free Join against bi-
nary join and Generic Join are 19.36x and 31.6x, respectively,
while the minimum speedups are 0.85x (17% slowdown) and
2.63x.

We zoom in onto a few interesting queries for a deeper
look. The slowest query under DuckDB is Q13a, taking
over 10 seconds to finish. Generic Join runs slightly faster,
taking 7 seconds, whereas Free Join takes just over 1 second.
The query plan for this query, as shown in Figure 12, reveals
the bottleneck for binary join: the first 3 binary joins are
over 4 very large tables, and two of the joins are many-
to-many joins, exploding the intermediate result to contain
over 100 million tuples. However, all 3 joins are on the
same attribute (mid); in other words they are quite similar
to our clover query Q|. As a result, Generic Join and Free

Join simply intersects the relations on that join attribute,
expanding the remaining attributes only after other more
selective joins.

On a few queries Free Join runs slightly slower than bi-
nary join, as shown by the data points over the diagonal.
The binary plans for these queries are all bushy, and each
query materializes a large intermediate relation. We have
not spent much e↵ort optimizing for materialization, and
we implement a simple strategy: for each intermediate that
we need to materialize, we store the tuples containing all
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base-table attributes in a vector. Future work may explore
more e�cient materialization strategies, for example only
materializing attributes that are needed by future joins.

4. CONCLUSION
In this paper we review the Free Join framework, which

generalizes and unifies traditional join algorithms and WCOJ

algorithms. We re-derive the more general Free Join from
the well-understood binary join, hoping to make the frame-
work more accessible to database practitioners. We hope
to see the adoption of Free Join in mainstream databases,
which shall inspire further research on the design of join
algorithms. We conclude by pointing out some promising
research directions. First, we have been focusing on single-
threaded in-memory algorithms. How can we adapt Free

Join to work on disk, on multi-core machines, and in dis-
tributed settings? In particular, the COLT data structure
relies on laziness and appears inherently sequential. Do we
need a new data structure to parallelize Free Join? Second,
our optimizer starts from an already optimized binary plan,
and conservatively improve it into a Free Join plan. How can
we design and implement an optimizer to better exploit the
flexibilty of Free Join? Finally, as the experiments show, our
current implementation of Free Join is not yet competitive
for certain bushy plans. How can we improve the perfor-
mance of materializing intermediate results for Free Join?
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optimal join algorithms: [extended abstract]. In
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[11] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back:
new developments in the theory of join algorithms.
SIGMOD Rec., 42(4):5–16, 2013.

[12] M. Raasveldt. Duckdb - A modern modular and
extensible database system. In S. R. Valluri and
M. Zait, editors, 1st International Workshop on
Composable Data Management Systems,
CDMS@VLDB 2022, Sydney, Australia, September 9,
2022, 2022.

[13] M. Raasveldt and H. Mühleisen. Data management for
data science - towards embedded analytics. In 10th
Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org,
2020.

[14] T. L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. In N. Schweikardt,
V. Christophides, and V. Leroy, editors, Proc. 17th
International Conference on Database Theory (ICDT),
Athens, Greece, March 24-28, 2014, pages 96–106,
Athens, Greece, 2014. OpenProceedings.org.

[15] Y. R. Wang, M. Willsey, and D. Suciu. Free join:
Unifying worst-case optimal and traditional joins.
Proc. ACM Manag. Data, 1(2), jun 2023.

[16] M. Yannakakis. Algorithms for acyclic database
schemes. In Very Large Data Bases, 7th International
Conference, September 9-11, 1981, Cannes, France,
Proceedings, pages 82–94. IEEE Computer Society,
1981.

SIGMOD Record, March 2024 (Vol. 53, No. 1) 31


