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Cross-Trust-Domain Processing. Data is now a com-
modity. We know how to compute and store it efficiently
and reliably at scale. We have, however, paid less atten-
tion to the notion of trust. Yet, data owners today are no
longer the entities storing or processing their data (med-
ical records are stored on the cloud, data is shared across
banks, etc.). In fact, distributed systems today consist
of many different parties, whether it is cloud providers,
jurisdictions, organisations or humans. Modern data
processing and storage always straddles trust domains.

From Technical to Socio-technical. Enforcing and
maintaining distributed trust is challenging [4]. Trust
is as much a social and legal concept as it is a technical
one. Consensus protocols [2, 8, 10] or privacy-preserving
algorithms [3, 5, 6, 11] offer technical solutions to enforc-
ing trust for data availability /data confidentiality. SLAs
in modern cloud storage systems provide econonomic
incentives towards building trust. Likewise, regulatory
compliance with laws such as GDPR also help bootstrap
trust. One should always consider all three: cloud storage
should, for instance, be evaluated using throughput-per-
dollar as a metric. Similarly, one should explicitly ask: is
the dollar cost necessary to enforce confidentiality higher
than the potential financial and legal pitfalls?

In Log We Trust. We will focus here on technical
solutions for guaranteeing data integrity. There exists a
mismatch between the current technology stack and what
is necessary to offer efficient and expressive data sharing
functionality. These systems, which include permissioned
blockchains, rely on Byzantine Fault Tolerance (BFT)
protocols [2, 10]. They offer the appealing abstraction of
a totally ordered log that is distributed across a group of
disjoint trust domains. Together, protocol participants
guarantee that the set of operations submitted to the
log cannot be altered even as some parties may behave
maliciously. This log can then easily be consumed to
materialise the resulting shared state.

Limitations. We submit that implementing a physical,
decentralized log suffers from two significant limitations:
a scalability bottleneck, and a mismatched API. Con-
cerning scalability, all replicas in the log must order every
operation, and execute each such operation sequentially.
While some systems introduce sharding to alleviate
this issue [1, 7], each operation within a shard remains
totally ordered and cross-shard transactions remain
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limited and costly. Concerning the API mismatch, most
applications, BI tools and web development frameworks
rely on the ability to execute interactive, serializable,
transactions and SQL queries on application state.
Current decentralized systems instead restrict the API
to a key-value store API with stored-procedures, and
traditionally offer no guarantees on read operations.

Towards a Decentralized Database. These two
limitations are fundamental with today’s architecture.
Decentralized systems are designed with a rock hard
separation between a log-based ordering layer and a
state-based materialization layer. The ordering layer fo-
cuses on trust: how can one consistently order a sequence
of bytes. The materialization layer instead focuses on se-
mantics: how can one execute those bytes to generate the
corresponding state. In practice, applications care about
the materialized state, not the log. The log is simply the
mechanism through which one can consistently material-
ize the state. Yet, without semantics, the ordering layer
cannot do away with totally ordering all operations. In
fact, one need only order conflicting operations, oper-
ations whose relative order affects the final state. This
is the very premise that allows database systems to scale.

Our Wishlist. Most permissioned chains are, we argue,
actually trying to build a database. Merging the ordering
and the materialization layers together into a single entity
that is explicitly a database is key to scalability. Such a
system should support transactions and query processing
at performance comparable to that of a traditional
database. Achieving these properties when both replicas
and clients may misbehave is challenging: 1) what do iso-
lation guarantees mean in this setup? 2) how can clients
efficiently verify the result of a complex query? Our initial
results are promising: Basil [9], our BFT transactional
key-value store prototype, achieves up to 5x better
performance than prior work. Basil introduces the notion
of Byzantine Isolation and Byzantine Independence, two
key notions for characterising the behaviour of a decen-
tralized database. Basil’s merged architecture allows it to
commit transactions in a single round-trip almost always.
Moreover, conflicting transactions do not need to be
ordered: under low contention, throughput scales linearly
with the number of shards. We are now actively working
on transforming Basil into a fully SQL compliant database
by adding efficient query processing to the system.
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