
Deadlock Detection is Cheap

Rakesh Agrawal ~
Michael J. Carey +
David J. DeWitt x

Computer Sciences Department, University of Wisconsin, Madison
+ Computer Sciences Department, University of California, Berkeley

This research was partially supported by the National Science Foundation under
grant MC882-01870, the Department of Energy under contract #DE-ACO2-
81ER10920, the Air Force Office of Scientific Research under grant AFOSR-ZS-
3596, and Naval Electronic Systems Command under contract NESC-NOOO3g-81-
C-0569.

19

Abs t rac t . Deadlock detection is usually considered to be expensive, and timeouts or
deadlock prevention techniques are usually resorted to as a result, which many times
causes unnecessary transaction restarts. In this paper, we show that under certain reason-
able assumptions, deadlocks can be detected very cheaply.

1. Introduction

Deadlocks have been a topic of ac t i ve In terest during the past severa l years

(see [g] for an annota ted bibl iography). They are typ ica l l y character ized in terms of a

wa i t s - fo r graph [6 , 7], a d i rected graph tha t represents which t ransact ions are wai t ing

for which o ther t ransact ions. In th is paper, we explore some of the specia l propert ies of

the wa i t s - fo r -g raph in the con tex t o f database systems, and present ve ry e f f i c ien t

l ine~r deadlock detect ion algorithms.

It seems to us tha t whenever people ta lk about deadlock detect ion, i t is dismissed

as being an expens ive operation. Recently, whi le eva luat ing a l ternat ive concurrency

control and recovery techniques [1] , we needed a handle on the cost o f doing deadlock

detect ion. With ve ry l i t t le ef for t , we developed an inexpens ive algorithm. This le f t us

wondering whe the r we had jus t rediscovered what everybody al ready knew or whether

no one had ever real ly looked at the problem. VVlth some t repidat ion, we f inal ly decided

tha t SIGMOD Record would be a good place to present our ideas. We hope tha t people

wishing to comment on or re fu te our resul ts will use the SIGMOD Record as forum for their

comments.

The organizat ion of the paper is as fol lows. In Sect ion 2, we descr ibe our assump-

t ions regarding the locking protocol used for concurrency control. In part icular, we

assume all locks to be exc lus ive. We out l ine some important propert ies of a wa i t s - fo r -

graph in Sect ion 3. Our continuous deadlock detect ion algorithm is presented in Sect ion

4. The theore t ica l basis for the algorithm is presented in Appendix A. In Sect ion 5, we

re lax our assumption about the locks being exc lus ive to al low shared read- locks and

present our modified deadlock detect ion algorithm. The proof of cor rec tness of the modi-

f ied algorithm is given in Appendix B. In Section 6, we ex tend our algorithm to perform

20

per/ocl/c deadlock detec t ion instead of deadlock detect ion every time a t ransact ion

blocks. In Sect ion 7, we present our conclusions.

2. Assumptions

Deadlocks arise in database systems in the c o n t e x t o f concurrency control algo-

rithms based on locking [4] . In locking, access to database ob jects is mediated by a lock

manager, and a t ransact ion must se t a lock on an ob jec t tha t i t wishes to access before

being allowed to access the object . In th is paper, we assume such a locking protocol is

employed, and we make the fol lowing assumptions about th is protocol:

1. The locking protocol is the str ict two-phase protocol, tha t is, a t ransact ion holds all

i ts locks ti l l i ts completion 1.

2. A t ransact ion requests one lock at a t ime and is blocked if a lock cannot be granted.

3. All locks are exc lus ive.

3. W a i t s - f o r Graph in Database Systems

Deadlocks have been expressed in terms of wa i t s - fo r graphs. I t has been

shown [6, 7] t ha t there exists a deadlock i f and only i f there is a cycle in the waits- for

graph. A wa i t s - fo r graph G Is a d i rected graph whose ver t i ces represent t ransact ions

and an edge (Ti,T j) E G i f the t ransact ion T i is wai t ing for a lock owned by Tj. We will say

tha t T i is *wai t ing on Tj i f there is a path from T i to Tj in the wa i ts - fo r graph.

Management o f t he W a i t s - f o r Graph

The wa i t s - fo r graph is maintained by the lock manager. For each locked object , the

lock manager keeps the t ransact ion number of the owner of the lock and a queue of the

t ransact ions tha t are wai t ing for the ob jec t to become free. We will assume that the

queue discipl ine is ' f i rs t in f i rs t out (FIFO) '2. Before allowing a t ransact ion T i to wai t for a

1 Gray [4] has shown tha t to avoid a cascade of t ransact ion abor ts , a t ransact ion must hold all the locks
unti l It e x e c u t e s the commit act ion and then re lease them toge ther .

2O the r queue dlsclpline.s can be Implemented wi th s t ra ight forward modi f icat ions to the algori thm p r e s e n t -
ed In this paper .

21

transaction Tj 3, the lock manager checks that the addition of the edge (TI,T J) to the

wai ts- for graph will not result in a cycle in the graph. The edge (T|,Tj) is added to the

graph and T I is blocked, only if this tes t succeeds. When a lock is released and a blocked

transaction is act ivated, or when a transaction completes, the wa i ts - fo r graph is

appropriately modified.

Propert ies of a w a i t s - f o r graph

1. A cycle- f ree wa i ts - fo r graph is a forest of trees (Theorem 2 in Appendix A).

2. If the transact ion T i waits for T j, then deadlock can occur if and only if T i is an

ancestor of Tj, that is, Tj is *wait ing for T i. (Theorem 4 in Appendix A).

3. Only the transactions corresponding to the roots in a cycle- f ree wa i ts - fo r graph are

act ive. All descendants of each of the roots are blocked *wait ing for the root (Theorem ;3

in Appendix A). Thus, a cycle is created only when the transaction corresponding to a

root wai ts for one of i ts descendants.

4. Any connected subgraph of a wai ts- for graph can have at most one cycle (Theorem

5 in Appendix A).

4. Continuous Deadlock Detect ion Algorithm

The basic idea of the algorithm is that whenever a transaction T i requests a lock

owned by Tj, tes t if Tj is *wait ing for T I. This tes t is performed by taking a directed walk

start ing from Tj to the root of the tree. A deadlock occurs, only i f the root corresponds to

T i •

Data Structures

Assume that each transaction is assigned a unique transaction number. Define the

following data structure:

3Tj Is the transaction Immediately preceding T I In the FIFO queue.

22

Tran : Array[O. .N-1] of
Wai t ing- fo r : t ransact ion#;
SomeOne-wai t ing : boolean i.

N is a prime number t ha t is used to map a t ransact ion number (by tak ing rood) to an ar ray

index 4. If the t ransac t ion t i is b locked for a lock held by t j, then Tran [t i] .Wa i t ing- fo r =

t j . Tran[t i] .SomeOne-wai t ing is t rue only if at least one t ransact ion is wa i t ing for t i to

complete.

Deadlock Management Module

Chk-cyc le (t i , t j : t ransac t ion#) ! - " t i reques ts a lock held by t j

i f (Tran[t i] .SomeOne-wai t ing is fa lse) then ! - - deadlock not possib le (Theorem 4)

Add-edge(t i , t j) ;

return(o.k.) I

e lse ! - - t ake a d i rec ted wa lk from t j

ances to r := Tran[t j] .Wai t ing- fo r ;

!

I

loop

i f (ances to r = t i) then - - t j *wai t ing for t i

re tu rn (dead lock)

e lse if (ances to r = Null) then ~ - - t j not a descendan t o f t i

Add-edge(t i , t j) ;

re turn(o .k .) l ;

ances to r := Tran[ancestor~].Wait ing-for;

J - - end loop

4Collisions may be handled using standard techniques [8].

23

Act ivate(t i : transaction//)

Tran[t i] .Wait ing-for := Null;

Terminate(t i : transaction//) !

Tran[ti].SomeOne-waiting := false;

Add-edge(ti , t j : transaction//) !

Tran[t i] .Wait ing-for := t j;

Tran[tj].SomeOne-waiting := true;

Initialize !

for i:=0 to N-1 do I

Tran[i].Waiting-for := Null;

Tran[i].SomeOne-waiting := false J;

!

Observations

Note that the loop in the function, Chk-cycle, always terminates because of

Theorem 6 in Appendix A. The loop is executed as many times as the path length, PL,

from t j to the root of the tree 5. In the worst case, PL = number of blocked transactions

in the connected subgraph of the wai ts- for graph that contains the ver tex at which the

function Chk-cycle begins the search. Gray et al. [3] have observed that the probabil-

Ity of a transaction deadlocked in a cycle of length more than two is very rare and all

~:~e tree that contains the ver tex corresponding to tj.

24

deadlock cyc les are essent ia l l y of length two. Hence, in pract ice, PL = 2, and the

deadlock de tec t ion wil l be ve ry inexpensive.

An opt imizat ion has been bui l t into the algorithm by keeping t rack for each t ransac-

tion whether any t ransac t ion is wai t ing for it. Theorem 7 in Appendix A provides the

basis for maintaining th is information. The field, SomeOne-waiting, will avoid the execu -

tion of the loop in all the cases where there is no t ransact ion wai t ing for t i. Thus, the

deadlock de tec t ion will be st i l l more ef f ic ient .

The space complex i ty of the algorithm is O(N).

5. Shared R e a d Locks - An Embel l ishment

The deadlock detec t ion scheme presented in the previous sect ion is based on the

assumption t h a t all locks are exc lus ive . However, many real systems allow read- locks

to be shared and only wr i te - locks are required to be exc lus ive. In such an environment,

the number of outgoing edges from a ve r tex in the wa i ts - fo r graph is not bounded by

one (Lemma 1 in Appendix A) and the deadlock detect ion scheme descr ibed in the prev i -

ous sect ion is not d i rec t ly applicable.

Modif ied Dead lock D e t e c t i o n S c h e m e

We wil l p resent a modif ication in the way the wa i ts - fo r graph is managed that will

guarantee t ha t there is at most one outgoing edge from each of t he ve r t i ces of the

waRs-for graph. With th is modif ication, the deadlock detect ion scheme presented in the

previous sec t ion can be used.

When a wr i te r T i w ishes to wai t on a read- lock and there are more than one

readers, the lock manager se lec ts one of the current readers 6, T j, ensures tha t the

addition of the edge Ti->T j would not create a cycle, and adds Ti->T j to the wa i ts - fo r

graph, Later, when Tj commits, the lock manager checks i f there are st i l l readers. If not,

6A good heur is t i c to m~lmlz.e the addi t iona l overhead might be to p ick the reade r that s ta r ted reading
last, based on the assumpt ion tha t It might be the one to more l ikely f inish reading last.

25

T i is granted the lock and is allowed to proceed. If yes, however, Ti->T j is changed to

Ti->T k for some ongoing reader Tk, i f i t does not Introduce a cycle.

This is analogous to what might happen in a " typ ica l " system in the following si tua-

tion: T 1 gets a read-lock on X, T 2 requests a wr i te- lock on X and is blocked (T2->T 1),

and T 3 requests a read-lock on X. If the system allows new readers when a writer is

wait ing (a policy decision that each system must make, based on a fairness versus

throughput t radeoff) , i t would probably not add T2->T 3. Rather, i t would probably let T 2

wake up when T 1 completes, re-blocking T 1 if T 3 is still reading at that time.

Note that this scheme still allows deadlocks to be detected in linear time, although

not always right as they arise. In the above example, suppose that T 3 ends up wait ing

on T 2. Deadlock wonlt be detected until T 1 completes, at which time the edge T2->T 3

is added, and the cycle is found.

The proof of correctness is presented in Appendix B.

6. Periodic Deadlock Detection

In this section, we present an outline of the extension to the continuous deadlock

detection scheme that enables periodic deadlock detect ion in linear time. With periodic

detection, instead of checking for a cycle before adding an edge to the wai ts- for graph,

edges are added to the graph without any tes t and the graph is periodically examined

for cycles.

Define a function Detect -cyc le(v) analogous to the Chk-cycle function defined

previously tha t causes a directed walk in the wa i ts - fo r graph start ing from the ve r tex

v. The walk will either terminate at a root or will again reach v, in which case, a cycle

has been detected. Detect -cyc le marks every v e r t e x tha t i t touches in the process of

searching for a cycle as visited.

We will now present the periodic deadlock detect ion algorithm.

26

Per iod ic-detect ion !

for index := 0 to N-1 do Tran[index~].Visited := fa lse; - - init ial ize

index := O;

whi le (i ndex < N) I

De tec t - cyc le (i ndex) ;

whi le ((Tran[index~].Visited is True) And (index < N)) index := index +1;

The algorithm simply runs the funct ion De tec t -cyc le on the f i rs t ve r tex , advances to

the n e x t unvis i ted ve r tex , runs De tec t - cyc le there, etc. In other words, i t runs our l inear

deadlock de tec to r at every connected subgraph of the wa i t s - fo r graph. The time com-

p lex i t y of the algorithm is O(N), tha t is, i t is l inear in the total number of blocked t ransac-

t ions.

7, Conclusions

In th is paper, we have shown tha t deadlock handling does not have to be expens ive

In the c o n t e x t o f da tabase systems. Given certa in reasonable assumptions about the

nature of the locking protocol employed, deadlock detect ion can be accomplished very

inexpens ive ly , and we have presented an implementation of such a scheme. This scheme

Is d i rect ly appl icable to uniprocessor database systems, and i t may easi ly be ex tended for

use in d is t r ibuted database systems where a centra l deadlock detect ion mechanism is

employed [10~].

8. Acknowledgements

Dan Ries pointed out tha t an earlier version of the deadlock detect ion scheme

presented here was appl icable only in the environment where all locks were exc lus ive.

Michael Stonebraker helped us muster enough courage to submit th is art icle. Toni Guttman,

Margie Murphy and Clark Thompson provided helpful discussions and comments on var ious

aspects of our ideas.

2?

APPENDIX A

Definitions

We will f i r s t introduce some graph- theore t ic def in i t ions adapted from [2, 5] .

A directed graph (or a digraph for shor t) G cons is ts of a set of vertices V =

t v 1,v2,... l, a se t of edges E = l e l , e 2 !, and a mapping tha t maps every edge onto

some ordered pair of ve r t i ces (v i ,v j) . A v e r t e x is represented by a point and an

edge by a line segment be tween v i and v j w i th an arrow di rected from v i to vj . The

v e r t e x v i is called the initial vertex and v j the terminal vertex of the edge.

The number of edges incident out of a v e r t e x v i is cal~ed the out-degree of v i

and is wr i t ten d° (v i). The number of edges incident into v i is called the in-degree

of v i and is wr i t t en di(v i) . A sink is a v e r t e x v i w i th d ° (v i) = O.

A (directed) walk in a digraph is an al ternat ing sequence of ve r t i ces and

edges, ~Vo, e I ,v I ,...en,Vnl in which each edge e i is (vi_ 1 ,vi). A closed walk has v n =

v O. A path is a walk in which all ve r t i ces are d is t inct ; a cycle is a nontr iv ial c losed

walk wi th all ve r t i ces d is t inc t (e x c e p t the f i r s t and the last). An edge having the

same v e r t e x as both i ts init ial and terminal ve r t i ces is called a self-loop. I f there is

a path from v i to vj , then v j is said to be reachable from v i. The length of a path is

the number o f ve r t i ces invo lved in the path.

Each walk is d i rected from the f i r s t v e r t e x v 0 to the last v e r t e x v n. We need

a concept t ha t does not have th is direct ional property. A semiwalk is again an

al ternat ing sequence lVo,e l ,V l , . . .en,Vnl of ve r t i ces and edges but each edge e i

may be e i ther (V i . l ,V i) or (v i , v i_ l) . A semipath and a semicyc/e is analogously

defined.

A digraph is said to be connected i f there is at least one semipath be tween

every pair of i t s ver t i ces ; o therwise, i t is disconnected. I t is easy to see tha t a

d isconnected graph cons is ts o f two or more connected subgraphs. Each of these

28

connected subgraphs is cal led a component.

An in - t ree is a digraph G such tha t 1) G contains nei ther a cyc le nor a semicy-

cle, 2) G has prec ise ly one sink. This sink is called the root of the in- t ree.

Cha rac te r i s t i c s o f a w a i t s - f o r graph 7

THEOREM 1. A wa i t s - fo r graph does not have any self- loop.

Proof. A t ransact ion does not wai t for a lock tha t i t owns Itself .

LEMMA 1. Assuming all locks to be exclusive, for all vert ices v i in a wa i t s - fo r graph,

cP(v I) 1.

Proof. A t ransact ion canno t wai t for more than one t ransact ion at a time.

LEMMA 2. G is a d ig raph w i th n vert ices. I f there is a unique semipath between

every two vert ices o f G, then the number of edges in G = n- 1.

Proof. Theorem 4.1 in [5] .

LEMMA 3. In a d igraph, the sum of the out-degrees of all vert ices is equal to the

number of edges in the d igraph.

Proof. Each edge cont r ibu tes e x a c t l y one out-degree.

LEMMA 4. Any component o f a wa i ts - fo r graph cannot have more than one sink.

Proof. Suppose a component G has two sinks v 0 and v n. Since G is connected, we

can find a semipath be tween v 0 and v n. Ex t rac t the subgraph G' tha t has only t he

ver t ices and the edges comprising th is semipath. Let there be p ve r t i ces in G'. By

Lemma 2, number of edges in G' = p-1 and by Lemma 3, the sum of ou t -degrees of

all ve r t i ces in G' = p-1 . However, s ince d° (v O) = d ° (v n) = O, there must be some

v e r t e x v in G', and hence in G, tha t has d° (v) > 1. But, th is cont rad ic ts Lemma 1.

LEMMA 5. An acyc l ic d igraph has at least one vertex of out -degree zero.

7We will assume through out that the graph Is non-empty

29

Proof. Theorem 16.2 in [6] .

LEMMA 6. A connected d igraph G is an in - t ree i f and only i f exact ly one vertex of G

has out-degree 0 and all others have out-degree 1.

Proof. Theorem 115.4' in [5] .

THEOREM 2. A cyc le- f ree wa i ts - fo r graph is a forest o f In-trees.

Proof. Follows from Lemma 1, Lemma 4, Lemma 5 and Lemma 6.

LEMMA 7. In an in-tree, there is a unique path f rom every vertex to the root.

Proof. Theorem g.3 in [2]

THEOREM 3. The root v of each o f the in- t rees in a cyc le - f ree wa i ts - fo r graph

corresponds to an active transaction fo r which all other transactions in the tree are

*wai t ing.

Proof. If v corresponds to a wait ing transaction, then d° (v) = 1, a contradiction.

The second part of the theorem follows from Lemma 7.

LEMMA 8. Blocking o f a transaction that has no other transaction wai t ing fo r i t can-

not create a cycle in the wa i t s - fo r graph.

Proof. The ve r t ex corresponding to a transact ion that has no transaction wait ing

for it has no incoming edge.

LEMMA g. Wait ing fo r a lock owned by an active transact ion cannot result in a cycle

in the wa i ts - fo r graph.

Proof. The ve r tex corresponding to an act ive transaction has no outgoing edge.

THEOREM 4. Wait by a transaction T i fo r a lock held by Tj w i l l result in a cycle in the

wai ts - for graph i f and only i f Tj is *wa i t i ng fo r T i.

Proof. First, if Tj is *wait ing for T i, then there is a path from Tj to Ti, and the addi-

tion of the edge (Ti,T j) will create a cycle in the wai ts - for graph.

30

Suppose now that Tj is not *wait ing for T i and the addition of the edge (Ti,T j)

creates a cycle in the wa i t s - fo r graph. We will show a contradiction. If Tj is

active, wait ing for l ' j cannot create a cycle by Lemma 9. If Tj is *wait ing for a t ran-

saction T (~ Ti), let us t raverse the cycle created by the addition of the edge

(Ti,T j) start ing from T i. Since, there is a unique path between Tj and T (Lemma 1),

the cycle should have a path between T and T i. But that would imply that Tj is

*wait ing for T i,

LEMMA 10. A vertex can be on at most one d is t inc t cycle in a wa i ts - fo r graph.

Proof. Let a ve r tex v be on more than one dist inct cycles. Starting from v and

moving along the cycles, a ve r tex v' (v' may be v) will be reached such that there

are two out-going edges from v'. But, then d°(v ') > 1, and that contradicts

Lemma 1.

THEOREM 5. Any component of a wa i t s - fo r graph can have at most one cycle.

Proof. The t ransact ion T corresponding to the root of a cyc le- f ree component of a

wai ts - for graph is the only act ive t ransact ion amongst the t ransact ions involved in

the component. Hence, by ,Theorem 4, only a wai t by T can cause a cycle in the

component, and by Lemma 1 O, T can cause at most one cycle.

THEOREM 6. A d i rec ted walk f rom any vertex in a component of a wa i ts - fo r graph

would result e i ther in detect ion o f the cyc/e or terminat ion at the root.

Proof. Follows from Lemma 7 and Theorem 5.

THEOREM 7. The in..degree of a vertex in the wa i t s - fo r graph of a database system

increases monotonical ly unt i l the vertex is removed f rom the graph wi th the comple-

t ion of the cor responding transaction.

Proof. A t ransact ion holds all the locks until i ts completion [4] .

31

APPENDIX B

Model

We postulate a wa i ts - fo r graph, as before, whose ver t ices are t ransact ions

and edges (called expl ici t edges from here on) of the form Ti->T j indicate that T i is

expl ici t ly wait ing on Tj. For proof purposes, there is also a collection of impl ic i t

edges of the form Ti->T k, indicating that T k is one of the other readers of some

object X that T i wishes to write. These implicit edges would be present in a wa i ts -

for graph, if we were not trying to bound the out-degree of ver t ices by one. Let the

graph with jus t expl ici t edges be called the E-graph, and the graph wi th both expl i-

ci t and implicit edges be called the El-graph.

Proof of Cor rec tness

Our algorithm will be deemed correct if it can be shown that no cycle (implicit

or expl ici t) in the El-graph can persist forever.

LEMMA 1. I f a vertex in the El-graph has an outgoing impl ic i t edge, there must be at

least one outgoing expl ic i t edge from it.

Proof. A transact ion T i can implicitly wa i t for a t ransact ion T k if T i requests a

wr i te- lock for some ob jec t X tha t has been read- locked by T k and at least one

other t ransact ion Tj (j ~ k), and T i chooses Tj to expl ic i t ly wa i t for. The other

scenario where T i can implicitly wa i t for T k is when T i is already expl ic i t ly wait ing

for some transact ion Tj that holds a read-lock on X, and T k arrives later on and is

also granted a read-lock on X. In both si tuat ions, the implicit edge Ti ->T k cannot be

present wi thout the expl ic i t edge Ti->T j being present as well.

Now, when transact ion Tj commits, the expl ici t edge Ti->T j is removed and an

implicit edge Ti->T m is made explicit. If k = m, the implicit edge Ti->T k is now expl i-

cit; otherwise, the implicit edge Ti->T k remains implicit, but sti l l has a related

32

outgoing exp l ic i t edge.

LEMMA 2. Sinks in the E-graph are also sinks in the El-graph.

Proof. Suppose there is a v e r t e x v tha t is a sink in the E-graph but not In the El-

graph. The v e r t e x v cannot have an outgoing exp l i c i t edge in the El-graph

because, by def ini t ion of the E-graph, the same edge would be outgoing from v In

the E-graph and v is a sink in the E-graph. If v has an outgoing implicit edge, then

by Lemma 1, there must be an outgoing exp l i c i t edge from v as well, and that is not

possible. Hence, v is a sink in the El-graph as well.

LEMMA 3. I f our deadlock detection aJgorithm is applied to the E-graph, then, at any

time, the E-graph wi l l have at/east one sink.

Proof. By Theorem ;2 in Appendix A, a cyc le - f r ee E-graph is a forest of in- t rees and

our deadlock detect ion algorithm never al lows any cyc le to be formed in the E-

graph.

THEOREM 1. I f our deadlock detection algori thm is applied to the E-graph, we can-

not reach a state in which no transaction can proceed.

Proof. Either no t ransact ion is wait ing, or by Lemmas 2 and 3, at any time, there is

at least one sink in the El-graph tha t corresponds to a runnable t ransact ion.

COROLLARY 1. Cycles in the El-graph cannot persist forever.

Proof. Assume tha t we quiesce the system, in the sense tha t no new t ransact ions

are allowed to enter. By Theorem 1, at any time, there is at least one runnable t ran-

sact ion In a non-empty system. Assuming tha t t ransact ions are f in i te in length, all

t ransact ions wil l eventua l ly e i ther commit or abort. Either way, all ver t i ces are

eventual ly removed from the graph, and hence, all cyc les eventua l ly go away.

33

REFERENCES

!1]

[2]

[a]

[4]

[5]

[8]

[7]

[8]

[0]

[103

R. Agrawal and D.J. DeWitt, Performance of Integrated Recovery and Con-
currency Control Mechanisms, in preparation (1982).

N. Deo, "Graph Theory with Applications to Engineering and Computer Sci-
ence," Prentice-Hall, Englewood Cliffs, N.J. (1974).

J.N. Gray, P. Homan, H. Korth, and R. Obermarck, "A Straw Man Analysis of the
Probability of Waiting and Deadlock in a Database System," Rep. RJ3066,
IBM Research Lab., San Jose, California (Feb. 1 g81).

J.N. Gray, "Notes on Database Operating Systems," in Lecture Notes in Com-
puter Science 60, Advanced Course on Operating Systems, ed. G.
Seegmuller0Springer Verlag, New York (1978).

F. Harary, "Graph Theory," Addison-Wesley, Reading, Massachusetts
(1 g72).

R.C. Holt, "Some Deadlock Properties of Computer Systems," ACM Computing
Surveys 4, 3, pp. 179-106 (Sept. I g72).

P.F. King and A.J. Collmeyer, "Database Sharing - An Efficient Method for
Supporting Concurrent Processes," Proc. AFIPS 1973 Natl. Computer Conf.,
pp. 271 -275 (1973).

Knuth, D.E., "The Art of Computer Programming: Fundamental Algorithms," Vol.
1, 2nd edition, Addison-Wesley, Reading, Massachusetts (1973).

G. Newton, "Deadlock Prevention, Detection and Resolution," ACM-SIGOPS
Operating Systems Review 13, 4, pp. 33-44 (April 1979).

M.R. Stonebraker, "Concurrency Control and Consistency of Multiple Copies
of Data in Distributed INGRES," IEEE Trans. Software Eng. SE-5, 3, pp. 188-
194 (May I g70).

%

34

