
PROGRAM PORTABILITY, DATA MANIPULATION LANGUAGES,

AND DATA DESCRIPTION LANGUAGES

J.E. Rodr iguez

This note considers the relationship between program portability and the
facilities available in data manipulation and data description languages.

We say that a program in a procedural language is portable if its proce-
dural statements remain invariant under changes of environment. Examples of
change of environment are a different set of hardware, a different operating
system, and different storage structure for the data On which the program op-
erates.

The degree of portability of a program is a measure of the type and magni-
tude of environmental changes under which the program remains operative.
Ideally, a program should be portable for all environment changes. However,
present technological limitations preclude this ideal situation for all but
the simplest programs.

We propose that there exists a relationship between the time at which cer-
tain characteristics of a program are bound and the degree of portability
achievable for that program. Specifically, a higher degree of portability is
achieved by binding these characteristics as close as possible to the run time
of the program. With the current hardware/software technology, greatest por-
tability is achieved when the binding takes place at compile-load time. Thus,
we are led to consider characteristics of data description and data manipula-
tion languages that permit the maximum postponement of binding of design and
implementation details.

The following viewof the relationship between the three components of a
program (namely, algorithm, data, and data structure) yields an operationally
effective view of portability. An algorithm defines a process over an ab-
stract set of data. By virtue of that process, the algorithm induces certain
abstract data structure on that set of data. The specialization of an algo-
rithm to an actual data base is accomplished by a set of declarations (and
ancillary mechanisms) which map the abstract data and data structure required
by the algorithm into an isomorphic image realized in the data and structure
of the data base. Such an isomorphism preserves the integrity of a given al-
gorithm with the data upon which that algorithm operates. If several differ-
ent sets of declarations yield such isomorphisms with different data bases,
the algorithm, and hence the process, is highly portable.

A simple example will serve to illustrate the concept. Consider the prob-
lem of taking two partially ordered sets of data objects and producing a third
set consisting of all the members of the first set followed by all the members
of the second set. An algorithm to solve this problem is to scan the first
set copying each data object into the third set, then do the same for the sec-
ond set. In order to perform the scanning process, certain structure is re-
quired, namely, a nezt relation between two consecutive members of a set.

Figure 1 shows examples of three environments under which the previous al-
gorithm could be called to operate. In this case, the environments differ in

f d t • Journa l o f ACM SICFIDET • 11

Rodriguez

setz~

Ca)

F-~
set 3

1

2

3

4

8

b

c

I , -I I
set 1

. ~ . J I

-i al
set 2

~ - - i ii
set 3

s e t i

I I
s e t 2

G -Icl

"13] N4[-] a I ~c

(b)
=[~] =i a i -~3 i =i b I .=ic i = D

2

s e t 3 4 I

bl
1

?1
(c)

FIG. I . Three Implementations of the Same Data Structure:
(a) Incrementing a Pointer; (b) Extract ing a
Direct Pointer; (c) Discr iminat ion Procedure for
Subset Ext ract ion.

12 • volume 1 • number 2 • december 1969

Program P o r t a b i l i t y

the storage Structure of the various sets involved. The portability criterion
requires the expression of the algorithm to remain unchanged for each of these
environments.

By writing the algorithm in terms of three next relations, one for each set
involved, it is possible to use the same program in each of the three environ-
ments.

In the case of Fig. la, all next relations are implemented essentially by
incrementing a pointer. In Fig. ib, the implementation calls for extracting a
direct pointer. In the case of Fig. ic, the next relations for set 1 and set 2
are somewhat more elaborate since it is required to extract a subset through
some discrimination procedure. The example also illustrates how the degree of
portability suffers when the implementation of these relations is bound too
early. For example, if it is assumed and imbedded in the program that all the
storage occupied by a set is contiguous, as in Fig. la, then the program will
have to be modified for the other environments shown.

As the example illustrates, there are two aspects of the structural rela-
tions: the abstract ideal and its implementation. The ideal or conceptual as-
pect remains invariant for a given algorithm while the implementation is a
function of the environment. Furthermore, the existence of these two aspects
is not limited to structural relations, but it also applies to nonstructural
properties of the data objects themselves.

The functions of data manipulation and data definition languages can be de-
fined on the basis of these two aspects of structural relations and data ob-
ject properties.

The function of a data manipulation language should be to provide an ex-
pressive vehicle for the representation of algorithms in terms of representa-
tion-independent relation and data object properties.

The function of a data description language should be to bind ~he represen-
tation and access characteristics of relations and data object properties to
some particular implementation. The binding process can be dissected in two
steps: First, a mechanization in terms of a referent type is chosen, e.g., a
relation may be mechanized as a pointer, macro, procedure, etc. Second, the
chosen mechanization is implemented through appropriate encoding. The key to
achieving complete freedom in the choice of referent type is the existence of
a uniform referent notation [I] in the data manipulation language. This abil-
ity to choose any referent type significantly contributes to the degree of por-
tability of the program for the algorithm remains unchanged when various imple-
mentations are specified using the data description language.

REFERENCES

i. Ross, D.T., "Uniform Referents: An Essential Property for a Software
Engineering Lanugage." Paper presented at the 3rd International
Symposium on Computer and Information Sciences (COINS-69), Miami Beach,
Florida, 18--20 December 1969.

f t d • Journal of ACM SICFIDET • 13

