
Better Differentially Private Approximate Histograms and
Heavy Hitters using the Misra-Gries Sketch

Christian Janos Lebeda
Basic Algorithms Research Copenhagen

IT University of Copenhagen
Copenhagen, Denmark

christian.j.lebeda@gmail.com

Jakub Tětek
Basic Algorithms Research Copenhagen

University of Copenhagen
Copenhagen, Denmark
j.tetek@gmail.com

ABSTRACT
We consider the problem of computing di↵erentially private
approximate histograms and heavy hitters in a stream of
elements. In the non-private setting, this is often done
using the sketch of Misra and Gries [Science of Computer
Programming, 1982]. Chan, Li, Shi, and Xu [PETS 2012]
describe a di↵erentially private version of the Misra-Gries
sketch, but the amount of noise it adds can be large and
scales linearly with the size of the sketch; the more accurate
the sketch is, the more noise this approach has to add. We
present a better mechanism for releasing a Misra-Gries sketch
under (", �)-di↵erential privacy. It adds noise with magnitude
independent of the size of the sketch; in fact, the maximum
error coming from the noise is the same as the best known
in the private non-streaming setting, up to a constant factor.
Our mechanism is simple and likely to be practical. In the
full version of the paper we also give a simple post-processing
step of the Misra-Gries sketch that does not increase the
worst-case error guarantee. It is su�cient to add noise to
this new sketch with less than twice the magnitude of the
non-streaming setting. This improves on the previous result
for "-di↵erential privacy where the noise scales linearly to
the size of the sketch.

1. INTRODUCTION
Computing the histogram of a dataset is one of the most

fundamental tasks in data analysis. At the same time, releas-
ing a histogram may present significant privacy issues. This
makes the e�cient computation of histograms under privacy
constraints a fundamental algorithmic question. Notably,
di↵erential privacy has become in recent years the golden
standard for privacy, giving formal mathematical privacy
guarantees. It would thus be desirable to have an e�cient
way of (approximately) computing histograms under di↵er-
ential privacy.

@ 2023 Copyright held by the authors. Publication rights
licensed to ACM. This is a minor revision of the paper enti-
tled ”Better Di↵erentially Private Approximate Histograms
and Heavy Hitters using the Misra-Gries Sketch”, pub-
lished in PODS’23, ISBN979-8-4007-0127-6/23/06, June 18–
23, 2023, Seattle, WA, USA. DOI: http://dx.doi.org/10.
1145/3584372.3588673

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2024 ACM 0001-0782/08/0X00 ...$5.00.

Histograms have been investigated thoroughly in the dif-
ferentially private setting [1, 2, 7, 8, 10, 12, 14]. These algo-
rithms start by computing the histogram exactly and they
then add noise to ensure privacy. However, in practice,
the amount of data is often so large that computing the
histogram exactly would be impractical. This is, for exam-
ple, the case when computing the histogram of high-volume
streams such as when monitoring computer networks, on-
line users, financial markets, and similar. In that case, we
need an e�cient streaming algorithm. Since the stream-
ing algorithm would only compute the histogram approxi-
mately, the above-mentioned approach that first computes
the exact histogram is infeasible. In practice, non-private
approximate histograms are often computed using the Misra-
Gries (MG) sketch [15]. The MG sketch of size k returns at
most k items and their approximate frequencies f̂ such that
f̂(x) 2 [f(x)� n/(k + 1), f(x)] for all elements x where f(x)
is the true frequency and n is the length of the stream. This
error is known to be optimal [5]. In this work, we develop a
way of releasing a MG sketch in a di↵erentially private way
while adding only a small amount of noise.This allows us to
e�ciently and accurately compute approximate histograms
in the streaming setting while not violating users’ privacy.
This can then be used to solve the heavy hitters problem in
a di↵erentially private way. Our result improves upon the
work of Chan, Li, Shi, and Xu [6] who also show a way of
privately releasing the MG sketch, but who need a greater
amount of noise; we discuss this below.

In general, the issue with making approximation algorithms
di↵erentially private is that although we may be approxi-
mating a function with low global sensitivity, the algorithm
itself (or rather the function it implements) may have a
much larger global sensitivity. This increases the amount of
noise required to achieve privacy using standard techniques.
We get around this issue by exploiting the structure of the
di↵erence between the MG sketches for neighboring inputs.
This allows us to prove that the following simple mechanism
ensures (", �)-di↵erential privacy: (1) We compute the Misra-
Gries sketch, (2) we add to each counter independently noise
distributed as Laplace(1/"), (3) we add to all counters the
same value, also distributed as Laplace(1/"), (4) we remove
all counters smaller than 1 + 2 ln(3/�)/". Specifically, we
show that this algorithm satisfies the following guarantees:

Theorem 11 (simplified). The above algorithm is (", �)-
di↵erentially private, uses 2k words of space, and returns
a frequency oracle f̂ with maximum error of n/(k + 1) +
O(log(1/�)/") with high probability for � being su�ciently
small.

SIGMOD Record, March 2024 (Vol. 53, No. 1) 7

A construction for a di↵erentially private Misra-Gries
sketch has been given before by Chan et al. [6]. However, the
more accurate they want their sketch to be (and the bigger
it is), their approach has to add more noise. The reason
is that they directly rely on the global `1-sensitivity of the
sketch. Specifically, if the sketch has size k (and thus error
n/(k + 1) on a stream of n elements), its global sensitivity
is k, and they thus have to add noise of magnitude k/".
Their mechanism ends up with an error of O (k log(d)/") for
"-di↵erential privacy with d being the universe size. This can
be easily improved to O (k log(1/�)/") for (", �)-di↵erential
privacy with a thresholding technique similar to what we do
in step (4) of our algorithm above. This also means that they

cannot get more accurate than error ⇥
⇣p

n log(1/�)/"
⌘
,

no matter what value of k one chooses. We achieve that
the biggest error, as compared to the values from the MG
sketch, among all elements is O(log(1/�)/") assuming � is
su�ciently small (we show more detailed bounds including
the mean squared errors in Theorem 11). This is the same
as the best private solution that starts with an exact his-
togram [14]. In fact, for any mechanism that outputs at
most k heavy hitters there exists input with error at least
n/(k + 1) in the streaming setting [5] and input with error
at least O(log(min(d, 1/�))/") [2] under di↵erential privacy.

In the full version of this paper, we also show how to achieve
pure "-di↵erential privacy with error n/(k +1)+O(log(d)/").
Therefore the error of our mechanisms is asymptotically
optimal for approximate and pure di↵erential privacy, respec-
tively.

Chan et al. [6] use their di↵erentially private Misra-Gries
sketch as a subroutine for continual observation and combine
sketches with an untrusted aggregator. Those settings are
not a focus of our work but our algorithm can replace theirs
as the subroutine, leading to better results also for those
settings. However, the error from noise still increases linearly
in the number of merges when the aggregator is untrusted. As
a side note, we show that in the case of a trusted aggregator,
the approach of [6] can handle merge operations without
increasing error. While that approach adds significantly
more noise than ours if we do not merge, it can with this
improvement perform better when the number of merges is
very large (at least proportional to the sketch size).

Another approach that can be used is to use a random-
ized frequency oracle to recover heavy hitters. However,
it seems hard to do this with the optimal error size. In
its most basic form [11, Appendix D], this approach needs
noise of magnitude ⇥(log(d)/"), even if we have a sketch
with sensitivity 1 (the approach increases the sensitivity to
log(d), necessitating the higher noise magnitude), leading to
maximum error at least ⌦(log(k) log(d)/"). Bassily, Nissim,
Stemmer, and Guha Thakurta [3] show a more involved ap-
proach which reduces the maximum error coming from the
noise to ⇥((log(k) + log(d))/"), but at the cost of increasing
the error coming from the sketch by a factor of log(d). This
means that even if we had a sketch with error ⇥(n/k) and
sensitivity 1, neither of these two approaches would lead
to optimal guarantees, unlike the algorithm we give in this
paper.

See https://github.com/JakubTetek/Di↵erentially-Private-
Misra-Gries for sample implementations of the algorithms
we present in this paper.

2. TECHNICAL OVERVIEW

Misra-Gries sketch. Since our approach depends on the
properties of the MG sketch, we describe it here. Readers
familiar with the MG sketch may wish to skip this paragraph.
We describe the standard version; in Section 5 we use a slight
modification, but we do not need that here.

Suppose we receive a sequence of elements from some
universe. At any time, we will be storing at most k of these
elements. Each stored item has an associated counter, other
elements have implicitly their counter equal to 0. When we
process an element, we do one of the following three updates:
(1) if the element is being stored, increment its counter by 1,
(2) if it is not being stored and the number of stored items is
< k, store the element and set its counter to 1, (3) otherwise
decrement all k counters by 1 and remove those that reach 0.
The exact guarantees on the output will not be important
now, and we will discuss them in Section 5.

Our contributions. We now sketch how to release an MG
sketch in a di↵erentially private way.

Consider two neighboring data streams S = (S1, · · · , Sn)
and S0 = (S1, · · · , Si�1, Si+1, · · · , Sn) for some i 2 [n]. At
step i�1, the state of the MG sketch on both inputs is exactly
the same. MGS then receives the item Si while MGS0 does
not. This either increments one of the counters of MGS

(possibly by adding an element and raising its counter from
0 to 1) or decrements all its counters. In `1 distance, the
vector of the counters thus changes by at most k. One
can show by induction that this will stay this way: at any
point in time, kMGS �MGS0k1  k. By a standard global
sensitivity argument, one can achieve pure DP by adding
noise of magnitude k/" to each count. This is the approach
used in [6]. Similarly, we could achieve (", �)-DP by using the
Gaussian mechanism [9] with noise magnitude proportional
to the `2-sensitivity, which is sup

S,S0 kMGS�MGS0k2 
p

k.
We want to instead achieve noise with magnitude O(1/") at
each count. To this end, we need to exploit the structure of
MGS �MGS0 .

What we just described requires that we add the noise to
the counts of all items in the universe, also to those that are
not stored in the sketch. This results in the maximum error
of all frequencies depending on the universe’s size, which we
do not want. However, it is known that this can be easily
solved under (", �)-di↵erential privacy by only adding noise
to the stored items and then removing values smaller than
an appropriately chosen threshold [14]. This may introduce
additional error – for this reason, we end up with error
O(log(1/�)/"). As this is a somewhat standard technique, we
ignore this in this section, we assume that the sketches MGS

and MGS0 store the same set of elements; the thresholding
allows us to remove this assumption, while allowing us to
add noise only to the stored items, at the cost of only getting
approximate DP.

We now focus on the structure of MGS �MGS0 . After
we add to MGS the element Si, it either holds (1) that
MGS �MGS0 is a vector of all 0’s and one 1 or (2) that
MGS �MGS0 = �1

k (We use 1
k the denote the dimension

k vector of all ones). We show by induction that this will
remain the case as more updates are done to the sketches
(note that the remainders of the streams are the same). We
do not sketch the proof here, as it is quite technical.

8 SIGMOD Record, March 2024 (Vol. 53, No. 1)

How do we use the structure of MGS �MGS0 to our ad-
vantage? We add noise twice. First, we independently add
to each counter noise distributed as Laplace(1/"). Second,
we add to all counters the same value, also distributed as
Laplace(1/"). That is, we release MGS + Laplace(1/")⌦k +
Laplace(1/")1k (For D being a distribution, we use D⌦k to
denote the k-dimensional distribution consisting of k inde-
pendent copies of D). Intuitively speaking, the first noise
hides the di↵erence between S and S0 in case (1) and the
second noise hides the di↵erence in case (2). We now sketch
why this is so for worse constants: 2/" in place of 1/". When
proving this formally, we use a more technical proof which
leads to the better constant.

We now sketch why this is di↵erentially private. Let mS

be the mean of the counters in MGS for S being an input
stream. We may represent MGS as (MGS�mS1, mS) (note
that there is a bijection between this representation and
the original sketch). We now argue that the `1-sensitivity
of this representation is < 2 (treating the representation
as a (k + 1)-dimensional vector for the sake of computing
the `1 distances). Consider the first case. In that case, the
averages mS , mS0 di↵er by 1/k. As such, MGS �mS1

k and
MGS0 �mS01

k di↵er by 1/k at k � 1 coordinates and by
1 � 1/k at one coordinate. The overall `1 change of the
representation is thus

(k � 1) · 1
k

+ (1� 1/k) + 1/k = 2� 1/k < 2.

Consider now the second case when MGS �MGS0 = �1
k.

Thus, MGS �mS = MG0
S �mS0 . At the same time |mS �

mS0 | = 1. This means that the `1 distance between the
representations is 1. Overall, the `1-sensitivity of this repre-
sentation is < 2.

This means that adding noise from Laplace(2/")⌦k+1 to
this representation of MGS will result in "-di↵erential pri-
vacy. The resulting value after adding the noise is (MGS �
mS1

k +Laplace(2/")⌦k, mS +Laplace(2/")). In the original
vector representation of MGS , this corresponds to MGS +
Laplace(2/")⌦k + Laplace(2/")1k and, by post-processing,
releasing this value is also di↵erentially private. But this is
exactly the value we wanted to show is di↵erentially private!

3. PRELIMINARIES

Setup of this paper. We use U to denote a universe of
elements. We assume that U is a totally ordered set of size
d. That is, U = [d] where [d] = {1, . . . , d}. Given a stream
S 2 UN we want to estimate the frequency in S of each
element of U . Our algorithm outputs a set T ✓ U of keys
and a frequency estimate ci for all i 2 T . The value cj is
implicitly 0 for any j /2 T . Let f(x) denote the true frequency
of x in the stream S. Our goal is to minimize the largest
error between cx and f(x) among all x 2 U .

Differential privacy. Di↵erential privacy is a rigorous defi-
nition for describing the privacy loss of a randomized mecha-
nism introduced by Dwork, McSherry, Nissim, and Smith [8].
Intuitively, di↵erential privacy protects privacy by restricting
how much the output distribution can change when replac-
ing the input from one individual. This is captured by the
definition of neighboring datasets. We use the add-remove
neighborhood definition for di↵erential privacy.

Definition 1 (Neighboring Streams). Let S be a stream of
length n. Streams S and S0 are neighboring denoted S ⇠ S0 if
there exists an i such that S = (S0

1, . . . , S
0
i�1, S

0
i+1, . . . , S

0
n+1)

or S0 = (S1, . . . , Si�1, Si+1, . . . , Sn).

Definition 2 (Di↵erential Privacy [9]). A randomized mecha-
nism M : UN ! R satisfies (", �)-di↵erential privacy if and
only if for all pairs of neighboring streams S ⇠ S0 and all
measurable sets of outputs Z ✓ R it holds that

Pr[M(S) 2 Z]  e" Pr[M(S0) 2 Z] + � .

The privacy guarantees are parameterized by the values
" and �. Smaller values for these privacy parameters imply
stronger privacy guarantees. Di↵erential privacy gives us a
trade-o↵ between privacy and utility. If we require strong
privacy guarantees we can lower the privacy parameters.
However, doing so forces us to add more noise to the output.

Several other properties such as composition, group privacy,
and closure under post-processing follow directly from the
Definition 2. We refer to the book by Dwork and Roth [9]
for a longer introduction to these concepts.

Samples from a Laplace distribution are used in many
di↵erentially private algorithms, most notably the Laplace
mechanism [8]. We write Laplace(b) to denote a random
variable with a Laplace distribution with scale b centered
around 0. We sometimes abuse notation and write Laplace(b)
to denote the value of a random variable drawn from the
distribution. Our mechanism also works with other noise
distributions. We briefly discuss this in Section 5.2.

Definition 3 (Laplace distribution). The probability density
and cumulative distribution functions of the Laplace distri-
bution centered around 0 with scale parameter b are fb(x) =
1
2b

e�|x|/b, and Pr[Laplace(b)  x] = 1
2ex/b if x < 0 and

1� 1
2e�x/b for x � 0.

4. RELATED WORK
Chan et al. [6] show that the global `1-sensitivity of a

Misra-Gries sketch is �1 = k. (They actually show that
the sensitivity is k + 1 but they use a di↵erent definition
of neighboring datasets that assumes n is known. Applying
their techniques under our definition yields sensitivity k.)
They achieve privacy by adding noise with scale k/" to all
elements in the universe and keep the top-k noisy counts.
This gives an expected maximum error of O(k log(d)/") with
"-DP for d being the universe size. They use the algorithm
as a subroutine for continual observation and merge sketches
with an untrusted aggregator. Those settings are not a focus
of our work but our algorithm can replace theirs as the
subroutine.

Böhler and Kerschbaum [4] worked on di↵erentially private
heavy hitters with no trusted server by using secure multi-
party computation. One of their algorithms adds noise to
the counters of a Misra-Gries sketch. They avoid adding
noise to all elements in the universe by removing noisy counts
below a threshold which adds an error of O(log(1/�)/"). This
is a useful technique for hiding di↵erences in keys between
neighboring sketches that removes the dependency on d in
the error. Unfortunately, as we explain in the full version
of our paper, their mechanism uses the wrong sensitivity.
The sensitivity of the sketch is k. If the magnitude of noise
and the threshold are increased accordingly the error of their
approach is O(k log(k/�)/").

SIGMOD Record, March 2024 (Vol. 53, No. 1) 9

A closely related problem is that of implementing frequency
oracles in the streaming setting under di↵erential privacy.
This has been studied in e.g. [11,16,17]. These approaches do
not directly return the heavy hitters. The simplest approach
for finding the heavy hitters is to iterate over the universe
which might be infeasible. However, there are constructions
for finding heavy hitters with frequency oracles more e�-
ciently (see Bassily et al. [3]). However, as we discussed in
the introduction, the approach of [3] leads to worse maximum
error than what we get unless the sketch size is very large
and the universe size is small.

5. DIFFERENTIALLY PRIVATE
MISRA-GRIES SKETCH

In this section, we present our algorithm for privately
releasing Misra-Gries sketches. We first present our variant
of the non-private Misra-Gries sketch in Algorithm 1 and
later show how we add noise to achieve (", �)-di↵erential
privacy. The algorithm we use di↵ers slightly from most
implementations of MG in that we do not remove elements
that have weight 0 until we need to re-use the counter. This
will allow us to achieve privacy with slightly lower error.

At all times, k counters are stored as key-value pairs. We
initialize the sketch with dummy keys that are not part of
U . This guarantees that we never output any elements that
are not part of the stream, assuming we remove the dummy
counters as post-processing.

The algorithm processes the elements of the stream one
at a time. At each step one of three updates is performed:
(1) If the next element of the stream is already stored the
counter is incremented by 1. (2) If there is no counter for
the element and all k counters have a value of at least 1 they
are all decremented by 1. (3) Otherwise, one of the elements
with a count of zero is replaced by the new element.

In case (3) we always remove the smallest element with a
count of zero. This allows us to limit the number of keys that
di↵er between sketches for neighboring streams as shown in
Lemma 5. The choice of removing the minimum element
is arbitrary but the order of removal must be independent
of the stream so that it is consistent between neighboring
datasets. The limit on di↵ering keys allows us to obtain
a slightly lower error for our private mechanism. However,
it is still possible to apply our mechanism with standard
implementations of MG. We discuss this in Section 5.1.

Algorithm 1: Misra-Gries (MG)

Input : Positive integer k and stream S 2 UN

1 T {d + 1, . . . , d + k} // Start with k dummy
counters

2 ci 0 for all i 2 T
3 foreach x 2 S do
4 if x 2 T then // Branch 1
5 cx cx + 1
6 else if ci � 1 for all i 2 T then // Branch 2
7 ci ci � 1 for all i 2 T
8 else // Branch 3
9 Let y 2 T be the smallest key satisfying cy = 0

10 T (T [{x}) \ {y}
11 cx 1
12 return T, c

The same guarantees about correctness hold for our version
of the MG sketch, as for the original version. This can be
easily shown, as the original version only di↵ers in that it
immediately removes any key whose counter is zero. Since
the counters for items not in the sketch are implicitly zero,
one can see by induction that the estimated frequencies by
our version are exactly the same as those in the original
version. We still need this modified version, as the set of
keys it stores is di↵erent from the original version, which
we use below. The fact that the returned estimates are the
same however allows us to use the following fact

Fact 4 (Bose et al. [5]). Let f̂(x) be the frequency estimates
given by an MG sketch of size k for n being the input size.
Then for all x 2 U , it holds f̂(x) 2 [f(x)� n/(k + 1), f(x)],
where f(x) is the true frequency of x.

Note that this is optimal for any mechanism that returns
a set of at most k elements. This is easy to see for an
input stream that contains k + 1 distinct elements each
with frequency n/(k + 1) since at least one element must be
removed.

We now analyze the value of MGS �MGS0 for S, S0 being
neighboring inputs (recall Definition 1). We will then use this
in order to prove privacy. As mentioned in Section 4, Chan et
al. [6] showed that the `1-sensitivy for Misra-Gries sketches
is k. They show that this holds after processing the element
that di↵ers for neighboring streams and use induction to
show that it holds for the remaining stream. Our analysis
follows a similar structure. We expand on their result by
showing that the sets of stored elements for neighboring
inputs di↵er by at most two elements when using our variant
of Misra-Gries. We then show how all this can be used to
get di↵erential privacy with only a small amount of noise.

Lemma 5. Let T, c MG(k, S) and T 0, c0 MG(k, S0) be
the outputs of Algorithm 1 on a pair of neigboring streams
S ⇠ S0 such that S0 is obtained by removing an element
from S. Then |T \ T 0| � k � 2 and all counters not in the
intersection have a value of at most 1. Moreover, it holds
that either (1) ci = c0

i � 1 for all i 2 T 0 and cj = 0 for all
j /2 T 0 or (2) there exists an i 2 T such that ci = c0

i + 1 and
cj = c0

j for all j 6= i.

Proof. We sketch here the proof of the lemma. The full proof
is in the full version of the paper.

Let x = Si be the element in stream S which is not in
stream S0. Since the streams are identical in the first i� 1
steps the sketches are clearly the same before step i. If
there is no counter for x in the sketch and all k counters
have a non-zero value we execute Branch 2 of Algorithm 1.
The di↵erence between the MG sketches for S and S0 then
corresponds to case (1) of the lemma. If there is a counter
for x we execute Branch 1 of Algorithm 1. Finally, if there
is no counter for x and at least one counter with weight
0 we execute Branch 3 of Algorithm 1. After executing
either Branch 1 or 3 the di↵erence between the MG sketches
corresponds to case (2) of the lemma. In the full proof we
restrict the di↵erence between the two sketches to one of six
states that all fall under either case (1) or (2). We show that
if we are in one of the states at step j we will be in one of
the states at step j + 1 using a comprehensive case-by-case
analysis. Since the di↵erence between the sketches is in one
of the states after step i the lemma holds by induction.

10 SIGMOD Record, March 2024 (Vol. 53, No. 1)

Next, we consider how to add noise to release the Misra-
Gries sketch under di↵erential privacy. Recall that Chan
et al. [6] achieves privacy by adding noise to each counter
which scales with k. We avoid this by utilizing the struc-
ture of sketches for neighboring streams shown in Lemma 5.
We sample noise from Laplace(1/") independently for each
counter, but we also sample one more random variable from
the same distribution which is added to all counters. Small
values are then discarded using a threshold to hide di↵erences
in the sets of stored keys between neighboring inputs. This
is similar to the technique used by e.g. [14]. The algorithm
takes the output from MG as input. We sometimes write
PMG(k, S) as a shorthand for PMG(MG(k, S)).

Algorithm 2: Private Misra-Gries (PMG)

Parameters : ", � > 0
Input : Output from Algorithm 1:

T, c MG(k, S)
1 T̃ ;
2 Sample ⌘ ⇠ Laplace(1/")
3 foreach x 2 T do
4 cx cx + ⌘ + Laplace(1/")
5 if cx � 1 + 2 ln(3/�)/" then
6 T̃ T̃ [{x}
7 c̃x cx

8 return T̃ , c̃

We prove the privacy guarantees in three steps. First, we
show that changing either a single counter or all counters
by 1 does not change the output distribution significantly
(Corollary 7). This assumes that, for neighboring inputs, the
set of stored elements is exactly the same. By Lemma 5,
we have that the di↵erence between the sets of stored keys
is small and the corresponding counters are  1. Relying
on the thresholding, we bound the probability of outputting
one of these keys (Lemma 8). Finally, we combine these two
lemmas to show that the privacy guarantees hold for all cases
(we do this in Lemma 9).

Lemma 6. Let us have x, x0 2 Rk such that one of the follow-
ing three cases holds

1. 9i 2 [k] such that |xi � x0
i| = 1 and xj = x0

j for all
j 6= i.

2. xi = x0
i � 1 for all i 2 [k].

3. xi = x0
i + 1 for all i 2 [k].

Then we have for any measurable set Z that

Pr[x + Laplace(1/")⌦k + Laplace(1/")1k 2 Z]

 e" Pr[x0 + Laplace(1/")⌦k + Laplace(1/")1k 2 Z]

Proof. For the sake of brevity, we let L = Laplace(1/").
Throughout the proof, we construct sets by applying a trans-
lation to all elements of another set. That is, for any � 2 Rk

and measurable set Z we define Z � � = {a 2 Rk|a + � 2 Z}.
We first focus on the simpler case (1). It holds by the law of

total expectation that

Pr[x + L⌦k + L1
k 2 Z] =

EN⇠L

⇥
Pr[L⌦k 2 Z � x�N1

k|N]
⇤


e"EN⇠L

⇥
Pr[L⌦k 2 Z � x0 �N1

k|N]
⇤

=

e" Pr[x0 + L⌦k + L1
k 2 Z]

where to prove the inequality, we used that for any measur-
able set A, it holds

Pr[L⌦k 2 A]  e" Pr[L⌦k 2 A� �]

for any � 2 Rk with k�k1  1 (see [8]). Specifically, we have
set A = Z � x�N1

k and � = x� x0 such that k�k1 = 1.
We now focus on the cases (2), (3). We will prove below

that for x, x0 satisfying one of the conditions (2), (3) and for
any measurable A, Z and N1 ⇠ L⌦k, it holds

Pr[x + N1 + L1
k 2 Z|N1 2 A]

e" Pr[x0 + N1 + L1
k 2 Z|N1 2 A]

This allows us to argue like above:

Pr[x + L⌦k + L1
k 2 Z] =

EN1⇠L⌦k

⇥
Pr[x + N1 + L1

k 2 Z|N1]
⇤


e"EN1⇠L⌦k

⇥
Pr[x0 + N1 + L1

k 2 Z|N1]
⇤

=

e" Pr[x0 + L⌦k + L1
k 2 Z]

which would conclude the proof. Let g : R ! Rk be the
function g(a) = a1k and define g�1(B) = {a 2 R|g(a) 2 B}
and note that g is measurable. We focus on the case (2); the
same argument works for (3) as we discuss below. It holds

Pr[x + N1 + L1
k 2 Z|N1 2 A] =

Pr[L1
k 2 Z � x�N1|N1 2 A] =

Pr[L 2 g�1(Z � x�N1)|N1 2 A] =

Pr[L 2 g�1(Z � x0 � 1
k �N1)|N1 2 A] =

Pr[L 2 g�1(Z � x0 �N1)� 1|N1 2 A] 
e" Pr[L 2 g�1(Z � x0 �N1)|N1 2 A] =

e" Pr[L1
k 2 Z � x0 �N1|N1 2 A] =

e" Pr[x0 + N1 + L1
k 2 Z|N1 2 A].

To prove the inequality, we again used the standard result
that for any measurable A, Pr[L 2 A]  e" Pr[L 2 A � 1]
holds. The same holds for A + 1; this allows us to use the
exact same argument in case (3), in which the proof is the
same except that �1 on lines 4,5 of the manipulations is
replaced by +1.

Corollary 7. Let T, c and T 0, c0 be two sketches such that
T = T 0 and one of following holds:

1. 9i 2 T such that |ci � c0
i| = 1 and cj = c0

j for all j 6= i.

2. ci = c0
i � 1 for all i 2 T .

3. ci = c0
i + 1 for all i 2 T .

Then for any measurable set of outputs Z, we have:

Pr[PMG(T, c) 2 Z]  e" Pr[PMG(T 0, c0) 2 Z]

SIGMOD Record, March 2024 (Vol. 53, No. 1) 11

Proof. Consider first a modified algorithm PMG0 that does
not perform the thresholding: that is, if we remove the condi-
tion on line 5. It can be easily seen that PMG0 only takes the
vector c and releases c + Laplace(1/")⌦k + Laplace(1/")1k.
We have just shown in Lemma 6 that this means that for
any measurable Z0,

Pr[PMG0(T, c) 2 Z0]  e" Pr[PMG0(T 0, c0) 2 Z0].

Let ⌧(x) = x for x � 1+2 ln(3/�)/" and 0 otherwise. Since
PMG(T, c) = ⌧(PMG0(T, c)), it then holds

Pr[PMG(T, c) 2 Z] = Pr[PMG0(T, c) 2 ⌧�1(Z)] 
e" Pr[PMG0(T 0, c0) 2 ⌧�1(Z)] = e" Pr[PMG(T 0, c0) 2 Z]

as we wanted to show.

Next, we bound the e↵ect on the output distribution from
keys that di↵er between sketches by �.

Lemma 8. Let T, c and T 0, c0 be two sketches of size k and
let T̂ = T \ T 0. If we have that |T̂ | � k � 2, ci = c0

i for all
i 2 T̂ , and for all x /2 T̂ , it holds cx, c0

x  1. Then for any
measurable set Z, it holds

Pr[PMG(T, c) 2 Z]  Pr[PMG(T 0, c0) 2 Z] + �

Proof. Let PMG0(T, c) denote a mechanism that executes
PMG(T, c) and performs post-processing by discarding any
elements not in T̂ . It is easy to see that (a) Pr[PMG0(T, c) 2
Z] = Pr[PMG0(T 0, c0) 2 Z] since the input sketches are
identical for all elements in T̂ . Moreover, for any output
T̃ , c̃ PMG(T, c) for which T̃ ✓ T̂ , the post-processing does
not a↵ect the output. This gives us the following inequalities:
(b) Pr[PMG(T, c) 2 Z]  Pr[PMG0(T, c) 2 Z] + Pr[T̃ 6✓
T̂] and (c) Pr[PMG0(T 0, c0) 2 Z]  Pr[PMG(T, c) 2 Z] +
Pr[T̃ 0 6✓ T̂]. Combining equations (a) � (c), we get the
inequality Pr[PMG(T, c) 2 Z]  Pr[PMG(T 0, c0) 2 Z] +
Pr[T̃ 6✓ T̂] + Pr[T̃ 0 6✓ T̂].

As such, the Lemma holds if Pr[T̃ 6✓ T̂] + Pr[T̃ 0 6✓ T̂]  �.
That is, it su�ces to prove that with probability at most � any
noisy count for elements not in T̂ is at least 1 + 2 ln(3/�)/".
The noisy count for such a key can only exceed the threshold
if one of the two noise samples added to the key is at least
ln(3/�)/". From Definition 3 we have Pr[Laplace(1/") �
ln(3/�)/"] = �/6. There are at most 4 keys not in T̂ which
are in T [T 0 and therefore at most 6 noise samples a↵ect
the probability of outputting such a key (the 4 individual
Laplace noise samples and the 2 global Laplace noise samples,
one for each sketch). By a union bound the probability that
any of these samples exceeds ln(3/�)/" is at most �.

We are now ready to prove the privacy guarantee of Algo-
rithm 2.

Lemma 9. Algorithm 2 is (", �)-di↵erentially private for any
k.

Proof. The Lemma holds if and only if for any pair of neigh-
boring streams S ⇠ S0 and any measurable set Z we have:

Pr[PMG(T, c) 2 Z]  e" Pr[PMG(T 0, c0) 2 Z] + �,

where T, c MG(k, S) and T 0, c0 MG(k, S0) denotes the
non-private sketches for each stream.

We prove the guarantee above using an intermediate sketch
that “lies between” T, c and T 0, c0. The sketch has support

T 0 and we denote the counters as ĉ. By Lemma 5, we know
that |T \ T 0| � k � 2 and all counters in c and not in T \ T 0

are at most 1. We will now come up with some conditions
on ĉ such that if these conditions hold, the lemma follows.
We will then prove the existence of such ĉ below. Assume
that ĉi = ci for all i 2 T \ T 0 and ĉj  1 for all j 2 T 0 \ T .
Lemma 8 then tells us that

Pr[PMG(T, c) 2 Z]  Pr[PMG(T 0, ĉ) 2 Z] + �.

Assume also that one of the required cases for Corollary 7
holds between ĉ and c0. We have

Pr[PMG(T 0, ĉ) 2 Z]  e" Pr[PMG(T 0, c0) 2 Z].

Therefore, if such a sketch T 0, ĉ exists for all S and S0 the
lemma holds since

Pr[PMG(T, c) 2 Z]  Pr[PMG(T 0, ĉ) 2 Z] + �

 e" Pr[PMG(T 0, c0) 2 Z] + � .

It remains to prove the existence of ĉ such that ĉi = ci for
all i 2 T \ T 0 and ĉj  1 for all j 2 T 0 \ T and such that
one of the conditions (1)� (3) of Corollary 7 holds between
ĉ and c0. We first consider neighboring streams where S0 is
obtained by removing an element from S. From Lemma 5
we have two cases to consider. If ci = c0

i � 1 for all i 2 T 0 we
simply set ĉ = c. Recall that we implicitly have ci = 0 for
i /2 T . Therefore the sketch satisfies the two conditions above
since ĉi = ci for all i 2 U and condition (2) of Corollary 7
holds. In the other case where ci = c0

i + 1 for exactly one
i 2 T there are two possibilities. If i 2 T 0 we again set ĉ = c.
When i /2 T 0 there must exist at least one element j 2 T 0

such that c0
j = 0 and j /2 T . We set ĉj = 1 and ĉi = c0

i for
all i 6= j. In both cases ĉi = ci for all i 2 T \ T 0 and ĉj is
at most one for j /2 T . There is exactly one element with a
higher count in ĉ than c0 which means that condition (1) of
Corollary 7 holds.

If S is obtained by removing an element from S0 the cases
from Lemma 5 are flipped. If ci � 1 = c0

i for all i 2 T and
c0
j = 0 for j /2 T we set ĉi = ci if i 2 T and ĉi = 1 otherwise.

It clearly holds that ĉi = ci for all i 2 T \ T 0 and ĉj  1 for
all j /2 T . Since ĉi = c0

i + 1 for all i 2 T 0 condition (3) of
Corollary 7 holds. Finally, if ci +1 = c0

i for exactly one i 2 T 0

we simply set ĉ = c. ĉi = ci clearly holds for all i 2 T \ T 0,
ĉj = 0 for all j /2 T , and condition (1) of Corollary 7 holds
between ĉ and c0.

Next, we analyze the error compared to the non-private
sketch. We state the error in terms of the largest error among
all elements of the sketch. Recall that we implicitly say that
the count is zero for any element not in the sketch.

Lemma 10. Let T̃ , c̃ PMG(T, c) denote the output of Algo-
rithm 2 for any sketch T, c with |T | = k. Then with probability
at least 1� � we have

c̃x 2
"
cx �

2 ln
�

k+1
�

�

"
� 1�

2 ln
�
3/�

�

"
, cx +

2 ln
�

k+1
�

�

"

#

for all x 2 T and c̃x = 0 for all x /2 T .

Proof. The two sources of error are the noise samples and
the thresholding step. We begin with a simple bound on the
absolute value of the Laplace distribution.

12 SIGMOD Record, March 2024 (Vol. 53, No. 1)

Pr


|Laplace(1/")| � ln((k + 1)/�)

"

�
=

2 · Pr


Laplace(1/")  � ln((k + 1)/�)

"

�
= �/(k + 1) .

Since k+1 samples are drawn we know by a union bound that
the absolute value of all samples is bounded by ln((k+1)/�)/"
with probability at least 1��. As such the absolute error from
the Laplace samples is at most 2 ln((k +1)/�)/" for all x 2 T
since two samples are added to each count. Removing noisy
counts below the threshold potentially adds an additional
error of at most 1 + 2 ln(3/�)/". It is easy to see that c̃x = 0
for all x /2 T since the algorithm never outputs any such
elements.

Theorem 11. PMG(k, S) satisfies (", �)-di↵erential privacy.
Let f(x) denote the frequency of any element x 2 U in S and
let f̂(x) denote the estimated frequency of x from the output
of PMG(k, S). For any x with f(x) = 0 we have f̂(x) = 0
and with probability at least 1� � we have for all x 2 U that

f̂(x) 2

f(x) �

2 ln

⇣
k+1

�

⌘

"
� 1 �

2 ln(3/�)

"
�

|S|
k + 1

,

f(x) +

2 ln

⇣
k+1

�

⌘

"

�

Moreover, the algorithm outputs all x, such that f̂(x) > 0
and there are at most k such elements. PMG(k, S) uses 2k
words of memory. For any fixed x 2 U , the mean squared

error is E[(f̂(x)� f(x))2]  3
⇣
1 + 2+2 ln(3/�)

"
+ |S|

k+1

⌘2
.

Proof. The space complexity is clearly as claimed, as we are
storing at any time at most k items and counters. We focus
on proving privacy and correctness.

If f(x) = 0 we know that x /2 T where T is the keyset after
running Algorithm 1. Since Algorithm 2 outputs a subset of
T we have f̂(x) = 0. The first part of the Theorem follows
directly from Fact 4 and Lemmas 9 and 10.

We now bound the mean squared error. There are three
sources of error. Let r1 be the error coming from the Laplace
noise, r2 from the thresholding, and r3 the error made by
the MG sketch. Then

E[(f̂(x)� f(x))2] =E[(r1 + r2 + r3)
2]

3(E[r2
1] + E[r2

2] + E[r2
3])

by equivalence of norms (for any dimension n vector v, kvk1 p
nkvk2). The errors r2, r3 are deterministically bounded

r2  1+2 ln(3/�)/" and r3  |S|/(k+1). E[r2
1] is the variance

of the Laplace noise; we added two independent noises each
with scale 1/" and thus variance 2/"2 for a total variance of
4/"2. This finishes the proof.

5.1 Privatizing standard versions of MG
The privacy of our mechanism as presented in Algorithm 2

relies on our variant of the Misra-Gries algorithm. Our sketch
can contain elements with a count of zero. However, elements
with a count of zero are removed in the standard version of
the sketch. As such, sketches for neighboring datasets can
di↵er for up to k keys if one sketch stores k elements with
a count of 1 and the other sketch is empty. It is easy to

change Algorithm 2 to handle these implementations. We
simply increase the threshold to 1 + 2 ln

�
k+1
2�

�
/" since the

probability of outputting any of the k elements with a count
of 1 is bounded by �.

5.2 Tips for practitioners
Here we discuss some technical details to keep in mind

when implementing our mechanism.
The output of the Misra-Gries algorithm is an associative

array. In Algorithm 2 we add appropriate noise such that the
associative array can be released under di↵erential privacy.
However, for some implementations of associative arrays
such as hash tables the order in which keys are added a↵ects
the data structure. Using such an implementation naively
violates di↵erential privacy but it is easily solved either by
outputting a random permutation of the key-value pairs or
using a fixed order e.g. sorted by key.

We present our mechanism with noise sampled from the
Laplace distribution. However, the distribution is defined
for real numbers which cannot be represented on a finite
computer. This is a known challenge and precision-based
attacks still exist on popular implementations [13]. Since the
output of MG is discrete the distribution can be replaced
by the Geometric mechanism [12] or one of the alternatives
introduced in [2]. Our mechanism would still satisfy dif-
ferential privacy but it might be necessary to change the
threshold in Algorithm 2 slightly to ensure that Lemma 8
still holds. Our proof of Lemma 8 works for the Geomet-
ric mechanism from [12] when increasing the threshold to
1 + 2dln(6e"/((e" + 1)�))/"e.

Lastly, it is worth noting that the analysis for Lemma 8
is not tight. We bound the probability of outputting a
small key by bounding the value of all relevant samples by
ln(3/�)/" which is su�cient to guarantee that the sum of
any two samples does not exceed 2 ln(3/�)/". This simplifies
the proof and presentation significantly however one sample
could exceed ln(3/�)/" without any pair of samples exceeding
2 ln(3/�)/". A tighter analysis would improve the constant
slightly which might matter for practical applications.

6. PRIVATIZING MERGED SKETCHES
In practice, it is often important that we may merge

sketches. This is for example commonly used when we have a
dataset distributed over many servers. Each dataset consists
of multiple streams in this setting, and we want to compute
an aggregated sketch over all streams. We say that datasets
are neighboring if we can obtain one from the other by re-
moving a single element from one of the streams. If the
aggregator is untrusted we must add noise to each sketch
before performing any merges. This is the setting in [6] and
we can run their merging algorithm. However, since we add
noise to each sketch the error scales with the number of
sketches. In particular, the error from the thresholding step
of Algorithm 2 scales linearly in the number of sketches for
worst-case input. In the full version of the paper we show
how we can sometimes achieve smaller error in the setting
where aggregators are trusted.

Acknowledgment
The authors are supported by the VILLUM Foundation grant
16582. We thank Rasmus Pagh for suggesting this problem
and for helpful discussions. We thank Martin Aumüller for
his valuable feedback.

SIGMOD Record, March 2024 (Vol. 53, No. 1) 13

7. REFERENCES
[1] M. Aumüller, C. J. Lebeda, and R. Pagh. Representing

sparse vectors with di↵erential privacy, low error,
optimal space, and fast access. Journal of Privacy and
Confidentiality, 12(2), Nov. 2022.

[2] V. Balcer and S. Vadhan. Di↵erential privacy on finite
computers. Journal of Privacy and Confidentiality,
9(2), Sep. 2019.

[3] R. Bassily, K. Nissim, U. Stemmer, and
A. Guha Thakurta. Practical locally private heavy
hitters. Advances in Neural Information Processing
Systems, 30, 2017.

[4] J. Böhler and F. Kerschbaum. Secure multi-party
computation of di↵erentially private heavy hitters. In
Y. Kim, J. Kim, G. Vigna, and E. Shi, editors, CCS
’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, pages 2361–2377.
ACM, 2021.

[5] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds
for frequency estimation of packet streams. In J. F.
Sibeyn, editor, SIROCCO 10: Proceedings of the 10th
Internaltional Colloquium on Structural Information
Complexity, June 18-20, 2003, Ume̊a Sweden,
volume 17 of Proceedings in Informatics, pages 33–42.
Carleton Scientific, 2003.

[6] T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Di↵erentially
private continual monitoring of heavy hitters from
distributed streams. In International Symposium on
Privacy Enhancing Technologies Symposium, pages
140–159. Springer, 2012.

[7] G. Cormode, C. M. Procopiuc, D. Srivastava, and
T. T. L. Tran. Di↵erentially private summaries for
sparse data. In ICDT, pages 299–311. ACM, 2012.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
pages 265–284, 2006.

[9] C. Dwork and A. Roth. The algorithmic foundations of
di↵erential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[10] Q. Geng, P. Kairouz, S. Oh, and P. Viswanath. The
staircase mechanism in di↵erential privacy. IEEE
Journal of Selected Topics in Signal Processing,
9(7):1176–1184, 2015.

[11] B. Ghazi, N. Golowich, R. Kumar, R. Pagh, and
A. Velingker. On the power of multiple anonymous
messages. IACR Cryptol. ePrint Arch., page 1382, 2019.

[12] A. Ghosh, T. Roughgarden, and M. Sundararajan.
Universally utility-maximizing privacy mechanisms.
SIAM Journal on Computing, 41(6):1673–1693, 2012.

[13] S. Haney, D. Desfontaines, L. Hartman, R. Shrestha,
and M. Hay. Precision-based attacks and interval
refining: how to break, then fix, di↵erential privacy on
finite computers. CoRR, abs/2207.13793, 2022.

[14] A. Korolova, K. Kenthapadi, N. Mishra, and
A. Ntoulas. Releasing search queries and clicks
privately. In WWW, pages 171–180. ACM, 2009.

[15] J. Misra and D. Gries. Finding repeated elements.
Science of Computer Programming, 2(2):143–152, 1982.

[16] R. Pagh and M. Thorup. Improved utility analysis of
private countsketch. In Advances in Neural Information
Processing Systems, volume 35, pages 25631–25643,

2022.
[17] F. Zhao, D. Qiao, R. Redberg, D. Agrawal,

A. El Abbadi, and Y.-X. Wang. Di↵erentially private
linear sketches: E�cient implementations and
applications. In Advances in Neural Information
Processing Systems, volume 35, pages 12691–12704,
2022.

14 SIGMOD Record, March 2024 (Vol. 53, No. 1)

