Proactive Resource Allocation Policy for
Microsoft Azure Cognitive Search

Olga Poppe, Pablo Castro, Willis Lang, and Jyoti Leeka
olpoppe|pablocas|wilang|jyleeka@microsoft.com

ABSTRACT

Modern cloud services aim to find the middle ground be-
tween quality of service and operational cost efficiency
by allocating resources if and only if these resources
are needed by the customers. Unfortunately, most in-
dustrial demand-driven resource allocation approaches
are reactive. Given that scaling mechanisms are not in-
stantaneous, the reactive policy may introduce delays
to latency-sensitive customer workloads and waste op-
erational costs for cloud service providers. To solve
this catch-22, we define the proactive resource alloca-
tion policy for Microsoft Azure Cognitive Search. In
addition to the current resource demand, the proactive
policy takes the typical resource usage patterns into ac-
count. We gained the following valuable insights from
these patterns over several months of production work-
loads. One, 87% of the workload is stable due to con-
tinuous resource demand. Two, 90% of varying demand
is predictable based on a few weeks of historical traces.
Three, resources can be reclaimed 52% of the time due
to extensive idle intervals of varying workload. Given
the size and scope of our analysis, we believe that our
approach applies to any latency-sensitive cloud service.

1. INTRODUCTION

We are currently witnessing the growing popular-
ity of demand-driven resource allocation among all
cloud service providers, including Microsoft Azure
[3], Amazon Web Servoces [7], and Google Cloud
Platform [4]. As a result, the customers do not have
to provision a fixed amount of resources up front.
Instead, they send workloads to the systems that
dynamically and transparently manage resources to
handle the changing demand over time. These sys-
tems deploy low-latency resource allocation mecha-
nisms. While the workload is running, resources are
allocated. When the workload stops, resources are
reclaimed and possibly reused to serve current work-
loads. In this way, demand-driven resource allo-
cation reduces the amount of maintained resources

SIGMOD Record, September 2023 (Vol. 52, No. 3)

and thus saves the operational costs.

The natural progression for demand-driven re-
source allocation is proactive decision making. In
addition to the current demand, proactive decisions
take the predicted future demand into account to
allocate resources ahead of demand. The proactive
policy improves the quality of service by reducing
delays due to the reaction time between demand sig-
nal and effective change in resource availability [23,
25, 27, 30]. Furthermore, the proactive policy allows
to re-target resources during predicted long idle in-
tervals to serve the current workloads.

We define the proactive policy for Microsoft Azure
Cognitive Search, which is a PaaS solution that al-
lows to build sophisticated search capabilities within
customer applications on customer data [1, 2]. It is
a rapidly growing cloud service which currently runs
tens of billions of queries per month. It offers all the
functionality needed to create rich search scenarios
such as automatic content ingestion, fast full-text
search, auto-complete, customizable scoring, and a
natural language understanding stack that ensures
high relevance of search results.

Challenges. Defining the proactive policy for any
latency-sensitive cloud service is not trivial.

(1) High latency sensitivity. Search is highly sen-
sitive to execution latency. Currently, low latency
is achieved through a combination of index data
structure design, a favorable index size-memory ra-
tio, and by maintaining warm compute and cache
to execute search queries as soon as they arrive.
However, current solution results in low efficiency
of compute utilization when search requests are not
continuous. We aim to move the efficiency needle
without sacrificing the low latency requirement.

(2) Benefit versus overhead of proactive policy.
Proactive resource allocation is not always appli-
cable. For example, if the demand is stable or idle
time is too fragmented for effective reuse of resources,
then the resources must be provisioned to guaran-
tee high quality of service. A proactive policy will

41

do more harm than good in such cases due to its
overhead of load prediction. We aim to identify the
prerequisites of the proactive policy to exclude part
of the workload from further consideration.

(3) Wide range of applicable techniques. There
are many approaches to load prediction for proac-
tive resource allocation. They range from simple
statistics to complex machine learning models. Each
of them has multiple tunable parameters. Each of
them has advantages with respect to prediction ac-
curacy, execution latency, and supportability long
term in production worldwide. The search space
is too large to be explored exhaustively. We aim to
compare several techniques and propose an effective
approach to proactive resource alloction.

State-of-the-Art. Several existing approaches im-
plement reactive demand-driven resource allocation
[10, 11, 12]. They might cause delays in resource
availability after long idle intervals during which re-
sources are reclaimed. Thus, the reactive policy is
not suitable for latency-sensitive cloud services. To
optimize quality of service, we apply proactive re-
source allocation policy. While academic approaches
leverage complex and computationally expensive ma-
chine learning models to predict the load [8, 13,
14, 15, 20, 26, 29], industrial approaches deploy
light-weight yet accurate forecast techniques to pro-
duction [17, 19, 21, 22, 23, 25, 27, 30]. Unfortu-
nately, the existing approaches fail to identify cases
when the proactive policy is not applicable. Hence,
they introduce significant computational overhead
of load prediction to latency-sensitive cloud services.
To avoid this overhead, our approach identifies the
prerequisites of the proactive policy and focuses on
cases when the proactive policy saves operational
costs without sacrificing high quality of service.

Proactive Resource Allocation Policy. We an-
alyzed several months of production telemetry for
Microsoft Azure Cognitive Search and concluded
that no single resource allocation policy is effec-
tive for all workloads. Instead, the policy must be
tailored for each type of workload. Therefore, we
first characterize the search requests along various
dimensions, including stability, predictability, and
fragmentation of idle time. Afterwards, we iden-
tify the prerequisites of proactive resource alloca-
tion. In particular, resources are proactively allo-
cated for varying predictable workloads to guaran-
tee high quality of service. In addition, resources are
reclaimed and reused during extensive idle intervals
to save operational costs. Furthermore, resources
are provisioned for stable workloads to avoid the
overhead of load prediction. Lastly, resources are
allocated reactively for unpredictable workloads.

42

Workload

8T% e T 13%

Workload Stable Varying

Classification
2% " T~ %

Predictable Unpredictable
]]

Policy _l_ '] I .
Classification Provisioned Proactive Reactive

Figure 1: Workload and policy classification

Contributions. Our key contributions include:

(1) We classify the workload of search requests
into stable and varying, predictable and unpredict-
able (Figure 1). 87% of the workload is stable. 12%
is varying and predictable. Only 1% is varying and
unpredictable. We study the fragmentation of idle
time. 63% of the total idle time is composed of idle
intervals that exceed two hours.

(2) We define the spectrum of resource allocation
policies, including provisioned, reactive, proactive,
and optimal. We review the range of demand pre-
diction techniques from simple probabilistic algo-
rithms to advanced time series forecast models.

(3) We identify five prerequisites of the proactive
policy and apply it to predictable varying workload
with extensive idle intervals. In this way, we exclude
87% of the workload and thus reduce the execution
latency of the proactive policy by 2X compared to
the proactive policy applied to the entire workload.

(4) We define the KPI metrics that measure the
effectiveness of the resource allocation policies in ad-
dressing the business needs for various workloads.
In particular, we measure demand predictability,
quality of service, correctness of resource allocation,
operational cost efficiency, and execution latency.

(5) We experimentally compare the resource al-
location policies. In contrast to the reactive pol-
icy, the proactive policy correctly predicts 90% of
varying search requests to guarantee high quality of
service. In contrast to the provisioned policy, the
proactive policy reclaims resources 52% of the time
for varying workload to save operational costs.

Outline. We define the optimization objective
in Section 2. We identify the prerequisites of the
proactive policy in Section 3. We define the re-
source allocation policies in Section 4 and the accu-
racy metrics in Section 5. We present the experi-
ments in Section 6. We review the related work in
Section 7 and conclude the paper in Section 8.

2. OPTIMIZATION OBJECTIVE

Index. To speed up search requests, the search
engine builds indexes and allocates resources per
index. Let I be the set of indexes.

Time is represented by a linearly ordered set of

SIGMOD Record, September 2023 (Vol. 52, No. 3)

time points (T, <) where T C R* are the non-
negative real numbers.

Resource Demand D : IxT — {0, 1} is a function
that maps an index ¢ € [and a time point ¢t € T to
a binary value indicating whether the resources of ¢
are needed at t. Vi € [V¢t € T if the resources of i
are needed at ¢ then D(i,t) = 1, else D(i,t) = 0.

Predicted resource demand, denoted as P(i,t), is
defined analogously to the actual demand D(i,t).

Resource Allocation A : I x T — {0,1} is a func-
tion that maps ¢ and ¢t to a binary value indicating
whether the resources are allocated for i at t.

Quality of Service (QoS) is measured as the ratio
of the time when the resources are needed and allo-
cated Ty(i) = {t € T | D(3,t) > 0 and A(i,t) > 0}
to the time when the resources are needed T, (i) =
{t € T | D(3,t) > 0} per index.

QoS = Y Tna(i / (1)
iel i€l
If the resources are always available when they
are needed, then QoS equals to 1. If the resources
become available after a delay, then QoS is lower.
Operational Cost Efficiency is measured as the
ratio of the time when the resources are needed and
allocated to the time when the resources are allo-
cated T, (i) = {t € T | A(4,t) > 0} per index.

B = 3 Toli / 2)
i€l i€l

If the resources are only allocated when they are
needed, then efficiency equals to 1. If the resources
stay idle, then efficiency is lower.

Optimization Objective. An optimal policy allo-
cates resources if and only if they are needed. Fig-
ure 3(d) illustrates this policy. Then, QoS and effi-
ciency are equal to 1. An optimal policy requires a
perfect demand prediction, which is hard to achieve
in practice due to varying workloads. Nevertheless,
the ultimate goal of a resource allocation policy is
to maximize both QoS and efficiency, while keeping
the execution latency low to guarantee real-time re-
sponse of a latency-sensitive cloud service.

3. PREREQUISITES OF PROACTIVE
RESOURCE ALLOCATION

3.1 Fine-Grained Production Telemetry
To guarantee accurate load prediction, the pro-
duction telemetry must be fine-grained, cover sev-
eral months, and contain all features that can be
useful for prediction. We analyze two months of
production telemetry in one Azure region where tens
of thousands of indexes are currently deployed. Each

SIGMOD Record, September 2023 (Vol. 52, No. 3)

O Within 5 min 3%5% 4y 4%3%
05 to 10 min 7%
@10 to 30 min
@30 min to 1hour
W 1to 2 hours 63%
M Over 2 hours 14%

%

10%

%

(a) Number of idle intervals (b) Duration of idle time

Figure 2: Fragmentation of idle time

event carries a timestamp in milliseconds, an index
identifier, and a subscriber identifier.

3.2 Varying Resource Demand

The resource demand of an index i € I is stable
if vt € T D(i,t) = 1. Otherwise, the demand of 4
is varying. Resources are provisioned to stable in-
dexes to guarantee high QoS and efficiency, while
avoiding the latency of load prediction. 32% of in-
dexes receive requests every few minutes. 87% of
requests belong to them (Figure 1).

Resources can be shared among indexes with vary-
ing demand. We focus on optimizing resource allo-
cation for these indexes below. 68% of indexes have
varying demand. 13% of requests belong to them.

3.3 Extensive Idle Intervals

While the number of requests per index and hour
can reach several hundreds, indexes receive requests
only 18% of the time and stay idle 82% of the time
on average. While 44% of idle intervals are within
5 minutes (Figure 2(a)), their total duration con-
tributes only 4% to the total idle time (Figure 2(b)).
Resources are not reclaimed during such short idle
intervals to relieve the backend from the overhead
of frequent scaling operations [23]. Even though
only 5% of idle intervals exceed two hours, the total
duration of these intervals contributes 63% to the
total idle time. Resources can be effectively reused
during such extensive idle intervals.

3.4 Accurate Demand Prediction

The proactive resource allocation policy relies on
highly accurate workload prediction. Predicted long
duration of idle intervals enables resource reclama-
tion. Predicted start of customer workload enables
resource allocation ahead of demand.

3.5 Low-Latency Prediction and Scaling
Low-latency workload prediction and scaling me-
chanisms are indispensable for the effectiveness of
proactive resource allocation. Computationally ex-
pensive predictions and slow mechanisms reduce the
time intervals during which resources can be reused.
Worst yet, they introduce delays and jeopardize high

43

resources

resources
o -
@
resources
o -
resources
o -

1 - -
@ Workload starts u
O Workload ends 0 time

Il Workload execution
== Resource allocation

VieEIVtET ViEIVLET

AG,) =1

== Predicted demand then A(i,t) =1
Idle resources if A(i,t) > D(, t)
N\ Unavailable resources then A(i,t) = 0

(a) Provisioned policy

if ALY < DG, b)

(b) Reactive policy

i N R

time time

Vi€Vt t' € Tsuchthatt <t VielvteT
if A, t) < D(i, t) or A, t) < P(i, t") A(i,t) = D(, t)
then A(i,t) =1
if Ai,t) > D(i,t) and A(j, t) > P(i,t")
then A(i,t) =0

(c) Proactive policy (d) Optimal policy

Figure 3: Resource allocation policies

quality of service for unpredictable workloads for
which resources have to be allocated reactively.

4. RESOURCE ALLOCATION POLICIES

4.1 Base-Line Policies

Provisioned Policy always allocates resources, in-
dependently from demand. Figure 3(a) illustrates
this policy. Analysis of historical load traces reveals
that resources stay idle (i.e., D(i,t) < A(i,t)), un-
less the customer manually de-allocates resources
during idle intervals [9, 10, 17, 19, 22, 30]. Manual
resource allocation is labor-intensive, time-consu-
ming, error-prone, neither scalable, nor durable.

Reactive Policy allocates resources based on the
current demand [10, 11, 12]. Figure 3(b) illustrates
this policy and defines its algorithm.

Unfortunately, resource scaling mechanisms are
not instantaneous. Therefore, resources may be un-
available (i.e., D(i,t) > A(4,t)) when the workload
starts in Figure 3(b). These delays make the reac-
tive policy less suitable for latency-sensitive appli-
cations than the provisioned policy.

To reduce operational costs, the reactive policy
reclaims resources when the workload stops. How-
ever, if idle intervals are short, then resource avail-
ability time is too fragmented for effective reuse.
Worst yet, frequent scaling operations may intro-
duce a significant backend overhead.

4.2 Proactive Policy

The proactive policy analyzes the historical re-
source usage patterns, predicts future demand, and
allocates resources based on both current and pre-
dicted demand [23, 25, 27, 30]. Figure 3(c) illus-
trates this policy and defines its algorithm.

On the up side, the proactive policy reduces or
even avoids delays in resource availability when the
workload starts compared to the reactive policy (com-
pare Figures 3(b) and 3(c)). Furthermore, the proac-
tive policy relieves the backend from frequent scal-
ing operations due to short idle intervals.

On the down side, idle time might increase com-
pared to the reactive policy since resources are al-

44

located ahead of demand and thus not immediately
used by the customers. Also, in contrast to the
base-line policies, the proactive policy introduces
the computational overhead of demand prediction.

4.3 Demand Prediction Techniques
Any demand prediction algorithm can be plugged
in the proactive policy. We now briefly summarize
the range of commonly used techniques in industry.
Persistent forecast algorithm looks up the de-
mand on previous day (or weekday), assumes that
it stays the same on the following day (or weekday),
and makes proactive decisions per index [22, 23].
Probabilistic algorithm analyzes historical traces
and computes probability of requests per index and
time window. Resources are proactively allocated
during a window if the probability exceeds a thresh-
old during the window. Resources are reclaimed
once the workload stops and the probability falls
below the threshold. Proactive resource allocation
decisions can also leverage any other statistics, for
example, count of requests [19, 23, 25, 27, 30].
Predictive algorithm trains a machine learning
model on historical traces, predicts the demand,
and makes proactive decisions based on both cur-
rent and predicted resource demand per index. Time
series forecast models, linear regression, exponential
smoothing, classification models, and Neural Net-
works are commonly used [21, 22, 23, 27].

5. ACCURACY METRICS

While the standard metrics (such as hinge loss)
allow to measure the overall accuracy of resource de-
mand prediction, they provide little insight into the
effectiveness of a policy in addressing the business
needs. Table 1 summarizes the accuracy metrics for
in-depth evaluation of the policies [23, 30].

Demand Predictability. To measure QoS, we dif-
ferentiate between predictable and unpredictable de-
mand. Resource demand for an index i at a time
point ¢ is predictable if D(i,t) = 1 and P(i,t) = 1.
It is unpredictable if D(i,t) = 1 and P(i,t) = 0.

Correctness of Resource Allocation. To measure

SIGMOD Record, September 2023 (Vol. 52, No. 3)

M Predictable requests Unpredictable requests

80
60
40
2

0

o
-
N

algorithm) classifier) forecast)

<]
S

Percentage of requests

Figure 4: Demand predictability

I Resource allocation | Conditions |

Correctly allocated due P(i,t) = A(i, t) =
to predictable demand D(i,t) =1
Correctly de-allocated P(i,t) = A(i, t) =
(reclaimed) D(i,t) =0

Wrongly allocated P(i,t) = A(i,t) = 1
(idle) but D(i,t) =0
Wrongly de-allocated due | P(i,t) = A(i,t) =0
to unpredictable demand | but D(i,t) =1

Table 1: Accuracy metrics

efficiency, we differentiate between the time inter-
vals when the resources are correctly or wrongly al-
located or de-allocated. Resource allocation for an
index 7 at a time point ¢ is correct if D(i,t) = 1.
Analogously, de-allocation of resources of an index
i at a time point ¢ is correct if D(i,t) = 0.

Impact of Resource Allocation Decisions. If de-
mand is predictable, then the resources are correctly
allocated and high QoS is guaranteed. If demand
is unpredictable, then the resources are wrongly de-
allocated. In this case, resources must be allocated
reactively. Thus, low-latency scaling mechanisms
are indispensable even for the proactive policy.

While the resources are correctly de-allocated,
they can be reclaimed to improve efficiency with-
out sacrificing high QoS. While the resources are
wrongly allocated, they stay idle and efficiency suf-
fers. This waste of operational costs can be miti-
gated by the high accuracy of load prediction.

6. EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Input Data contains two month of search requests
for several thousands of indexes in one Azure region.

Hardware. We run all experiments on a Windows
11 machine with 10 Intel 2.80GHz CPUs, 128GB
RAM, and 3TB SSD.

Methodology. We implemented the workload clas-
sification, the accuracy evaluation, and the proba-
bilistic algorithm in Python 3.7. We use the existing

SIGMOD Record, September 2023 (Vol. 52, No. 3)

M Correctly allocated = Wrongly allocated
O Correctly de-allocated Wrongly de-allocated

100 NN\ N Y M\
80
60 I I
‘1 =

0

Provisioned Reactive Proactive Proactive Proactive Optimal
(Probabilistic (Binary (Time series
algorithm) classifier) forecast)

Percentage of time
S

Figure 5: Correctness of resource allocation

1A

| @ Provisioned

A Reactive

M Proactive (Probabilistic algorithm)

Efficiency

@ @ Proactive (Binary classifier)

@ Proactive (Time series forecast)

@ Optimal

0 QoS 1

Figure 6: Quality of service versus efficiency

libraries for ML.NET binary classifier [5] and the
time series forecast model NimbusML [6]. We train
these models based on three weeks of history and
predict search requests one day ahead per index.

Metrics. We measure accuracy per Section 5 and
execution latency. We run each latency experiment
ten times and report the average result.

6.2 Quality of Service versus Efficiency

We consider indexes with varying workload in
Figures 4-6. We exclude indexes with stable work-
load since the provisioned policy is the most ef-
fective for them (Figure 1). We omit the request
processing time since it is the same for all policies
(shown as black area in Figure 3).

Provisioned Policy is one extreme of the spec-
trum. Its QoS is optimal since resources are always
allocated. However, resources stay idle 62% of the
time in Figure 5 and efficiency is 0.38 in Figure 6.

Reactive Policy is the opposite extreme of the
spectrum. On the up side, resources are de-allocated
once the workload stops and efficiency is optimal.
On the down side, resources are always wrongly de-
allocated when the workload starts and QoS suffers.

Optimal Policy is the third extreme of the spec-
trum. It makes no mistakes in resource allocation.
Thus, both QoS and efficiency are equal to 1.

Proactive Policy can leverage any demand pre-
diction technique. We compare the probabilistic al-
gorithm, ML.NET binary classifier, and the time
series forecast model NimbusML.

45

4,000 —
W Workload classification
3,500
O Model training

5 3,000
@ Inference
£ 2,500 "
> [Accuracy evaluation
2 2,000
[
‘® 1,500
8
1,000
N
500 \\i\\ N\
o L]
Entire Varying Entire Varying Entire Varying
workload workload workload workload workload workload
Probabilistic Binary Time series
algorithm classifier forecast

Figure 7: Execution latency

The accuracy of the binary classifier and the time
series forecast model is quite similar. They correctly
predict 90% of requests (Figure 4) and correctly al-
locate resources 31% of the time (Figure 5). Due
to 10% of unpredictable requests, 10% of the time
resources are wrongly de-allocated. 52% of the time
resources are correctly de-allocated. Only 8% of the
time resources are wrongly allocated.

As Figure 6 illustrates, these ML models achieve
high QoS score of 0.9 at the cost of slightly lower effi-
ciency score of 0.78 than the probabilistic algorithm.
However, the probabilistic algorithm is also quite
accurate. It correctly predicts 88% of requests and
achieves QoS and efficiency scores of 0.87. Based
on the results in Figures 4-6, we conclude that the
proactive policy finds a reasonable balance between
QoS and operational cost efficiency.

6.3 Execution Latency

In Figure 7, we compare the execution latency of
the probabilistic algorithm, ML.NET binary classi-
fier, and the time series forecast model NimbusML
for the entire workload and the varying workload.
Each bar is broken down into the following four sec-
tions: (1) Workload classification into stable and
varying, (2) Model training based on three weeks
of historical traces, (3) Inference one day ahead per
index, and (4) Accuracy evaluation per Figures 4-6.
The latency of workload classification is within one
second and thus not visible at the scale of Figure 7.

Per our workload analysis in Section 3.2, 32% of
indexes have stable resource demand and receive
87% of all search requests (Figure 1). Excluding
such large portion of the workload reduces the la-
tency by 2X for all models in Figure 7.

The latency of time series prediction using Nim-
busML is the lowest compared to other models in
Figure 7. Its training is 3 minutes for all indexes
with varying workload, while accuracy evaluation is
30 milliseconds for all indexes with varying work-

46

load. The average inference latency per index with
varying workload is 110 milliseconds. Based on the
results in Figures 6 and 7, we conclude that Nim-
busML is an accurate and light-weight model.

7. RELATED WORK

Demand-driven allocation of resources in the cloud
has recently become a popular research direction [10,
11, 12, 13, 14, 16, 20, 26, 28, 29]. Some of these
approaches are reactive [10, 11, 12]. A reactive pol-
icy reclaims resources once the customer workload
stops, to save operational costs. Thus, quality of
service may be jeopardized due to delays in resource
availability when customer workload starts. In con-
trast, our approach makes proactive decisions based
on recently observed resource usage patterns.

There are approaches to load analysis [9, 16, 18,
24] and load prediction using machine learning mod-
els [8, 13, 14, 15, 20, 26, 29]. Some of these mod-
els are computationally expensive and unintuitive
for non-experts [19, 22, 27]. Thus, industrial ap-
proaches tend to deploy simple and light-weight fore-
cast techniques to production [17, 19, 21, 22, 23,
25, 27, 30]. However, even light-weight techniques
introduce the overhead of detailed continuous work-
load analysis which can be avoided in many cases.
This is the approach we followed in this paper.

8. CONCLUSIONS AND FUTURE WORK

We define and evaluate the proactive resource al-
location policy for Microsoft Azure Cognitive Search.
We classify the workload of search requests and tai-
lor the policy for each type of the workload. Such
tailored approach significantly improves the quality
of service, operational cost efficiency, and execution
latency compared to other policies.

In this paper, we focus on the binary problem of
proactive allocation and de-allocation of resources.
Our solution caters to the application at hand and
is a stepping stone towards a more general problem
of proactive auto-scale of resources to any percent-
age of capacity. Solving this general problem is a
subject for future research.

This paper presents the pre-deployment evalua-
tion of the proactive policy. The post-deployment
evaluation is subject for future work. It will mea-
sure how much operational costs (i.e., physical ma-
chines) are indeed saved by the proactive policy. It
will depend on the effectiveness of placement poli-
cies which aim to place indexes that receive requests
during mutually exclusive time intervals on the same
physical machine to facilitate resource sharing among
them. In-depth analysis of effective index placement
is a subject for a follow-up publication.

SIGMOD Record, September 2023 (Vol. 52, No. 3)

REFERENCES

[1] Azure Cognitive Search.
https://azure.microsoft.com/en-
us/services/search/, 2023.

[2] Azure Cognitive Search Documentation.
https://docs.microsoft.com/en-
us/azure/search/search-what-is-azure-search,
2023.

[3] Azure SQL Database Serverless.
https://docs.microsoft.com/en-
us/azure/azure-sql/database/serverless-tier-
overview, 2023.

[4] Google Serverless Computing.
https://cloud.google.com/serverless, 2023.

[5] ML.NET Binary Trainer.
https://docs.microsoft.com/en-
us/dotnet /api/microsoft.ml.trainers.fasttree.
fastforestbinarytrainer, 2023.

[6] NimbusML. https://docs.microsoft.com/en-
us/python/api/nimbusml/nimbusml.timeseries.
ssaforecaster, 2023.

[7] Serverless on AWS.
https://aws.amazon.com/serverless/, 2023.

[8] R. Calheiros, E. Masoumi, R. Ranjan, and
R. Buyya. Workload Prediction Using
ARIMA Model and Its Impact on Cloud
Applications’ QoS. IEEE Transactions on
Cloud Computing, 3:449-458, 08 2014.

[9] E. Cortez, A. Bonde, A. Muzio,

M. Russinovich, M. Fontoura, and

R. Bianchini. Resource Central:
Understanding and Predicting Workloads for
Improved Resource Management in Large
Cloud Platforms. In SOSP, page 153-167,
2017.

[10] S. Das, F. Li, V. R. Narasayya, and A. C.
Konig. Automated Demand-driven Resource
Scaling in Relational Database-as-a-Service.
In SIGMOD, pages 1923-1924, 2016.

[11] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-Efficient and QoS-Aware Cluster
Management. SIGPLAN Not., 49(4):127-144,
2014.

[12] A. Floratou, A. Agrawal, B. Graham, S. Rao,
and K. Ramasamy. Dhalion: Self-Regulating
Stream Processing in Heron. In Proc. VLDB
Endow., pages 1825-1836, 2017.

[13] Z. Gong, X. Gu, and J. Wilkes. PRESS:
PRedictive Elastic ReSource Scaling for cloud
systems. In TNSM, pages 9-16, 2010.

[14] S. Islam, J. Keung, K. Lee, and A. Liu.
Empirical Prediction Models for Adaptive
Resource Provisioning in the Cloud. Future
Generation Comp. Syst., 28:155-162, 01 2012.

SIGMOD Record, September 2023 (Vol. 52, No. 3)

[15]

[18]

A. Khan, X. Yan, S. Tao, and N. Anerousis.
Workload Characterization and Prediction in
the Cloud: A Multiple Time Series Approach.
In IEEE Network Operations and
Management Symposium, pages 1287-1294,
2012.

C. Kilcioglu, J. M. Rao, A. Kannan, and R. P.
McAfee. Usage Patterns and the Economics of
the Public Cloud. In WWW, page 83-91,
2017.

W. Lang, K. Ramachandra, D. J. DeWitt,

S. Xu, Q. Guo, A. Kalhan, and P. Carlin. Not
for the Timid: On the Impact of Aggressive
over-Booking in the Cloud. Proc. VLDB
Endow., 9(13):1245-1256, 2016.

A. K. Mishra, J. L. Hellerstein, W. Cirne, and
C. R. Das. Towards Characterizing Cloud
Backend Workloads: Insights from Google
Compute Clusters. SIGMETRICS Perform.
Eval. Rev., 37(4):34-41, Mar. 2010.

J. Moeller, Z. Ye, K. Lin, and W. Lang. Toto
- Benchmarking the Efficiency of a Cloud
Service. In SIGMOD, pages 2543-2556, 2021.
P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu,
M. Uysal, Z. Wang, S. Singhal, and

A. Merchant. Automated Control of Multiple
Virtualized Resources. In FuroSys, page
13-26, 2009.

J. Picado, W. Lang, and E. C. Thayer.
Survivability of Cloud Databases - Factors
and Prediction. In SIGMOD, page 811-823,
2018.

. Poppe, T. Amuneke, D. Banda, A. De,

. Green, M. Knoertzer, E. Nosakhare,

. Rajendran, D. Shankargouda, M. Wang,

. Au, C. Curino, Q. Guo, A. Jindal,

. Kalhan, M. Oslake, S. Parchani,

. Ramani, R. Sellappan, S. Sen, S. Shrotri,
Srinivasan, P. Xia, S. Xu, A. Yang, and

Y. Zhu. Seagull: An Infrastructure for Load
Prediction and Optimized Resource
Allocation. Proc. VLDB Endow.,
14(2):154-162, 2020.

O. Poppe, Q. Guo, W. Lang, P. Arora,

M. Oslake, S. Xu, and A. Kalhan. Moneyball:
Proactive Auto-Scaling in Microsoft Azure
SQL Database Serverless. Proc. VLDB
Endow., 15(6):1279-1287, 2022.

C. Reiss, A. Tumanov, G. R. Ganger, R. H.
Katz, and M. A. Kozuch. Heterogeneity and
Dynamicity of Clouds at Scale: Google Trace
Analysis. In SOCC;, pages 1-13, 2012.

F. Romero, G. I. Chaudhry, I. Goiri, P. Gopa,
P. Batum, N. J. Yadwadkar, R. Fonseca,

N RO

47

[26]

[27]

48

C. Kozyrakis, and R. Bianchini. Faa$T: A

Transparent Auto-Scaling Cache for Serverless

Applications. In SoCC, pages 122-137. ACM,
2021.

N. Roy, A. Dubey, and A. Gokhale. Efficient
Autoscaling in the Cloud Using Predictive
Models for Workload Forecasting. In CLOUD,
pages 500-507, 2011.

M. Shahrad, R. Fonseca, I. Goiri,

G. Chaudhry, P. Batum, J. Cooke,

E. Laureano, C. Tresness, M. Russinovich,
and R. Bianchini. Serverless in the Wild:
Characterizing and Optimizing the Serverless
Workload at a Large Cloud Provider. In

A. Gavrilovska and E. Zadok, editors,
USENIX, pages 205-218. USENIX
Association, 2020.

28]

[29]

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes.
CloudScale: Elastic Resource Scaling for
Multi-tenant Cloud Systems. In SOCC;, pages
1-14, 2011.

R. Taft, N. El-Sayed, M. Serafini, Y. Lu,

A. Aboulnaga, M. Stonebraker,

R. Mayerhofer, and F. Andrade. P-Store: An
Elastic Database System with Predictive
Provisioning. In SIGMOD, page 205219,
2018.

L. Viswanathan, B. Chandra, W. Lang,

K. Ramachandra, J. M. Patel, A. Kalhan,

D. J. DeWitt, and A. Halverson. Predictive
Provisioning: Efficiently Anticipating Usage
in Azure SQL Database. In ICDE, pages
1111-1116, 2017.

SIGMOD Record, September 2023 (Vol. 52, No. 3)

