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ABSTRACT

Knowledge graphs (KGs) such as DBpedia, Freebase,
YAGO, Wikidata, and NELL were constructed to store
large-scale, real-world facts as (subject, predicate, object)
triples — that can also be modeled as a graph, where a
node (a subject or an object) represents an entity with
attributes, and a directed edge (a predicate) is a relation-
ship between two entities. Querying KGs is critical in
web search, question answering (QA), semantic search,
personal assistants, fact checking, and recommendation.
While significant progress has been made on KG con-
struction and curation, thanks to deep learning recently
we have seen a surge of research on KG querying and
QA. The objectives of our survey are two-fold. First,
research on KG querying has been conducted by several
communities, such as databases, data mining, seman-
tic web, machine learning, information retrieval, and
natural language processing (NLP), with different fo-
cus and terminologies; and also in diverse topics rang-
ing from graph databases, query languages, join algo-
rithms, graph patterns matching, to more sophisticated
KG embedding and natural language questions (NLQs).
We aim at uniting different interdisciplinary topics and
concepts that have been developed for KG querying.
Second, many recent advances on KG and query em-
bedding, multimodal KG, and KG-QA come from deep
learning, IR, NLP, and computer vision domains. We
identify important challenges of KG querying that re-
ceived less attention by graph databases, and by the DB
community in general, e.g., incomplete KG, semantic
matching, multimodal data, and NLQs. We conclude
by discussing interesting opportunities for the data man-
agement community, for instance, KG as a unified data
model and vector-based query processing.

1 Introduction

Knowledge graph (KG) [161] is an intelligible data model
to support easy integration of data from multiple hetero-
geneous sources, providing a formal semantic represen-
tation for inference and machine processing. One does
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not require exhaustively modeling their schema; new en-
tities and relationships can be added in human-driven,
semi-automated, or fully automated manner to their ex-
isting structure without endangering the current func-
tionality. This follows the semi-structured data paradigm,
enabling more frequent and timely updates in knowl-
edge graphs. However, schema-flexibility also intro-
duces challenges in managing and querying KGs.

1.1 Challenges in KG Querying

e Scalable and efficient querying. The problems are
three-fold. First, due to storing cross-domain informa-
tion and being un-normalized, KGs are massive volume.
Freebase [18] (Google KG is powered in part by Free-
base) alone has over 22 million entities and 350 million
relationships in about 100 domains. Graph-of-Things
(GoT) [109] which is a live knowledge graph system for
Internet-of-Things added roughly more than 10 billion
RDF triples per month. While some works partition the
data across multiple tables, e.g., property tables in Jena2
[162] and Oracle [31], vertically partitioned databases
in SW-Store [1], etc., many databases store them as one
giant table (e.g., RDF-3X [94]), or a big graph with la-
bels associated with nodes and edges [37, 92]. Second,
KG queries (e.g., “find the 10 most commonly followed
entities by people within a given user’s second-degree
network in the LinkedIn economic graph”) are differ-
ent from classical relational queries [121, 21, 85, 20].
They are join-heavy queries over many-to-many rela-
tions (e.g., ‘knows’, ‘follows’, ‘friends’ relations), in-
volving recursive joins or graph traversals, and resulting
in complex query shapes, e.g., chain, tree, cycle, star,
and flower. Such queries generate large intermediate
results [10] and query optimization is challenging with
traditional binary join plans. Third, exact subgraph pat-
tern matching via subgraph isomorphism is also NP-
complete [48]. For a fixed query pattern, subgraph iso-
morphism can be verified by enumerating all potential
candidate matches. For node-labeled graphs, if the query
pattern has g nodes vi,v2,...,v,, and if the number of
candidate node matches (from the data graph) for each
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query node v; is |C(v;)| based on node-label matching,
then the search space has size IT¥_; |C(v;)|. This can be
large due to massive data graphs, larger query graphs,
and due to less selective query node-labels. Therefore,
even with node-labeled graphs, e.g., KGs, enumerating
all potential candidate matches within the search space
is expensive.

Scalability and efficiency of graph query processing
(including RDF, KG querying) were studied by data man-
agement, theory, and systems communities, e.g., graph
and join query optimization [85, 95, 93, 123], join vs.
graph queries [122, 139, 141], indexing [53, 6, 65], ma-
terialized views [57, 44], efficient (exact) subgraph pat-
tern matching [138, 72], multi-query optimization [107,
117], distributed processing [2, 25, 64], data partitioning
[103], I/O efficiency [181], caching [69, 105], modern
hardware [62, 177], etc.

e Flexible schema and semantic matching. In a KG,
similar relationships can be stored in diverse ways, e.g.,
for the query, “find all software that have been devel-
oped by organizations founded in California” on the
DBPedia knowledge graph [73], a recently proposed KG
querying system, AGQ [157] reports that correct an-
swers conform to one of at least six different schemas.
It is expected to retrieve all semantically correct (i.e.,
structurally different, yet ‘relevant’) answers for such
queries. If users have full knowledge about DBpedia,
they can construct various query patterns or write dif-
ferent SPARQL queries that cover all possible schemas,
to obtain all software of interest. It is challenging for
ordinary users to have full knowledge of the vocabulary
used in a KG and the underlying schemas defined in the
KG, since the schema can be large and complex due to
heterogeneity, thus KG querying is difficult.
Additionally, the notion of ‘relevant’ or ‘correct’ an-
swers could very well depend on the user’s query intent,
or can even be vague, thus a predefined, ‘one-size-fits-
all’ similarity metric might not work in all scenarios.
Data management, semantic web, and ML communities
investigated this problem in the context of schema map-
ping [112], ontology and logic based approaches [110,
83], query reformulation [173, 189], schema-free query
interfaces and search [144], approximate subgraph pat-
tern matching [68, 70, 171, 185], graph simulation, ho-
momorphism, and regular expression based pattern match-
ing [43, 84, 42], and KG embedding based query pro-
cessing [75, 156, 157, 155, 55, 51, 30].
e Incomplete KGs. Knowledge graphs are incomplete
and follow the open-world assumption — information
available in a KG only captures a subset of reality. To
retrieve the complete set of correct answers for a given
query, one must infer missing edges and relations. In-
completeness for RDF and property graph data models
received fewer attention [33, 100]. Dealing with miss-
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ing graph structure is more difficult than that with miss-
ing attributes on nodes and edges. Researchers stud-
ied uncertain graph data management [71], probabilis-
tic knowledge bases [24], and commonsense KGs [58].
Recent ML approaches embed a KG and logical queries
into the same vector space, to deal with missing edges
in the KG [55, 51, 30, 116, 115, 182, 9].

e User-friendly querying. Non-professional users find
it difficult to formulate an appropriate graph query, e.g.,
via SPARQL or subgraph pattern [17], thus more user-
friendly approaches were developed: (1) (declarative)
graph query languages [8], (2) keyword search [170],
(3) query-by-example [89, 60], (4) faceted search [148],
(5) visual query [16, 52], (6) natural language ques-
tions [119, 28], (7) incorporating users’ feedback [19,
134], (8) query auto-completion and recommendation
[771, (9) answers explanation [131, 150, 59], (10) con-
versational QA [176], etc. A one-time answer might
not be satisfactory. Exploration-based, interactive meth-
ods such as faceted search, users’ feedback, query sug-
gestion and completion, answers explanation, conversa-
tional QA were designed, enabling users to refine their
queries and obtaining personalized results.

e Multimodal data querying. Data are multimodal,
consisting of texts, images, and other multimedia data.
Entities as well as features of both entities and relations
in a KG can have varieties of data types. However, bulk
of KG querying methods only focus on the structured
information in triple facts, since multimodal informa-
tion are either omitted completely, or are treated as reg-
ular nodes and edges. Thus, KG queries and answers
lose richer and potentially useful information, reduc-
ing their effectiveness in downstream tasks. Recently,
multimodal KGs and their querying techniques are an
emerging area of research [80, 49].

1.2 Related Work and Benefits
of Our Survey

The closest to our work are surveys on heterogeneous in-
formation networks [128] and querying attributed graphs
[158]. While having similarities, knowledge graphs are
complex, modeling real-world facts as (subject, predi-
cate, object) triples. Different from those surveys, we
discuss diverse querying methods on KGs, neural ap-
proaches, and graph databases support to process them.
There are surveys on RDF data management and query-
ing [2, 6, 64, 120], as well as on knowledge graphs [161,
101, 3] and its various operations separately, such as KG
embedding [5], KG reasoning with logics and embed-
ding [179], KG-QA [111, 28], conversational KG-QA
[176], etc. Surveys on graph databases [76, 145, 15, 8],
queries [20] and optimization [85], exact subgraph pat-
tern matching [72] exist. We mention these important
surveys in our article.
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Figure 1: Design space of KG query and KG-QA problems

Additionally, our contributions are as follows.

— We unite interdisciplinary topics about KG query-
ing with a taxonomy on KG data models, query classifi-
cation, databases, querying techniques, algorithms, and
benchmarks.

— We discuss recent neural methods for KG query
processing such as KG embedding-based query answer-
ing, multi-modal KG embedding, KG-QA, and conver-
sational KG-QA.

— We analyze the top-10 commercial graph databases
support for KG querying, particularly focusing on query
languages, user-friendly and interactive interfaces, KG
embedding, and multi-modal KG storage.

— We emphasize the current challenges and highlight
some future research directions.

1.3 Roadmap

We stated challenges of KG querying and related sur-
veys in §1.1 and §1.2, respectively. Taxonomy of KG
querying with an emphasis on data models, query clas-
sification, languages, technologies, and benchmarks are
introduced in §2. We highlight deep learning approaches
for KG query processing and QA in §3. We analyze
current graph databases support for KG query in §4 and
discuss future directions in §5.

2 Taxonomy of KG Querying

While almost all big data companies, e.g., Google, Mi-
crosoft, Facebook, Amazon, IBM, eBay have their pro-
prietary knowledge graphs [101], many public knowl-
edge graphs are also available, e.g., cross-domain KGs
(DBpedia [73], Wikidata [151], YAGO [135], Freebase
[18], NELL [87]), KGs for synonyms and translations in
several languages (BabelNet [91], ConceptNet [132]),
domain specific KGs [3] (COVID19 KG [40], Claim-
sKG [143]), among others.

Graph workloads are broadly classified into two cate-
gories [67]: (1) online graph queries consisting of ad-
hoc graph traversal and pattern matching — exploring a
small fraction of the entire graph and requiring fast re-
sponse time; (2) offline graph analytics with iterative,
batch processing over the entire graph, e.g., PageRank,
clustering, community detection, and machine learning
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algorithms. Online graph queries and offline graph ana-
lytics are also called graph OLTP and graph OLAP (or,
graph algorithms), respectively [145]. The focus of this
article is read-only online queries without updates in the
KG. KG querying is essential for web search [129], QA
[119], semantic search [155], personal assistants [12],
fact checking [143], and recommendation [167].

In this article, we unify various concepts under the
broad umbrella of KG query and QA with the taxon-
omy in Figure 1, which shows six key design options
for KG query and KG-QA problems: KG data mod-
els, KG query and QA classification, graph databases
for KG, KG query and QA techniques, their processing
algorithms, and benchmarks.

2.1 KG Data Models

Two prominent data models are (1) RDF model consist-
ing of (subject, predicate, object) triples, and (2) prop-
erty graph model having nodes and edges with arbitrary
number of properties, where a node (a subject or an ob-
ject) represents an entity and a directed edge (a predi-
cate) is a relationship between two entities. RDF schema
(RDFS, also known as an ontology), which is the World
Wide Web Consortium (W3C) proposed schema lan-
guage for RDF, is another RDF (equivalently a directed
graph) itself, describing classes, properties, and seman-
tic relationships (e.g., “is-a”, “part-of”, “synonym-to”)
among them. Ontology languages such as OWL have
richer vocabulary and define more expressive schema.

2.2 KG Query and Question Classification

KG queries and questions can be classified based on sev-
eral aspects.

Querying vs. QA. There are differences between KG
query vs. question answering (QA). A query has a struc-
ture, e.g., a graph pattern, a logic query, an SQL or a
SPARQL query. On the other hand, KG-QA [119] deals
with answering unstructured natural language questions
(NLQs) over KGs — it is a natural language understand-
ing task, that is, semantically parsing an NLQ to trans-
late it into a query language, such as in SPARQL.

Simple vs. complex questions. A simple question in-
volves a single triple and a single formal query pattern,
e.g., “where was Albert Einstein born?” can be an-
swered based on the relation ‘born’: (Albert Einstein,
born, ?place). On the other hand, a complex question
involves multiple KG relations and/or additional opera-
tions, e.g., “what was the first movie of James Cameron
that own an Oscar?”

Logic vs. path queries. First-order logic queries with
conjunction, disjunction, negation, and existential quan-
tification over KGs were widely studied [30]. Relational
algebra select-project-join (SPJ) queries and subgraph
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pattern matching are conjunctive queries (CQ). A regu-
lar path query (RPQ) finds all pairs of nodes connected
by at least one path where the sequence of edge labels
on the path follows a given regular expression [163]. A
shortest-path query returns the path that has the mini-
mum length between two given nodes [130]. A con-
junctive regular path query (CRPQ) combines CQ (e.g.,
subgraph pattern matching) with RPQ (e.g., reachabil-
ity) [20].

Factoid vs. aggregate queries. The answer set to a fac-
toid query is an enumeration of noun phrases, e.g., “find
all movies by James Cameron”. An aggregate query
retrieves the statistical result of a collection of entities
in the answer set, e.g., “what is the average length of
movies by James Cameron?” Aggregate queries can be
combined with GROUP-BY [156].

2.3 KG Query Languages & Technologies

A number of technologies exist for KG querying, e.g.,
SPARQL, SQL extensions, Datalog, graph query lan-
guages, keyword query, exampler query, faceted search,
visual query, query templates, natural language ques-
tions, conversational QA, multimodal QA, and interac-
tive methods (e.g., feedback, explanation, suggestion,
autocompletion, etc.).

SPARQL is the W3C recommended query language
for RDE. Microsoft SQL Graph supports SQL exten-
sions that enable creating and querying graph objects
[86]. Graph query languages tend to be declarative like
SQL. Cypher [46], PGQL [102], and GSQL [36] are
declarative graph query languages native to Neo4J, Or-
acle, and TigerGraph, respectively. Standardization ef-
forts from both academia and industry led to SQL/PGQ

[35], G-CORE [7], and GQL (https ://www.gqlstandards. org/).

Gremlin [118], adopted by many graph vendors, is a

graph-based programming language that supports both

imperative graph traversal and declarative pattern match-
ing. Datalog-based KG querying was explored in [13].

Cypher, SPARQL, SQL, and Datalog are not Turing com-
plete. In contrast, Gremlin and GSQL are Turing com-

plete and hence, more expressive (https://info.tigergraph.

com/ gsql).

In relational stores, SPARQL queries are reformulated
into SQL queries, then optimized and processed by the
relational database management system. On the other
hand, graph-based RDF querying techniques convert the
SPARQL query into a query graph, and perform graph
operations (e.g., exact or approximate subgraph pattern
matching, graph traversal) to evaluate the query [164].
Recently, [120] investigated which RDF data represen-
tations are suitable for what workloads.

More user-friendly means of KG querying involve the
following techniques.

(1) Keyword search over graphs [170] allows users to
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provide a list of keywords, and it returns subtrees/ sub-
graphs containing those keywords as answers, based on
various ranking criteria, e.g., sum of all edge weights
in the resulting tree/ graph, sum of all path weights from
root to each keyword in the tree, maximum pairwise dis-
tance among nodes, etc. While native keyword search
algorithms directly evaluate a keyword query, there are
also query reformulation techniques that convert the key-
word query into a more structured format, e.g., SPARQL
[187] or query graph [173]. Given the set of keywords,
the structured queries are identified by considering term
similarity, co-occurrences, and relationships in the KG.

(2) Graph query-by-example [89, 60] enables users to
input answer tuple(s) as a query, and it returns other sim-
ilar tuples that are present in the knowledge graph. This
follows the well-studied query-by-example paradigm in
relational databases, HTML tables, and entity sets: A
user might already know a few answers to the user’s
query. The graph query-by-example systems adopt a
two-step approach. Given the input example tuple(s),
they first identify the query graph that captures the user’s
query intent. Next, they evaluate the query graph to find
other relevant answer tuples.

(3) Faceted search [148] is an explorative, interactive,
and progressive refinement-based search through simple
clicks, offering an overview of the result set at each iter-
ation, thereby assisting in query formulation according
to the dataset. Main techniques include faceted taxon-
omy generation, facet ranking, faceted interface, visual-
ization, and navigation.

(4) Graph visual query interfaces [16, 52] allow a user
to draw a graph query (e.g., a query graph pattern) inter-
actively. Graph operations such as subgraph matching
and enumeration are employed to evaluate these queries.
[52] reformulates graph queries into SPARQL queries.

(5) Natural language interfaces [119, 189, 28] per-
mit users to input questions in natural languages, with-
out requiring them to learn the underlying schema, vo-
cabulary, or query languages. The semantic parsing of
a natural language question involves question analysis,
phrase mapping and disambiguation, query construction.
Some systems additionally use templates to generate the
SPARQL query [4, 184]. Neural approaches are increas-
ingly becoming popular for these tasks.

(6) Interactive methods include (a) graph query sug-
gestion, expansion, refinement, and autocompletion aim-
ing to retrieve more detailed and relevant answers [77];
(b) a user’s time-bounded search to provide ‘early’ an-
swers within the user’s response time bound and incre-
mentally improving the quality of answers with time
[155]; (¢) incorporating a user’s feedback for person-
alized graph querying [19, 134]; (d) answer explanation
to support ‘why’, ‘why-not’, ‘why empty’, and ‘why so
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many’ questions on query results [131, 150, 59].

(7) Conversational QA agents [32, 176] engage users
in multi-turn QA to satisfy their information needs. Once
a question is answered, the user can ask another question
related to the previous QA pair. Such follow-up ques-
tions are usually incomplete, with the context not being
clearly specified. A conversational agent might also ask
follow-up questions to understand the user’s query in-
tent. Examples include task-oriented systems (schedul-
ing an event), chat-oriented systems (conducting natural
conversations), QA dialog systems (providing answers
about a topic), virtual assistants (e.g., Microsoft Cor-
tana is powered by Microsoft Satori KG), and knowl-
edge grounded neural conversation [186, 147, 97].

(8) Multimodal QA [66] consists of multiple user in-
put and output modes (such as text, image, video, voice,
touch, gestures, gaze, and movements) over multimodal
data (including multimodal KGs), having applications in
visual QA, virtual assistants, autonomous vehicles, etc.

A number of keyword search, visual graph query, and
natural language query-based interfaces (till 2015) for
RDF and KG querying were compared in [133, 41] based
on their effectiveness and usability.

o Application scenarios of KG querying technologies.
Writing queries in SPARQL or in other graph query lan-
guages requires familiarity with that language, as well as
knowledge of the vocabulary and predicates used in the
KG. Such querying modes are generally suitable for ex-
pert programmers and data scientists. Non-expert users
and domain scientists (e.g., biologists, chemists, data
journalists, etc. who also use KGs) might prefer more
user-friendly means of asking queries, such as using key-
words, graph query-by-example, faceted search, visual
interfaces, and natural language questions. Interactive
methods including faceted search, users’ feedback, query
suggestion and completion, answers explanation, con-
versational QA are helpful in refining users’ queries and
obtaining personalized results. Conversational and mul-
timodal QA are critical in virtual assistants.

2.4 Benchmarks for KG Query & QA

Several benchmarks for KG querying and QA exist, such
as for simple questions (WebQuestions [14], Simple-
Questions [22]), complex questions (ComplexQuestions
[142], LC-QuAD [146]), multi-hop questions (HotpotQA

[172]), conversational QA (ConvQuestions [32]), SPARQL
query logs [21], benchmarks for RDF and SPARQL queries

(SP2Bench [127], LUBM [50]), among others. QALD
is not one benchmark but a series of evaluation cam-
paigns for QA systems over KGs, the recent one being
QALDI10 (nttps://wwu.nliwod.org/challenge).
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3 KG Query Processing & QA:
Recent Neural Methods

We highlight deep learning advances for KG embedding-
based query processing, multi-modal KG embedding,
KG-QA, and conversational QA over KGs.

3.1 Embedding-based
KG Query Processing

KG embedding represents each predicate and entity of
a KG as a low-dimensional vector, such that the origi-
nal structures and relations in the KG are approximately
preserved in these learned vectors [5]. KG embeddings
can be broadly classified into four categories. (1) Ge-
ometric or translational distance models compute the
plausibility of triples based on a geometric operation
such as a distance function in the embedding space, e.g.,
TransE [23], TransH [160], TransD [61], RotatE [140],
etc. (2) Semantic matching or tensor decomposition mod-
els compute similarity of latent features by an inner prod-
uct formulation, e.g., RESCAL [98], DistMult [168],
Tucker [11]. (3) Neural network-based models gener-
ally use convolutional neural networks (CNNs) to pre-
dict the plausibility score of a triple, e.g., ConvE [34],
ConvKB [96]; or employ graph neural networks (GNNs)
which can capture multi-hop relations in the neighbor-
hood of a node, e.g., RGCN [126], CompGCN [149],
KBAT [90], etc. (4) Rule-based models consider logic
rules during embedding learning, e.g., ComplEx-NNE-
AER [38] and IterE [180].

For a simple question, if the embeddings of head en-
tity (i.e., head vector h) and predicate (i.e., predicate
vector r) are identified based on the KG embedding, link
prediction can be employed to infer the tail entity, e.g.,
tail vector t ~ h +r via TransE. EAQ [75] applies KG
embeddings and uses spatial indexes to efficiently an-
swer top-k and aggregate queries.

We categorize recent deep learning techniques for KG
query processing into two classes — both categories eval-
uate input graph query patterns and can deal with incom-
plete KGs and schema mismatch between the query and
a KG.

(1) Query answering methods trained on single-hop
queries, e.g., [75, 155, 156, 9, 47], though trained on
single-hop queries, can process multi-hop and complex
input queries by first decomposing complex queries into
smaller subqueries and then combining the answers of
subqueries in a systematic way. For instance, [155, 156]
process queries having complex shapes (chain, cycle,
star, and flower), aggregate functions (COUNT, SUM,
AVG), FILTER and GROUP-BY operators over KG em-
bedding. Since KG embedding techniques deal with
(subject, predicate, object) triples and are similar to train-
ing with single-hop queries, these query answering meth-
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ods can directly work with KG embedding, without sep-
arate single-hop training queries and their answers.

(2) Query answering methods trained on multi-hop
queries [136, 115, 182, 78, 169, 82, 56, 30, 188] em-
bed multi-hop queries and their answers (i.e., entities
from a KG) close to each other in the same embedding
space. These methods deal with logical queries, often
implement logical operators in neural ways, and signifi-
cantly reduce query processing time via inference. Un-
like generating large intermediate results due to decom-
posing complex queries into smaller subqueries, these
approaches reduce query answering to dense similarity
matching of query and entity vectors. They can further
be classified as geometry, distribution, or fuzzy logic-
based methods according to generated embeddings. The
former embeds entities and queries with geometric shapes.
Examples include Query2box [115], NewLook [78], and
ConE [182]. Distribution-based approaches encode en-
tities and queries into probabilistic density, e.g., BetaE
[116], GammaE [169], NMP-QEM [82]. Fuzzy logic-
based methods (e.g., FuzzQE [30], ENeSy [188]) de-
fine logical operators in a learning-free manner follow-
ing fuzzy logic, whereas only entity and relation em-
beddings require learning. Geometry and distribution-
based approaches are trained with complex queries and
their answers, which can be generated by crowdsourcing
[14], or by automatic generation from a KG as in [114].
Fuzzy logic-based methods can be trained on single-
hop or complex queries. Different from the above ap-
proaches, kgTransformer [81] uses a Transformer-based
GNN architecture, models logical queries as masked pre-
diction, and proposes a masked pre-training strategy.

3.2 Multi-modal KG Embedding

Multi-modal data (e.g., text, image, multi-media) is as-
sociated as attributes of entities and relations, or treated
as new entities in a KG. Multi-modal KG embeddings
are critical for querying multi-modal KGs, and can be
classified as follows.

KG+text. Notable methods are Extended RESCAL [99],
DKRL [165], and KDCoE [29] that embed KGs having
textual descriptions of entities. These methods vary in
how entity embedding from text is obtained (e.g., via
CNN, LSTM, bag-of-words, etc.) and then how it is
combined with structure-based representation. Recently,
efforts were made to combine pre-trained language mod-
els with KG+text embedding, e.g., (1) when KGs hav-
ing textual description of entities: SImKGC [152], KE-
PLER [154], KnowlyBERT [63], K-BERT [80]; (2) when
KGs and text data are stored separately: DRAGON [174],
JAKET [175], OREO-LM [54], DRLK [178].

KG+image. IKRL [166], RSME [153], and MuKEA
[39] learn KG embedding by jointly training a structure-
based representation (e.g., TransE) with an image-based
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representation obtained via image encoder.

KG+text+image. To embed KGs having texts and im-
ages, several models were proposed, e.g., Knowledge-
CLIP [104], CMGNN [45], MKBE [108], MKGAT [137],
TransAE [159]. They employ various neural encoders
for multi-modal data and combine them with existing
relational models.

3.3 Neural Methods for KG-QA

Answering natural language questions (NLQ) over knowl-
edge graphs involve several subtasks including entity
linking, relationships identification, identifying logical
and numerical operators, query forms, intent, and fi-
nally the formal query construction [111]. Rule-based
methods use ontologies and KG for phrase mapping and
disambiguation to link entities and relations to the KG,
and then employ grammars to generate formal queries.
Recently, neural network-based semantic parsing algo-
rithms have become popular for KG-QA, which are cat-
egorized as classification, ranking, and translation-based
[28]. Classification-based parsing algorithms rely on
classification models to predict the relation and entities
in a simple NLQ. For more complex questions, ranking-
based methods employ a search procedure to find the
top few probable query candidates, followed by using
a neural network-based ranking model to find the best
candidate. Translation based KG-QA methods employ a
sequence-to-sequence model, consisting of decoder and
encoder to translate a natural question into a formal query.
Based on the types of training data, their training meth-
ods can be fully supervised (consisting of NLQs and
their formal queries during training) or weakly super-
vised (provided with NLQs and their execution results,
but without their formal queries during training).

More recently, [55, 26, 113, 125, 79, 124] propose
methods to answer NLQs over KGs in an end-to-end
manner. They can deal with incomplete KGs, semantic
meaning of NLQs, and ambiguity of entity names and
relations. KEQA [55] jointly learns head entity, predi-
cate, and tail entity representations of a simple NLQ in a
given KG embedding space. Attention-based BiLSTM
models are used for the head entity and predicate repre-
sentation learning. EmbedKGQA [125] learns represen-
tation of a multi-hop NLQ in the KG embedding space
first by using RoBERTa (robustly optimized BERT pre-
training), followed by fully connected linear layers with
ReLU activation, and finally projecting onto the KG em-
bedding space. DCRN [26] identifies informative ev-
idence from candidate entities in a multi-hop question
by using their semantic information, then finds answers
by performing RNN encoder-decoder-based sequential
reasoning following the graph structure on the retrieved
evidence. LEGO [113] alternates between growing the
query tree and the reasoning action in the KG embed-
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ding space. BiNet [79] uses an encoder-decoder-based
model that transforms multi-hop NLQs into relation paths,
and jointly addresses knowledge graph completion and
KGQA tasks. KGTS5 [124] employs an encoder-decoder
Transformer model, with pretraining the model on the
KG using the link prediction task, and then the model is
fine-tuned for complex question answering.

3.4 Conversational QA on KG

Conversational QAs are extensions to one-shot NLQs,
involving a sequence of questions and answers that ap-
pear as a dialogue between the system and the user [119,
111]. Conversational QA systems involve dialog man-
ager and response generator to keep track of the dialog
history and for generating natural language responses,
respectively. Sequence-to-sequence and pre-trained lan-
guage models are used for these tasks.

Knowledge grounded neural conversation models gen-
erate more informative responses. To understand the
context of follow-up questions, commonsense KG-based
context expansion is useful [186]. DyKgChat [147] zero-
shot adapts to dynamically updated knowledge graphs
during conversation. HiTKG [97] proposes a hierar-
chical Transformer-based graph walker model, which
learns both short-term and long-term conversation goals.
¢ Interaction between neural and classic approaches.
We identify scenarios where neural and classic KG query
processing and KG-QA can be complementary to each
other. First, neural semantic parsing translates NLQs
into structured queries, e.g., SPARQL queries or sub-
graph patterns, and classic approaches can be applied to
evaluate them. Classic approaches identify intermediate
results that help interpreting each step in query process-
ing. Second, neural approaches can also assist in in-
teractive, exploration-based query processing by auto-
mated query suggestion and completion, incorporating
user’s feedback, and providing personalized results.

4 Graph Databases Support for KG Query

We analyze the top-10 commercial graph DBMS ac-
cording 1O https://do-engines.com/en/ranking/graph+dbms (accessed
on December 30, 2022), which ranks commercial database man-
agement systems based on their popularity. In the past,
graph databases were benchmarked in regards to their
performance, database systems offerings, data organi-
zation techniques, queries, etc. [76, 145, 15, 8]. Dif-
ferent from them and following our taxonomic discus-
sion, we categorize which graph DBMS supports what
data models, query languages, user-friendly and inter-
active interfaces. Given the popularity of deep learning
and KG embedding that are critical for incomplete or
multimodal KG querying, we also investigate if these
graph databases support graph embedding and multi-
modal KG-QA. Our findings are summarized in Table 1.
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(1) Neodj [92] provides a native graph database with
property graph data model and Cypher query language.
It also supports the Apache TinkerPop (nttp://tinkerpop.
apache.org/) acting as a connectivity layer to use Grem-
lin. Neo4J supports several graph analytic tools (e.g.,
Popoto.js, Neo4j Bloom) that assist in interactive, visual
query building and suggestion. Neo4J’s graph data sci-
ence library implements three graph embedding meth-
ods (FastRP, GraphSAGE, and Node2Vec), node classi-
fication and regression, link prediction.

(2) Microsoft Cosmos DB for Gremlin (graph) (nctps://
learn.microsoft. com/enfus/azure/cosmosfdb/gremlin/introduction)
is a hybrid graph DB service on top of Microsoft’s NoSQL
Azure Cosmos DB. It follows the Apache TinkerPop
specification using Gremlin as the query language. The
graph data can be visualized and explored via third-party
tools, e.g., Graphlytic, Graphistry, Linkurious.

(3) Virtuoso (nttps://virtuoso.openlinksu.com/) is a hybr1d
database which stores KGs as RDF triples and provides
a SPARQL endpoint. Besides Virtuoso faceted brows-
ing, third-party tools (e.g., LodLive [27]) exist to visu-
alize and explore RDF data from SPARQL endpoints.

(4) ArangoDB (https://www.arangodb.com/docs/stable/), which is
a document-based hybrid graph DB, provides a declara-
tive query language AQL (ArangoDB Query Language).
It supports Apache TinkerPop Gremlin. ArangoDB has
an in-built graph viewer, additionally it supports third-
party tools (e.g., Cytoscape) for visualization and analy-
sis. ArangoDB’s graph ML tools provide several graph
embedding methods (e.g., GraphSage, Metapath2Vec,
GAT, DMGI) over both homogeneous and heterogeneous
networks (https://github.com/arangoml/fastgraphml).

(5) OrientDB (nttps://orientdb.con), a document-based na-
tive graph DB, offers SQL extension for graph queries,
and supports Gremlin. OrientDB studio visualizes graphs
and schema.

(6) JanusGraph (http://3anusgraph.org) uses a number of
wide-column stores as backends, e.g., Apache Cassan-
dra, HBase, Google Cloud Bigtable, Oracle BerkeleyDB,
ScyllaDB, etc. It supports Apache TinkerPop Grem-
lin. To visualize graphs stored in JanusGraph, one can
use third-party tools, e.g., Cytoscape, Gephi plugin for
Apache TinkerPop, Graphexp KeyLines by Cambridge
Intelligence, Linkurious, etc.

(7) Amazon Neptune (https ://aws.amazon. com/neptune) is part
of Amazon Web Services (AWS), supporting both RDF
and property graph models, as well as Gremlin, open-
Cypher, and SPARQL query languages. The query re-
sults can be interactively visualized using Neptune Work-
bench. Neptune uses GNN methods and the Deep Graph
Library (DGL) to support a number of graph ML tasks,
including node and edge classification, regression, link
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Table 1: Categorization of top-10 commercial graph DBMS based on KG data models, query languages, user-friendly and interactive

interfaces, support for graph embedding and multimodal KG-QA. PG: property graph, RDF: RDF triples.

graph DBMS || KG data models | query]l ges | user-friendly & interactive interfaces | graph embedding | multimodal KG-QA
Neo4] PG Cypher, Gremlin Popoto.js: create interactive visual query; v X
Neo4j Bloom: write patterns similar to NLQs
Microsoft PG Gremlin 3rd-party data visualization tools X X
Cosmos DB (e.g., Graphlytic, Graphistry, Linkurious)
Virtuoso RDF SPARQL faceted browsing, 3rd-party tools (e.g., LodLive) X X
ArangoDB PG AQL, Gremlin graph viewer, 3rd-party tools (e.g., Cytoscape) v X
OrientDB PG SQL-like, Gremlin OrientDB studio: visualize graphs and schema X X
JanusGraph PG Gremlin 3rd-party tools (e.g., Cytoscape) X X
Amazon PG, Gremlin, Neptune Workbench v X
Neptune RDF SPARQL
GraphDB RDF SPARQL faceted search, 3rd-party tools (e.g., metaphactory) X X
TigerGraph PG GSQL TigerGraph GraphStudio v X
FaunaDB PG GraphQL X X X

prediction, graph embedding (R-GCN), and KG embed-
ding (TransE, DistMult, RotatE).

(8) GraphDB (https://www.ontotext.com/products/graphdb) is
an RDF database using SPARQL query language. It
supports faceted search and third-party tools, such as
metaphactory, for interactive visualization.

(9) TigerGraph [37] is a native graph database with
property graph data model and GSQL language. Tiger-
Graph GraphStudio provides a graphical interface for
interactive visualization and exploration. TigerGraph’s
ML Workbench is a Jupyter-based Python development
framework that is inter-operable with popular deep learn-
ing frameworks such as PyTorch Geometric, DGL, and
supports graph embedding (Node2Vec, Fast Random Pro-
jection, and Weisfeiler-Lehman).

(10) FaunaDB (https://fauna.con) is a document-relational
database with property graph model and GraphQL API.

Summary. The top-10 commercial graph databases sup-
port various languages for querying of KGs — as RDF
triples or property graphs. Besides, many of them also
provide interactive interfaces for visualization, query-
ing, and exploration of KGs. Their support for in-built
ML-based KG querying is limited. Only Amazon Nep-
tune provides a few popular KG embedding methods
such as TransE, DistMult, and RotatE. While many of
these graph databases (e.g., AllegroGraph, ArangoDB,

OrientDB) are multi-model, supporting multiple data mod-

els against a single backend, none of them has in-house
system for storage and querying of multi-modal data,
such as KGs with text, images, and multimedia.

5 Future Directions

Knowledge graphs can support a holistic integration so-
lution for multi-modal data arriving from heterogeneous
sources. For instance, nodes and edges in a KG can have
arbitrary number of properties of different types, e.g.,
tabular, key-value pairs, text, images, and multimedia.
Therefore, KGs can be a unified data model for complex
data lake problems, to model cross-domain and diverse

SIGMOD Record, June 2023 (Vol. 52, No. 2)

data. We conclude with a discussion about future work
on KG querying.

e Vector data management and querying. With the
prevalence of KG embedding based query processing,
managing and querying of vector data is critical. Data
management community can contribute in this domain
with high-dimensional data indexing, join, querying, and
geometric data processing.

e Scalable embedding learning. Scaling knowledge
graphs embedding is challenging [88, 74, 183]. The
problem gets exacerbated when combined with more com-
plex data, such as KG+query embedding and multi-modal
KG embedding. Advanced techniques are required for
scalable embedding learning of multi-modal KGs, e.g.,
with language models, and conversational KG-QA with
sequence-to-sequence models.

e Graph databases support for KG embedding. Cur-
rent graph DBMS support for ML-based KG querying
is limited. In future, they can incorporate more KG
embedding models, vector data management and query
processing techniques, as well as enable multi-modal
KG storage and query, more interactive means of KG
querying such as NLQs and dialogues.

o Usability of KG querying methods. Besides SPARQL,
a number of KG querying approaches exist, e.g., query
languages, keyword search, query-by-example, faceted
search, visual query, natural language questions, and
conversational QA. It would be interesting to holisti-
cally compare them, understand their user-friendliness,
and categorize what is applicable in which domains.

o Suitability of KG embedding models. A number of
KG embedding models exist, such as translation-based
models (TransE, TransD, TransH) and semantic match-
ing models (RESCAL, DistMult, ConvE). Different mod-
els preserve various types of relation properties, e.g.,
symmetry, antisymmetry, inversion, composition, com-
plex mapping properties, etc. [140]. One can analyze
which properties are important for what queries, lead-
ing to a realization of which KG embedding models are
suitable for different KGs and queries.
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o Explainability, interoperability, and multi-lingual
KG querying. There is an increasing focus on inter-
pretability of deep learning methods over graph-structured

data.

In this context, explainability in knowledge graph

embeddings is also important, for instance, what is be-
ing learned in knowledge graph embedding and KG-QA

with explanatory evidences.

Interoperability between

KGs and supporting multi-lingual KGs [106] and queries
are other interesting future directions.
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