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Abs t rac t .  Deadlock detection is usually considered to be expensive, and timeouts or 
deadlock prevention techniques are usually resorted to as a result, which many times 
causes unnecessary transaction restarts. In this paper, we show that under certain reason- 
able assumptions, deadlocks can be detected very cheaply. 

1. Introduction 

Deadlocks have been a topic of  ac t i ve  In terest  during the past severa l  years 

(see [ g ]  for  an annota ted bibl iography). They are typ ica l l y  character ized in terms of a 

wa i t s - fo r  graph [6 ,  7], a d i rected graph tha t  represents  which t ransact ions are wai t ing 

for which o ther  t ransact ions.  In th is  paper, we explore some of the specia l  propert ies of 

the wa i t s - fo r -g raph  in the  con tex t  o f  database systems, and present  ve ry  e f f i c ien t  

l ine~r deadlock detect ion algorithms. 

It seems to us tha t  whenever  people ta lk  about deadlock detect ion,  i t  is dismissed 

as being an expens ive  operation. Recently, whi le eva luat ing a l ternat ive concurrency 

control and recovery  techniques [1 ] ,  we needed a handle on the  cost  o f  doing deadlock 

detect ion.  With ve ry  l i t t le  ef for t ,  we developed an inexpens ive  algorithm. This le f t  us 

wondering whe the r  we had jus t  rediscovered what  everybody  al ready knew or whether  

no one had ever  real ly looked at the problem. VVlth some t repidat ion,  we f inal ly  decided 

tha t  SIGMOD Record would be a good place to present  our ideas. We hope tha t  people 

wishing to comment on or re fu te  our resul ts  will use the SIGMOD Record as forum for their  

comments. 

The organizat ion of the  paper is as fol lows. In Sect ion 2, we descr ibe our assump- 

t ions regarding the  locking protocol used for concurrency control. In part icular, we 

assume all locks to  be exc lus ive.  We out l ine some important propert ies of  a wa i t s - fo r -  

graph in Sect ion 3. Our continuous deadlock detect ion algorithm is presented in Sect ion 

4. The theore t ica l  basis for  the algorithm is presented in Appendix  A. In Sect ion 5, we 

re lax our assumption about the locks being exc lus ive  to  al low shared read- locks and 

present  our modified deadlock detect ion algorithm. The proof of  cor rec tness of  the modi- 

f ied algorithm is given in Appendix B. In Section 6, we ex tend  our algorithm to perform 
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per/ocl/c deadlock detec t ion  instead of  deadlock detect ion every  time a t ransact ion 

blocks. In Sect ion 7, we present  our conclusions. 

2. Assumptions 

Deadlocks arise in database systems in the  c o n t e x t  o f  concurrency control algo- 

rithms based on locking [4 ] .  In locking, access to database ob jects  is mediated by a lock 

manager, and a t ransact ion must se t  a lock on an ob jec t  tha t  i t  wishes to access before 

being allowed to access the  object .  In th is paper, we assume such a locking protocol is 

employed, and we make the fol lowing assumptions about th is protocol: 

1. The locking protocol is the  str ict  two-phase protocol, tha t  is, a t ransact ion holds all 

i ts locks ti l l  i ts completion 1. 

2. A t ransact ion requests  one lock at  a t ime and is blocked if a lock cannot be granted. 

3. All locks are exc lus ive.  

3. W a i t s - f o r  Graph in Database Systems 

Deadlocks have been expressed in terms of  wa i t s - fo r  graphs. I t  has been 

shown [6,  7 ]  t ha t  there exists a deadlock i f  and only i f  there is a cycle in the waits- for 

graph. A wa i t s - fo r  graph G Is a d i rected graph whose ver t i ces  represent  t ransact ions 

and an edge (Ti,T j )  E G i f  the  t ransact ion T i is wai t ing for a lock owned by Tj. We will say 

tha t  T i is *wai t ing on Tj i f  there  is a path from T i to  Tj in the  wa i ts - fo r  graph. 

Management  o f  t he  W a i t s - f o r  Graph 

The wa i t s - fo r  graph is maintained by the  lock manager. For each locked object ,  the 

lock manager keeps the t ransact ion  number of  the  owner of  the lock and a queue of the 

t ransact ions tha t  are wai t ing for the  ob jec t  to become free. We will assume that  the 

queue discipl ine is ' f i rs t  in f i rs t  out  (FIFO) '2. Before allowing a t ransact ion T i to wai t  for  a 

1 Gray [ 4 ]  has shown tha t  to  avoid a cascade  of  t ransact ion  abor ts ,  a t ransact ion must hold all the locks 
unti l It e x e c u t e s  the  commit act ion and then  re lease them toge ther .  

2O the r  queue dlsclpline.s can be Implemented wi th s t ra ight  forward modi f icat ions to  the algori thm p r e s e n t -  
ed In this paper .  
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transaction Tj 3, the lock manager checks that  the addition of the edge (TI,T J) to the 

wai ts- for  graph will not result in a cycle in the graph. The edge (T|,Tj) is added to the 

graph and T I is blocked, only if this tes t  succeeds. When a lock is released and a blocked 

transaction is act ivated, or when a transaction completes, the wa i ts - fo r  graph is 

appropriately modified. 

Propert ies of  a w a i t s - f o r  graph 

1. A cycle- f ree wa i ts - fo r  graph is a forest  of trees (Theorem 2 in Appendix A). 

2. If the transact ion T i waits for T j, then deadlock can occur if and only if T i is an 

ancestor of Tj, that  is, Tj is *wait ing for T i. (Theorem 4 in Appendix A). 

3. Only the transactions corresponding to the roots in a cycle- f ree wa i ts - fo r  graph are 

act ive. All descendants of each of the roots are blocked *wait ing for the root (Theorem ;3 

in Appendix A). Thus, a cycle is created only when the transaction corresponding to a 

root wai ts for one of i ts descendants. 

4. Any connected subgraph of a wai ts- for  graph can have at most one cycle (Theorem 

5 in Appendix A). 

4.  Continuous Deadlock Detect ion Algorithm 

The basic idea of the algorithm is that  whenever a transaction T i requests a lock 

owned by Tj, tes t  if Tj is *wait ing for T I. This tes t  is performed by taking a directed walk 

start ing from Tj to the root of the tree. A deadlock occurs, only i f  the root corresponds to 

T i • 

Data Structures 

Assume that  each transaction is assigned a unique transaction number. Define the 

following data structure: 

3Tj Is the transaction Immediately preceding T I In the FIFO queue. 
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Tran : Array[O. .N-1]  of 
Wai t ing- fo r  : t ransact ion#;  
SomeOne-wai t ing : boolean i. 

N is a prime number t ha t  is used to  map a t ransact ion number (by tak ing rood) to  an ar ray 

index 4. If the  t ransac t ion  t i is b locked for a lock held by  t j, then Tran [ t i ] .Wa i t ing- fo r  = 

t j .  Tran[ t i ] .SomeOne-wai t ing  is t rue only if at  least  one t ransact ion  is wa i t ing  for  t i to  

complete. 

Deadlock Management Module 

Chk-cyc le ( t i , t  j : t ransac t ion#)  ! - "  t i reques ts  a lock held by t j  

i f (Tran[ t i ] .SomeOne-wai t ing  is fa lse)  then ! - -  deadlock not possib le (Theorem 4)  

Add-edge( t i , t j ) ;  

return(o.k.)  I 

e lse ! - -  t ake  a d i rec ted  wa lk  from t j  

ances to r  := Tran[ t j ] .Wai t ing- fo r ;  

! 

I 

loop 

i f  ( ances to r  = t i) then - -  t j  *wai t ing for  t i 

re tu rn (dead lock)  

e lse if ( ances to r  = Null) then ~ - -  t j  not a descendan t  o f  t i 

Add-edge( t i , t j ) ;  

re turn(o .k . ) l ;  

ances to r  := Tran[ancestor~].Wait ing-for;  

J - -  end loop 

4Collisions may be handled using standard techniques [8]. 
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Act ivate(t  i : transaction//) 

Tran[t i ] .Wait ing-for := Null; 

Terminate(t i : transaction//) ! 

Tran[ti].SomeOne-waiting := false; 

Add-edge(ti , t  j : transaction//) ! 

Tran[t i ] .Wait ing-for := t j; 

Tran[tj].SomeOne-waiting := true; 

Initialize ! 

for i:=0 to N-1 do I 

Tran[i].Waiting-for := Null; 

Tran[i].SomeOne-waiting := false J; 

! 

Observations 

Note that  the loop in the function, Chk-cycle, always terminates because of 

Theorem 6 in Appendix A. The loop is executed as many times as the path length, PL, 

from t j  to the root of the tree 5. In the worst  case, PL = number of blocked transactions 

in the connected subgraph of the wai ts- for  graph that contains the ver tex  at which the 

function Chk-cycle begins the search. Gray et al. [ 3 ]  have observed that  the probabil- 

Ity of a transaction deadlocked in a cycle of length more than two is very rare and all 

~:~e tree that contains the ver tex corresponding to tj. 
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deadlock cyc les  are essent ia l l y  of  length two. Hence, in pract ice,  PL = 2, and the 

deadlock de tec t ion  wil l be ve ry  inexpensive.  

An opt imizat ion has been bui l t  into the algorithm by keeping t rack  for  each t ransac-  

tion whether  any t ransac t ion  is wai t ing for it. Theorem 7 in Appendix A provides the 

basis for maintaining th is  information. The field, SomeOne-waiting, will avoid the  execu -  

tion of  the loop in all the  cases  where there is no t ransact ion wai t ing for t i. Thus, the  

deadlock de tec t ion  will be st i l l  more ef f ic ient .  

The space  complex i ty  of  the  algorithm is O(N). 

5.  Shared  R e a d  Locks  - An Embel l ishment 

The deadlock detec t ion  scheme presented in the previous sect ion is based on the 

assumption t h a t  all locks are exc lus ive .  However, many real systems allow read- locks 

to be shared and only wr i te - locks  are required to be exc lus ive.  In such an environment, 

the number of  outgoing edges from a ve r tex  in the wa i ts - fo r  graph is not bounded by 

one (Lemma 1 in Appendix  A) and the  deadlock detect ion scheme descr ibed in the prev i -  

ous sect ion is not  d i rec t ly  applicable. 

Modif ied Dead lock  D e t e c t i o n  S c h e m e  

We wil l  p resent  a modif ication in the  way  the wa i ts - fo r  graph is managed that  will 

guarantee t ha t  there  is at  most one outgoing edge from each of t he  ve r t i ces  of the 

waRs-for  graph. With th is  modif ication, the deadlock detect ion scheme presented in the 

previous sec t ion  can be used. 

When a wr i te r  T i w ishes  to  wai t  on a read- lock and there are more than one 

readers, the  lock manager se lec ts  one of  the current  readers 6, T j, ensures tha t  the 

addition of the  edge Ti->T j would not create a cycle, and adds Ti->T j to  the  wa i ts - fo r  

graph, Later, when Tj commits, the  lock manager checks i f  there are st i l l  readers. If not, 

6A good heur is t i c  to  m~lmlz.e the  addi t iona l  overhead might be to p ick the  reade r  that  s ta r ted  reading 
last,  based on the  assumpt ion tha t  It might be the one to  more l ikely f inish reading last.  
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T i is granted the lock and is allowed to proceed. If yes, however, Ti->T j is changed to 

Ti->T k for some ongoing reader Tk, i f  i t  does not Introduce a cycle. 

This is analogous to what  might happen in a " typ ica l "  system in the following si tua- 

tion: T 1 gets a read-lock on X, T 2 requests a wr i te- lock on X and is blocked (T2->T 1 ), 

and T 3 requests a read-lock on X. If the system allows new readers when a writer is 

wait ing (a policy decision that  each system must make, based on a fairness versus 

throughput t radeoff) ,  i t  would probably not add T2->T 3. Rather, i t  would probably let T 2 

wake up when T 1 completes, re-blocking T 1 if T 3 is still reading at that  time. 

Note that  this scheme still allows deadlocks to be detected in linear time, although 

not always right as they arise. In the above example, suppose that  T 3 ends up wait ing 

on T 2. Deadlock wonlt  be detected until T 1 completes, at  which time the edge T2->T 3 

is added, and the cycle is found. 

The proof of correctness is presented in Appendix B. 

6. Periodic Deadlock Detection 

In this section, we present an outline of the extension to the continuous deadlock 

detection scheme that  enables periodic deadlock detect ion in linear time. With periodic 

detection, instead of checking for a cycle before adding an edge to the wai ts- for  graph, 

edges are added to the graph without any tes t  and the graph is periodically examined 

for cycles. 

Define a function Detect -cyc le(v)  analogous to the Chk-cycle function defined 

previously tha t  causes a directed walk in the wa i ts - fo r  graph start ing from the ve r tex  

v. The walk will either terminate at a root or will again reach v, in which case, a cycle 

has been detected.  Detect -cyc le  marks every v e r t e x  tha t  i t  touches in the process of 

searching for a cycle as visited. 

We will now present the periodic deadlock detect ion algorithm. 
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Per iod ic-detect ion ! 

for  index  := 0 to  N-1 do Tran[index~].Visited := fa lse;  - -  init ial ize 

index  := O; 

whi le ( i ndex  < N) I 

De tec t - cyc le ( i ndex ) ;  

whi le ((Tran[index~].Visited is True) And ( index < N)) index := index +1; 

The algorithm simply runs the  funct ion De tec t -cyc le  on the f i rs t  ve r tex ,  advances to 

the  n e x t  unvis i ted ve r tex ,  runs De tec t - cyc le  there, etc. In other  words, i t  runs our l inear 

deadlock de tec to r  at  every  connected subgraph of the wa i t s - fo r  graph. The time com- 

p lex i t y  of the  algorithm is O(N), tha t  is, i t  is l inear in the total  number of  blocked t ransac-  

t ions. 

7, Conclusions 

In th is paper, we have shown tha t  deadlock handling does not have to be expens ive  

In the c o n t e x t  o f  da tabase systems. Given certa in reasonable assumptions about the 

nature of the  locking protocol employed, deadlock detect ion can be accomplished very  

inexpens ive ly ,  and we  have presented an implementation of such a scheme. This scheme 

Is d i rect ly  appl icable to  uniprocessor database systems, and i t  may easi ly be ex tended  for 

use in d is t r ibuted database systems where a centra l  deadlock detect ion mechanism is 

employed [10~]. 
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APPENDIX A 

Definitions 

We will f i r s t  introduce some graph- theore t ic  def in i t ions adapted from [2,  5] .  

A directed graph (or a digraph for shor t )  G cons is ts  of a set  of  vertices V = 

t v  1,v2,... l, a se t  of  edges E = l e l , e  2 .... !, and a mapping tha t  maps every  edge onto 

some ordered pair of ve r t i ces  (v i ,v j ) .  A v e r t e x  is represented by a point and an 

edge by a line segment be tween  v i and v j  w i th  an arrow di rected from v i to vj .  The 

v e r t e x  v i is called the initial vertex and v j  the terminal vertex of the edge. 

The number of edges incident  out  of  a v e r t e x  v i is cal~ed the out-degree of v i 

and is wr i t ten  d° (v i  ). The number of  edges incident into v i is called the in-degree 

of v i and is wr i t t en  di(v i ) .  A sink is a v e r t e x  v i w i th  d ° ( v  i) = O. 

A (directed) walk in a digraph is an al ternat ing sequence of  ve r t i ces  and 

edges, ~Vo, e I ,v I ,...en,Vnl in which each edge e i is (vi_ 1 ,vi). A closed walk has v n = 

v O. A path is a walk in which all ve r t i ces  are d is t inct ;  a cycle is a nontr iv ial  c losed 

walk wi th all ve r t i ces  d is t inc t  ( e x c e p t  the f i r s t  and the  last).  An edge having the 

same v e r t e x  as both i ts init ial and terminal ve r t i ces  is called a self-loop. I f  there is 

a path from v i to  vj ,  then v j  is said to  be reachable from v i. The length of  a path is 

the  number o f  ve r t i ces  invo lved in the  path. 

Each walk is d i rected from the f i r s t  v e r t e x  v 0 to  the last  v e r t e x  v n. We need 

a concept  t ha t  does not have th is  direct ional property.  A semiwalk is again an 

al ternat ing sequence lVo,e l ,V l , . . .en,Vnl  of  ve r t i ces  and edges but  each edge e i 

may be e i ther  (V i . l ,V  i) or ( v i , v i_ l ) .  A semipath and a semicyc/e is analogously 

defined. 

A digraph is said to  be connected i f  there is at  least one semipath be tween 

every  pair of  i t s  ver t i ces ;  o therwise,  i t  is disconnected. I t  is easy  to  see tha t  a 

d isconnected graph cons is ts  o f  two  or more connected subgraphs. Each of  these  
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connected subgraphs is cal led a component. 

An in - t ree  is a digraph G such tha t  1) G contains nei ther a cyc le  nor a semicy-  

cle, 2) G has prec ise ly  one sink. This sink is called the root of the in- t ree.  

Cha rac te r i s t i c s  o f  a w a i t s - f o r  graph 7 

THEOREM 1. A wa i t s - fo r  graph does not have any self- loop. 

Proof. A t ransact ion  does not wai t  for a lock tha t  i t  owns Itself .  

LEMMA 1. Assuming all locks to be exclusive, for  all vert ices v i in a wa i t s - fo r  graph, 

cP(v I) 1. 

Proof. A t ransact ion  canno t  wai t  for more than one t ransact ion at a time. 

LEMMA 2. G is  a d ig raph w i th  n vert ices. I f  there is a unique semipath between 

every two vert ices o f  G, then the number of  edges in G = n- 1. 

Proof. Theorem 4.1 in [ 5 ] .  

LEMMA 3. In a d igraph,  the sum of  the out-degrees of  all vert ices is equal to the 

number of  edges in the d igraph.  

Proof. Each edge cont r ibu tes  e x a c t l y  one out-degree. 

LEMMA 4. Any component o f  a wa i ts - fo r  graph cannot have more than one sink. 

Proof. Suppose a component G has two  sinks v 0 and v n. Since G is connected,  we  

can find a semipath be tween v 0 and v n. Ex t rac t  the subgraph G' tha t  has only t he  

ver t ices  and the  edges comprising th is  semipath. Let there  be p ve r t i ces  in G'. By 

Lemma 2, number of edges in G' = p-1 and by Lemma 3, the  sum of ou t -degrees  of  

all ve r t i ces  in G' = p-1 .  However, s ince d° (v  O) = d ° (v  n) = O, there must be some 

v e r t e x  v in G', and hence in G, tha t  has d° (v )  > 1. But, th is cont rad ic ts  Lemma 1. 

LEMMA 5. An acyc l ic  d igraph has at least one vertex of  out -degree zero. 

7We will assume through out that the graph Is non-empty 
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Proof. Theorem 16.2 in [6 ] .  

LEMMA 6. A connected d igraph G is an in - t ree i f  and only i f  exact ly one vertex of  G 

has out-degree 0 and all others have out-degree 1. 

Proof. Theorem 115.4' in [5 ] .  

THEOREM 2. A cyc le- f ree wa i ts - fo r  graph is a forest  o f  In-trees. 

Proof. Follows from Lemma 1, Lemma 4, Lemma 5 and Lemma 6. 

LEMMA 7. In an in-tree, there is a unique path f rom every vertex to the root. 

Proof. Theorem g.3 in [ 2 ]  

THEOREM 3. The root v of  each o f  the in- t rees in a cyc le - f ree  wa i ts - fo r  graph 

corresponds to an active transaction fo r  which all other transactions in the tree are 

*wai t ing.  

Proof. If v corresponds to a wait ing transaction, then d° (v )  = 1, a contradiction. 

The second part of the theorem follows from Lemma 7. 

LEMMA 8. Blocking o f  a transaction that has no other transaction wai t ing  fo r  i t  can- 

not create a cycle in the wa i t s - fo r  graph. 

Proof. The ve r t ex  corresponding to a transact ion that  has no transaction wait ing 

for it has no incoming edge. 

LEMMA g. Wait ing fo r  a lock owned by an active transact ion cannot result  in a cycle 

in the wa i ts - fo r  graph. 

Proof. The ve r tex  corresponding to an act ive transaction has no outgoing edge. 

THEOREM 4. Wait by a transaction T i fo r  a lock held by Tj w i l l  result in a cycle in the 

wai ts - for  graph i f  and only i f  Tj is *wa i t i ng  fo r  T i. 

Proof. First, if Tj is *wait ing for T i, then there is a path from Tj to Ti, and the addi- 

tion of the edge (Ti,T j) will create a cycle in the wai ts - for  graph. 
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Suppose now that  Tj is not *wait ing for  T i and the addition of the edge (Ti,T j) 

creates a cycle in the  wa i t s - fo r  graph. We will show a contradiction. If Tj is 

active, wait ing for l ' j  cannot create a cycle by Lemma 9. If Tj is *wait ing for a t ran- 

saction T (~  Ti), let  us t raverse the cycle created by the addition of  the edge 

(Ti,T j )  start ing from T i. Since, there is a unique path between Tj and T (Lemma 1), 

the cycle should have a path between T and T i. But that  would imply that  Tj is 

*wait ing for T i, 

LEMMA 10. A vertex can be on at most one d is t inc t  cycle in a wa i ts - fo r  graph. 

Proof. Let a ve r tex  v be on more than one dist inct  cycles. Starting from v and 

moving along the cycles, a ve r tex  v' (v' may be v) will be reached such that  there 

are two out-going edges from v'. But, then d°(v  ') > 1, and that  contradicts 

Lemma 1. 

THEOREM 5. Any component of  a wa i t s - fo r  graph can have at most one cycle. 

Proof. The t ransact ion T corresponding to the root of a cyc le- f ree component of a 

wai ts - for  graph is the  only act ive t ransact ion amongst the t ransact ions involved in 

the component. Hence, by ,Theorem 4, only a wai t  by T can cause a cycle in the 

component, and by Lemma 1 O, T can cause at most one cycle. 

THEOREM 6. A d i rec ted  walk f rom any vertex in a component of  a wa i ts - fo r  graph 

would result  e i ther  in detect ion o f  the cyc/e or terminat ion at the root. 

Proof. Follows from Lemma 7 and Theorem 5. 

THEOREM 7. The in..degree of  a vertex in the wa i t s - fo r  graph of  a database system 

increases monotonical ly unt i l  the vertex is removed f rom the graph wi th  the comple- 

t ion of  the cor responding transaction. 

Proof. A t ransact ion holds all the locks until i ts completion [4 ] .  
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APPENDIX B 

Model 

We postulate a wa i ts - fo r  graph, as before, whose ver t ices are t ransact ions 

and edges (called expl ici t  edges from here on) of the form Ti->T j indicate that  T i is 

expl ici t ly wait ing on Tj. For proof purposes, there is also a collection of impl ic i t  

edges of the form Ti->T k, indicating that  T k is one of the other readers of some 

object  X that  T i wishes to write. These implicit edges would be present  in a wa i ts -  

for graph, if we were not trying to bound the out-degree of ver t ices by one. Let the 

graph with jus t  expl ici t  edges be called the E-graph, and the graph wi th both expl i-  

ci t  and implicit edges be called the El-graph. 

Proof of  Cor rec tness 

Our algorithm will be deemed correct  if it can be shown that  no cycle (implicit 

or expl ici t)  in the El-graph can persist  forever. 

LEMMA 1. I f  a vertex in the El-graph has an outgoing impl ic i t  edge, there must be at 

least one outgoing expl ic i t  edge from it. 

Proof. A transact ion T i can implicitly wa i t  for a t ransact ion T k if T i requests a 

wr i te- lock for some ob jec t  X tha t  has been read- locked by T k and at least one 

other t ransact ion Tj ( j  ~ k), and T i chooses Tj to  expl ic i t ly  wa i t  for. The other 

scenario where T i can implicitly wa i t  for T k is when T i is already expl ic i t ly  wait ing 

for some transact ion Tj that  holds a read-lock on X, and T k arrives later on and is 

also granted a read-lock on X. In both si tuat ions, the implicit edge Ti ->T k cannot be 

present wi thout the expl ic i t  edge Ti->T j being present as well. 

Now, when transact ion Tj commits, the expl ici t  edge Ti->T j is removed and an 

implicit edge Ti->T m is made explicit. If k = m, the implicit edge Ti->T k is now expl i-  

cit; otherwise, the implicit edge Ti->T k remains implicit, but sti l l  has a related 
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outgoing exp l ic i t  edge. 

LEMMA 2. Sinks in the E-graph are also sinks in the El-graph. 

Proof. Suppose there  is a v e r t e x  v tha t  is a sink in the  E-graph but not In the El- 

graph. The v e r t e x  v cannot  have an outgoing exp l i c i t  edge in the  El-graph 

because, by  def ini t ion of  the E-graph, the same edge would be outgoing from v In 

the E-graph and v is a sink in the E-graph. If v has an outgoing implicit edge, then 

by Lemma 1, there  must be an outgoing exp l i c i t  edge from v as well, and that  is not 

possible. Hence, v is a sink in the  El-graph as well. 

LEMMA 3. I f  our deadlock detection aJgorithm is applied to the E-graph, then, at any 

time, the E-graph wi l l  have at/east one sink. 

Proof. By Theorem ;2 in Appendix A, a cyc le - f r ee  E-graph is a forest  of in- t rees and 

our deadlock detect ion algorithm never  al lows any cyc le  to be formed in the E- 

graph. 

THEOREM 1. I f  our deadlock detection algori thm is applied to the E-graph, we can- 

not reach a state in which no transaction can proceed. 

Proof. Either no t ransact ion is wait ing, or by Lemmas 2 and 3, at any time, there is 

at  least  one sink in the  El-graph tha t  corresponds to a runnable t ransact ion.  

COROLLARY 1. Cycles in the El-graph cannot persist forever. 

Proof. Assume tha t  we quiesce the system, in the sense tha t  no new t ransact ions 

are allowed to enter. By Theorem 1, at any time, there is at  least  one runnable t ran-  

sact ion In a non-empty system. Assuming tha t  t ransact ions are f in i te  in length, all 

t ransact ions wil l  eventua l ly  e i ther commit or abort. Either way, all ver t i ces  are 

eventual ly  removed from the graph, and hence, all cyc les  eventua l ly  go away. 
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