PANEL

THE EFFECT OF LARGE MAIN MEMORY ON DATABASE SYSTEMS

Dina Bitton

Department of Computer Science
Cornell University, Ithaca NY 14853

Panelists.

Hector Garcia-Mohna,
Princeton University

Dieter Gawlick, Amdahl

David Lomet, Wang Institute

1. The Issue

The availability of inexpensive, large
main memories coupled with the demand
for faster response time are bringing a new
perspective to database technology
Designers of database systems are reconsid-
ering the assumption that databases must
reside on disk during transaction process-
ing Subatantial performance gains can be
achieved by making a large portion of, or
the entire database, ressdde in main
memory One approach 1s to use very large
buffers to improve conventional disk access
methods A more radical approach 1s to
view the database as part of the user’s
address space 1n main memory, rather than
as a collection of mass-storage files This
leads to the advent of Main Memory Data-
base Systems (MMDBS’s), which exploit
memory residency of the database in their
schemes for physical data orgamzation,
query optimization, concurrency control and
crash recovery

This panel will address the merits and
problems associated with using very large
I/O buffers and mapping the database to
main memory Here are some important
questions that one may ask about the effect
of large memories on database technology

(1) Will the database of the future be
entirely mapped to main memory ?

2) If so, should a MMDBS rely on the
host operating system’s virtual
memory management”

(3) If not, to what extent are our current
techniques for file management and
access methods applicable 1n the pres-
ence of very large buffers”

(4) What types of data structures and
access methods are best for MMDBS’s?

(5) How do we manage transactions and
recover from crashes when the pn-
mary copy of the database resides 1n
memory”?

(6) How do we evaluate and measure the
performance of a MMDBS?

We will briefly put these problems in per-
spective, and outhne the panehsts’
viewpolnts

2. Large Buffer Pools

In the design of conventional disk
database management systems (DDBS’s),
file organmization, access methods and buffer
management are designed to reduce the
number of disk accesses Performance 1s
enhanced by providing a large buffer pool
where data records may be prefetched, or
frequently accessed data, such as indices or
hash tables, can be kept The acquisition of
large memories for this buffer pool can be
evaluated in terms of performance gain per
dollar-cost In a recent study, Gray pro-
poses the "Five-Minute Rule" for determin-
ing a cost-effective size for a main memory
buffer pool Every database page that 1s
referenced every five minutes should be
memory resident [Gr85]

3. Main Memory Databases

There are applhcations that cannot
tolerate delays caused by access to disk
storage (at 30 msec or more per block
access) For instance, meeting tight bounds
on response time 1n real time systems or

337

certain transaction systems may require
ehminating 1/O time Another environment
where maimn memory databases may be
viable 15 an office workstation, where (a)
memory 1s relatively cheap, (b) the user
expects a database system to respond as
quickly as an interactive editor [AHKS85]
Clearly, when the ratio of main memory to
disk capacity 1s higher (typically 110 1n
workstations, 1n contrast to at least 1100
in mainframes) and disks are slower, the
advantage of storing the database on disk
diminishes Thus, there exist applications
for which the cost of acquiring enough
memory for a MMDBS can be justified

4. Access Methods: Space-Time Optimi-
zation

A number of recent studies investi-
gate the imphcation of the memory
residency assumption on the design of data-
base systems [KM84, DKO84, AHKS5,
Sh85, LC85] In particular, analytical
models and stmulation are used in [DKO84,
Sh85, LC85] to evaluate access methods
and join algorithms under this assumption
Clearly, access methods and query process-
ing algorithms that are efficient for DDBS’s
may not have the same advantages n a
MMDBS In main memory, space efficiency
1s critical Thus a prevalent access method
such as the B-Tree may not be advanta-
geous for a main memory database, because
it stores twice as many key values and
pointers as other index methods Likewise,
sequential file access, as supported by B*.
Trees, loses 1ts attractiveness when the
data resides 1n memory Finally, fast query
processing algorithms that create large
intermediate results, such as a sort-merge
join, are not appropriate when memory
residency must be preserved

In a MMDBS, the query optimizer
must optimize both processing time and
memory utihzation Sometimes, 1t may
have to trade time for space For instance,
the database system code must be kept
compact 1n order to leave space for operand
relations and intermediate computations
Under these conditions, 1t may be prefer-
able to deal with less speaial cases 1n query
optimization and restrict the choice to a
few well tested access plans

338

Another cnitical parameter in query
optimization 1s the allocation of memory for
the result of an operation KExact estimates
of the size of a temporary relation (eg a
join) are cntical, since large errors may
result 1n substantial performance degrada-
tion or even failure of the MMDBS, due to
himitations in the size of the address space
or memory fragmentation

5. Transaction Management

')“f*
[~ 3483

oontral

Nan
W Vuiivi v

oncurrency crash
recovery are hard problems in MMDBS's
Although our theoretical understanding of
serializabihty and commitment remains
apphcable 1n the context of main memory
databases, transaction management
requires new algorithms when the primary
copy of the database resides in memory
Research 1n this area 1s on-going at Prince-

ton Umiversity, and at IBM Yorktown

6. Performance Evaluation

In benchmarking MMDBS’s, many of
the techniques previously used in bench-
marking DDBS’s [BDT83] are inadequate
because certain performance parameters
are specifically related to the main memory
residence assumption In particular, space
requirements, mn the form of virtual and
real memory, and memory management, by
the operating system and the database sys-
tem, are cntical parameters in the design
of a MMDBS benchmark Appropnate per-
formance metrics for MMDBS'’s should be
based on the Space-Time Integral of a set
of representative test queries To compute
this integral, memory use can be measured
precisely using memory reference traces, or
reliable lower and upper bounds for the
integral can be computed using the virtual
memory requirements of queries [BT86b]

Building of the first MMDBS proto-
types will undoubtedly contribute to a
better understanding of performance
tradeoffs The database system that sup-
ports the integrated office system OBE
(Office-By-Example) 1s one such example
[Z182, WAB86] A benchmark of OBE,
reported 1n [BT86a], identifies some of the
1ssues that must be considered 1n the
design and implementation of MMDBS'’s

7. Panelists’ Viewpoints

Crash Recovery in a MMDBS
(Hector Garcia-Molina)

If the primary copy of the database
resides permanently 1n main memory, then
crash recovery 1s a critical problem One
must examine various options for managing
a backup copy on disk without paymmg a
high price in performance Options that
are being investigated 1n the framework of
the Massive Memory Machine project at
Princeton University, range from conven-
tional logging, to group commts, to dedi-
cated logging hardware and non-volatile
areas of memory

Memory Management
(Dieter Gawhck)

The history of main memory data-
bases goes back to IMS/VS Fast Path
(1976) A modern MMDBS should

(1) use addressing that 1s transparent to
the location of data This has to be
supported by the hardware and the
operating system

(2) be aware of storage needs at different
storage levels cache, byte-addressable
memory, page-addressable memory,
external devices

(3) have an interface to the operating sys-
tem that allows the database system
to give hints on the usage of data to
the operating system, and allows the
operating system to optimize the
overall performance

Access Methods
(David Lomet)

The availabihty of very large
memories results m significant performance
gams for access methods 1n database sys-
tems Access method performance for a
random probe can be reduced from the
current 2+ disk 1/O’s currently required for
search, to one or perhaps fewer Most com-
mercial databases will not be entirely
memory resident Hence, main memory
will be exploited more opportumistically
through the use of buffering or wirtual
memory File organization should continue
to be block oriented, with perhaps increased
concern about storage utihzation

339

Transaction recovery under these condi-
tions will have very important performance
consequences

REFERENCES

[AHKS85] Ammann, A, Hanrahan, M, and
Knshnamurthy, R, “Design of a
Memory Resident DBMS”, Proceedings
of IEEE COMPCON 1985

[BDT83] Bitton, D, DeWitt, D and
Turbyfill, C, “Benchmarking Database
Systems - A Systematic Approach”,
Proceedings of VLDB 1983

{BT86a] Bitton, D, and Turbyfill, C, “Per-
formance Evaluation of Main Memory
Database Systems,” Cornell Unwersity
TR 86-731

[BT86b] Bitton, D, and Turbyfill, C,
“Space-Time Performance Metrics for
Main Memory Database Systems, A
Case Study,” Submutted to VLDB 1986

[DKO84] DeWitt, D, Katz, R, Olken, F,
Shapiro, L, Stonebraker, M, and Wood,
D, “Implementation Techniques for
Mamm Memory Database Systems”,
Proceedings of SIGMOD 1984

[Gr85] Gray, J, “The 5 Mimute Rule,”
Technical Note, Tandem Computers,
May 1985

[L.C85] Lehman, TJ, and Carey, MJ, “A
Study of Index Structures for Main
Memory Database Systems,” Unwersity
of Wisconsin TR 605, July 1985

[Sh85] Shapiro, LD, “Join Processing in
Database Systems with Large
Memories,” North Dakota State Unwer-
sity TR, December 1985

[Wh85] Whang, KY, “Query Optimization
in Office-By-Example,” IBM RC 11571,
December 1985

[WAB86] Whang, KY, Ammann, A, Bol-
marcich, T, et al, “Office-By-Example,
An Integrated Office System and Data-
base Manager,” IBM RC, 1986

[Z182] Zloof M, “Office-By-Example A
Business Language that Unifies Data
and Word Processing and Electronic
Mail,” IBM Sys. Journal, 21 3, 1982

