Technical Perspective: From Binary Join to Free Join

Thomas Neumann
TUM
neumann@in.tum.de

Most queries access data from more than one relation,
which makes joins between relations an extremely common
operation. In many cases the execution time of a query
is dominated by the processing of the involved joins. This
observation has led to a wide range of techniques to speed up
join processing like, e.g. efficient hash joins, bitmap filters
to eliminate non-joining tuples early on, blocked lookups to
hide cache latencies, and many others.

But even the most careful engineering technique cannot
hide the fact that a join is fundamentally a growing opera-
tion, at least in the general case. This problem is not im-
mediately visible because many real-world joins are foreign
key / primary key joins, which means that we will have at
most one join partner per foreign key, and thus the result
of the join will not be larger than the inputs. But that is
not always the case. In general, a join is a n:m combina-
tion, which means that the result of a join can be as large as
O(n?), where n is the input size. When n is large, as it is of-
ten case for databases, this can lead to disastrous execution
times.

An interesting observation in this context is that a O(n?)
(intermediate) result is usually a mistake. Very few users
will ask queries where the result consists of millions or bil-
lions of tuples. Usually there will be subsequent operations
that eliminate most of these intermediate results until only
the query result remains. The query optimizer will try to
find a join execution order where the intermediate result
sizes are minimized, but in the presence of growing joins
and often unreliable cardinality estimates that is not an easy
task. Sometimes small changes the query lead to very differ-
ent execution times, which is unfortunate for the robustness
of the system.

And fundamentally, some queries with growing joins are
inherently hard for binary joins, independent of join order.
The classic example for that are triangle queries, for exam-
ple the natural join between the sets R(a,b), S(b,c),T(c,a).
These queries often have very large intermediate result but
only small query results. And even worse, it can be shown
that for some data sets any strategy that uses binary joins
will have O(n?) runtime, which makes these queries in-
tractable for large data sets. While the query result itself is
only in O(n'®) even in worst case [1], and in reality it will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2024 ACM 0001-0782/24/0X00 ...$5.00.

24

usually be much smaller.

Another class of join algorithms, so called worst-case op-
timal joins (WCOJs), process joins not as a sequence of bi-
nary joins but as a sequence of attribute equivalence classes,
where all relations involved in the equivalence class are pro-
cessed within the step. This avoids the intermediate result
explosion and makes triangle queries tractable. But they
are rarely used in database systems because the constant
factors in the implementation are higher and they tend to
be slower than traditional binary queries for the more com-
mon case that the intermediate results do not grow dramat-
ically [2]. But simply always using optimized binary joins is
dangerous, they are faster on typical queries but can exhibit
catastrophic performance for growing queries.

The next paper finds an interesting compromise between
these two extremes. It introduces so called free join plans,
which can process both multiple attributes and multiple re-
lations in each step. This makes both traditional binary
joins and the general join WCOJ algorithm special cases of
free joins, as both can be expressed in the framework. In
addition, new strategies can be expressed as free join plans
that combine aspects of traditional joins and WCOJs in one
execution plan.

This allows for avoiding the high constant factors of
WCOJs for the parts of the query where they are not re-
quired, while still retaining the superior pruning power of
WCOJs in the overall query. This is a very nice result that
will hopefully lead to systems that are more robust and can
process join queries predictable and reliable.

1. REFERENCES

[1] A. Atserias, M. Grohe, and D. Marx. Size bounds and
query plans for relational joins. In 49th Annual IEEE
Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA,
USA, pages 739-748. IEEE Computer Society, 2008.

[2] M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and
T. Neumann. Adopting worst-case optimal joins in
relational database systems. Proc. VLDB Endow.,
13(11):1891-1904, 2020.

SIGMOD Record, March 2024 (Vol. 53, No. 1)

