COMMENTS ON THE DEBATE:

DATA~STRUCTURE-SET VERSUS RELATIONAL

In the belief that it might be worthwhile for someone to
attempt a summary of the "Great Debate," | have tried to set
down my own observations and will pass them on to you for
whatever they may be worth,

suppose we consider that there will be three supported
interfaces to future data base systems, and describe these
suggestively as an End User Interface, an Application
Programmer Interface, and a Systems Programmer Interface.
Table 1 shows how these might very roughly be characterized.
(Note: By systems programmer | am referring to the data base
management system and not to the operating system.) There
seems tp be little argument that the End User Interface
should have a basically relational view, or that some form
of network view will be required for the Systems Programmer
Interface. This is because the concept of independence from
logical data structure more or less implies the relational
view for the higher level, and the requirement to eliminate
redundancy from the stored data more or less implies a
network view for the lower level. | gather, then that the
central thrust of the debate 1is over what form the
Application Programmer Interface should take. This does
seem to be a substantive issue, and not merely a "religious"
argument.

Dr. Codd's position seems to be that the application
programmer should be able to request data in relational
terms and have it supplied by the data management facillity
into his work area, where he may then operate upon it in
whatever fashion he wishes; or that he be able to call upon
the data management facility to take data from his work area
described in relational terms and store it into the data
base. To the extent that the data base contains 1linkages
and Indices required to reduce redundancy and improve
efficiency, it will be the responsibility of the data
management facility to manage these, and they should be
essentially invisible to the application programmer. In
this way the viewpoint of the application programmer and the
end user will be essentially the same, and communication
between them will be easy. The task of the application
programmer will be reduced and he will make fewer mistakes
because he will not have to be concerned with how he
acquires the data he wants to manipulate, but only with its
specification,

49

Mr. Bachman's position seems to be that the application
programmer should be given the flexibility to chart his own
course through the data, and that the system should not be
doing a 1lot of things "below the interface" that he might
not understand, By being aware of what the actual data
structures are, the application programmer can thereby take
advantage of them to write much more efficient programs. In
this way, the viewpoint of the application programmer and
the systems programmer will be similar and communication
between them wl1l be easy. The overhead of the data
management facility will be reduced because it is only doing
relatively simple things, and this may be an important
consideration for routine tasks like payroll, and crucial
when dealing with very large data bases.

These remarks represent only my own understanding of the
debate, of course, and 1 would we lcome further
clarification.

tf 1 may make one further observation, a fourth type of
interface was mentioned and probably deserves some
discussion. This 1Is the interface to the Parametric User,
j.e., the user who simply initlates a pre-determined
function (possibly supplying one or more parameters to it).
These parameterized functions can be pre-written in a host
manipulative 1language, or can be pre-""canned" strings of
statements in an end user language. There may be a question
as to what extent such a parametric user must understand the
data structures with which he is working (or to what extent
the author of such a function must understand them), but |
don't think this bears very directly on the debate.

! think the attached figure may provide some perspective.
If we consider the end user interfacing to a normalization
procedure which produces data requests in a normalized
relational form, and consider these as being accepted by a
data request evaluator which interfaces to the network
language of the data base management system, then the
combination of this data request evaluator and the data base
management system may be termed a "data management
facility." The viewpoint of the data base management system
is a network view, and the viewpoint of the data management
facility is a relational view. In these terms, the debate
essentially revolves around the question of whether to place
the Application Programmer Interface on the network side or
the relational side of this data request evaluator.

Sincerely,
(N
Saa¥

ohn Clyme

30 May 1974

50

JABLE 1

End ‘User Interface

higher level

less procedural/'"what" not "how"

data independent/independence of logical structure
less flexible

self-contained language

relational viewpoint

Application Programmer l!pterface

intermediate level

more procedural

data independent/independence of physical structure
more flexible

mi xed language

? viewpoint

Systems Programmer Interface

Tower level
procedural

data dependent
highly flexible
host language based
network viewpoint

51

oz T Nz

Wy of

swad _ g Ss3>0 3y QNW..\.\WHQ
) bivg : '
a2 brrs LYwWyoy Y b.&kbb
, [roizws]
MOL(DJT\.M \ |\M\UWQ.W\
L(r\.}.un\
a3 Itvtwol\u\:\
Pvands - £ s3NO3Y, L lﬁ
ASINOTY Ssa>03y So7tred
- rivag Norap2T | PAissp)
ae32z/ _ -7 ¢S\V0\,\ ~3Lvx
~TYWYN —
D0y
. YQAG :

25¢g vieg ANeQy
~o L t:\v.nh\)n\. - U3y

52

