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ABSTRACT

Even though many of the essential notions of
hypertext were first contamned 1n the description of a
“memex,” written by Vannevar Bush in 1945 [Bus45],
there are today only a few scattered implementations of
hypertext, let alone any serious use of it in a CAD
environment In what follows, we describe what hyper-
text 15 all about We describe a prototype hypertext sys-
tem, named Neptune, that we have buillt We show how
1t 18 useful, especially 1ts broad applicability to CAD

1 INTRODUCTION

Traditional databases have certain weaknesses
when 1t comes to thewr use 1n Computer Aided Design
(CAD) systems for electrical engineering, software
engineering, and other design disciplines The most
glaring weakness 1s the relative lack of support they
give to version control and configuration management,
though Katz and Lehman [Kal.84] describe an experi-
mental system that attacks one aspect of the version
control problem Another weakness 1s that the tradi-
tional models (hierarchical, CODASYL, and relational)
do not map well to the kinds of data which need to be
stored m a CAD system However, the entity-
relationship model, and other semantic models, seem to
provide a better fit [BaK85) At the very lowest levels a
relational model can be useful, possibly at the expense
of performance [Lin84]
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To support a large CAD application, many dif-
ferent kinds of data, both textual and graphical, need to
be kept This data includes the design data itself, such
as IC layouts, logic descriptions, timing descriptions
and so forth in a VLSI CAD system It also imncludes
source and object code in a CASE (Computer-Aided
Software Engineering) system, as well as many forms
of supporting documentation

Hypertext has typically been applied to documen-
tation 1n all of its various guises Yankelovich et al
give an excellent mtroduction to this view of hypertext
systems [YMDS85] We believe that hypertext can pro-
vide an excellent storage model for CAD systems In
particular, hypertext can provide for complete version
histories, for making arbitrary connections between
preces of data, and for interactively viewing and travers-
ng the hypertext storage system

In Section 2 we give a brief description, history,
and representative sampling of hypertext systems Sec-
tion 3 gives an overview of Neptune, a hypertext system
we have built at Tektronix Laboratories An Appendix
gives a detailed description of the Hypertext Abstract
Machine upon which CAD applications can be built
This machine has been implemented and 1s currently
running on top of Unix*42BSD In Section 4 we
briefly describe how the hypertext abstract machime 1s
being used to support a generic documentation applica-
tion and briefly show how 1t can be applied to a CASE
apphication In the last section of this paper we 1dentify
the major shortcomings of this approach and indicate
future research directions

The origmnal contributions reported 1n this paper
are the recogmition that hypertext can provide an
appropriate storage model for CAD systems, the
description of an abstract hypertext machine suitable for
use 1n a CAD environment, as well as extensions of the
hypertext notion 1tself These extensions include com-
plete versions of “everything” and a query facility on

* Unix 18 a trademark of AT&T



attributes

2 HYPERTEXT

Hypertext 1 1ts essence 1s non-linear or non-
sequential text In a hypertext system, documents con-
sist of a collection of nodes connected by directed links
A node by 1tself 1s similar to a piece of normal text —
the links between nodes give hypertext its non-lnear
aspects The nodes of a hyperdocument are not res-
tricted to be text They can represent graphical 1mages,
combined text and graphics, digitally encoded vorce, or
even an ammmation Either end of a link may be attached
to a specific place within a node (e g a character posi-
tion), a span (of text) within a node, or simply attached
to the entire node Links can be made between a node
m one document and another node 1n the same or a dif-
ferent document The complete collection of documents
m a hypertext system can be thought of as one big
hyperdocument If the nodes and links of a hyperdocu-
ment are mapped 1n the obvious way to nodes and edges
of an abstract graph, then a hyperdocument can map
mto an arbitrary graph (with the possibility of cycles)
called a hypergraph

2.1 Existing Hypertext Systems

Vannevar Bush was clearly being a futurist when
he described his “memex” i 1945 [Bus45] Bush
described the memex as a supplement to a person’s own
memory 1n which all of the person’s books, records and
communications are stored, the memex has an indexing
scheme providing the functionality of hypertext links
Nothing practical was done with Bush’s ideas until the
1960’s when Douglas Engelbart developed a hypertext-
like system, onginally named NLS but now called Aug-
ment, at the Stanford Research Institute [Eng63,EnE68]
In many ways the system was ahead of its tiume, 1t intro-
duced such notions as structured editing, using a mouse
for cursor manipulation, and multi-person distributed
ediing [EnE68,Eng84] The term ‘“hypertext” was
comed by Ted Nelson more than a decade ago to
describe Xanadu [Nel81], an electronic publishing sys-
tem. A number of hypertext systems have been
developed at Brown University [YMD85] including an
early documentation system called FRESS, a graphi-
cally oriented hypertext system called the Electromic
Document System [FND82], and a new system being
developed called Intermedia Other hypertext systems
include Xerox PARC’s Notecards [HaT85], and the
Electronic Encyclopedia [WeB85] CMU’s ZOG sys-
tem [RMNB81] has some features of hypertext, but 1t 15
himated to hierarchically structured text Finally there 18
Neptune — the hypertext system described here
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2.2 Properties of Hypertext Systems

This section outlines some of the important pro-
perties that have been demonstrated 1n existing hyper-
text systems

Editing Hyperdocuments

The most basic capability of hypertext systems 1s
the abihity to create (and delete) nodes and links, to
modify the information contained within nodes, and to
modify the structure of the hyperdocument. A complete
version history of nodes and links may be maintained so
that 1t 1s possible to see any version of the hyperdocu-
ment back to its beginning Neptune and Xanadu pro-
vide the capabihity for complete version histories at the
granulanty of “writes” from a text editor Both systems
allow side-by-side comparison of different versions of
the same node Most hypertext systems include a facil-
1ty that ensures that a link attached to an old version
retams an attachment 1n a corresponding place n a new
version

Traversing the Hyperdocument

The directed-graph structure supported by hyper-
text systems can be used by authors as the means for
structuring documents Because a document 1s fre-
quently structured as a tree, several systems, including
Zog, Augment and Neptune, provide special support for
constructing and viewing hierarchical documents
Links are also used as a cross-referencing device allow-
ing a part of a document to reference or actually access
a part of another document.

A hypertext document 1s browsed by traversing
hinks Readers may restrict their attention to a smgle
document by following only the links that serve to
structure that particular document or readers may
choose to follow diversions such as footnotes, refer-
ences or annotations that are linked to the document.
As a hypertext reader follows link after link 1n reading
portions of hyperdocuments, he or she may want to
keep a trail of which links were followed This trail
allows other readers to follow the same path and makes
it easier to resume reading a document after a diversion
has been followed. A capability for saving a traversal
history was a key component of Bush’s memex and 1s
supported both 1n Zog and 1n the Electronic Document
System

Multimedia content

The name “hypertext” 1s actually a misnomer for
many of the implementations. Several systems, includ-
mg Augment, Xanadu, Notecards, Neptune and the
Electronic Document System, do not restrict the con-



tents of a node to text In general the contents of a node
in a hypertext system can be arbitrary digital data whose
mterpretation may mnclude graphics, animations or digi-
tized speech

Multi-person, distributed access

The concept of multi-person, distributed editing,
allowing joint authorship, was pioneered by Augment.
Several persons can access a hyperdocument simultane-
ously and the hyperdocument itself can be distributed
over multiple, networked machines A hypertext imple-
mentation therefore must deal with concurrency control
and recovery 1ssues (e g, in case a site crashes in the
muddle of a hypertext transaction) Neptune has a cen-
tral server which 1s accessible over a local area network
from a vanety of workstations, 1t 1s transaction-oriented
and provides for complete recovery from any aborted
transaction

Interactive User Interface

A hypertext document 1s meant to be viewed
nteractively As the reader views a node, visible links
may be followed or not at the discretion of the reader
If a link 15 followed, then the node at the end of the link
15 made visible so that 1t may be read mn turn In a
mult-window display with some sort of pointing dev-
ice, the operation of following a link and viewing what
1t points to 1s straightforward to implement. The map-
ping of a hyperdocument to an abstract graph can also
be made viewable, providing an alternate way of select-
ing a node for reading Both Neptune and Notecards
include a pictonal view of a hyperdocument, and both
provide a windowed user-interface

2.3 Applications of Hypertext

The most obvious application of hypertext 1s to
documentation Ted Nelson in his book, Literary
Machines [Nel81], describes an all-encompassing elec-
tronic publishing system, where all books and articles
are 1n one gigantic hypertext system including even pro-
vision for royalties to be collected. The vision 1s awe-
some * An interesting documentation example 1s a sim-
ple dynamic history book developed at Xerox PARC by
Stephen Weyer [Wey82] Weyer and Alan Borning
have also done some related work mn developing
browsers for an ammated encyclopedia [WeB85] —
these browsers give a hypertext flavor to the encyclo-

* Imagine 1f all computer science, electrical engineenng, and
mathematics books, journals, techmcal reports, and confer-
ence proceedings were 1n one hypertext distnbuted worldwide
and accessible via some network linked by satelite Any
reference could immediately be tracked down Reader com-
ments could be read by all Corrections could easily be made
while providing easy access to previous versions.
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pedia.

3 AN OVERVIEW OF NEPTUNE

Neptune 1s designed as a layered architecture
The bottom level 1s a ransaction-based server named
the Hypertext Abstract Machine (HAM) The HAM
presents a genenc hypertext model which provides
storage and access mechanisms for nodes and links
The HAM provides distributed access over a computer
network, synchromzation for multi-user access and
transaction-based crash recovery.

Additional layers of functionality are built on top
of the HAM Typcally, one or more apphication layers
are built on top of the HAM and a user interface layer 1s
butlt on top of the apphication layers. The application
layers consist of progams that automatically manipulate
or transform hypertext data In a CAD application this
layer could include VLSI design tools, high level
language compilers or document processors The user
mterface layer can provide a windowed interface for
browsing and editing hypertext data and for controlling
application layer programs

Section 4 outhines some requirements for an
application layer and descnbes a typical user interface
layer The remainder of this section gives a summary of
the HAM 1n enough detail to understand the rest of the
paper The Appendix provides a more detailed descrip-
tion of the HAM

When we speak of Neptune, we are generally
referring to the functionality provided by the HAM
The HAM defines operations for creatng, modifying
and accessing nodes and links It maintains a complete
version history of the hypergraph and provides rapid
access to any version of a hypergraph The HAM
makes no restricions about the contents of nodes
There 15 no interpretation at the HAM level — 1t 1s just
bmnary data

Each end of a hink can be attached to an offset
within the contents of a node. If the node contains text,
the offset can be interpreted as a character position If
the node contains graphics, the offset could be inter-
preted as a cartesian or polar coordinate Additionally,
Neptune supports two mechamsms for associating the
Iink attachment with versions of a node, the link attach-
ment may refer to a particular version of a node or it
may always refer to the ‘current’ version of the node
The former mechanism 1s a useful pnmitive for building
a configuration manager. The latter form of attachment
1s best thought of as an automatic update mechanism, a
history of link attachment offsets 1s saved, allowing the
hink to be attached to different offsets for each version
of the node



The HAM provides two mechanisms that are par-
ticulanily useful for building application layers Farst,
an unhmited number of attribute/value pairs can be
attached to anode or limk Second, a demon mechanism
1s provided that invokes application or user code when a
specific HAM event occurs, such as an update to a par-
ticular node

Two basic query mechanisms are supported by
the HAM traversal and query The traversal mechan-
1sm, linearizeGraph, starts at a designated node and
follows a depth-first traversal of out-hnks ordered by
the hinks’ offsets within the node The associative query
mechanism, getGraphQuery, directly accesses a set of
nodes and their interconnecting links Both of these
mechamsms use predicates based on attribute/value
pairs to determme which nodes and links satisfy the
query As an example, suppose a user (or an application
program) adopts the convention of attaching an attribute
called document to each node This attribute 1s used to
mndicate which document the node contains, in a CASE
system 1ts values could include requirements, design,
sourceCode and objectCode The node visibility predi-
cate ‘document = requirements’ could then be used 1n a
getGraphQuery operation to access only those nodes
that are part of the specification document.

Our goal was to put as little semantics as possible
mto the HAM, but still mamntain performance and
storage efficiency The range of applications that we
considered (from documentation to CASE) places a
heavy, though certainly not exclusive, emphasis on text
and other interpretations of large chunks of binary data
(such as executable binaries and bitmaps) The
mterpretation of node data 1s entirely up to the applica-
tion which uses 1t. For example, an application could
consider the data 1n a node to represent a set of constant
length records or fields Because version control 15 a
central theme of Neptune, we wanted effective storage
of many versions of such data without copying each
individual item, for nodes this 1s provided by backward
deltas similar to RCS [Tic82] Attributes, on the other
hand, as we envision them provide the semantics for
these chunks (nodes) and the relationships (links)
between them Attribute names and values tend there-
fore to be short strings of characters In view of the
above considerations, we made a separation between
the data 1n a node and the valve of an attribute Thss
separation led us to choose the particular HAM opera-
tions that we did

4 HYPERTEXT-BASED CAD SYSTEMS

For a CASE application, all documentation,
source and object code, project management informa-
tion and any other data associated with a design project
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are stored in hyperdocuments A hypertext system pro-
vides complete version histories, allows simultaneous
access by project members and provides the capability
for exphcitly building links between related portions of
the project information Additionally, hypertext pro-
vides the primitives needed to structure and organize the
project data

This section outlines how we are using Neptune
to build a CAD system for software engineering Furst,
we give a brief overview of Neptune’s generic docu-
mentation user interface Then, we outline how to take
advantage of Neptune’s capabilities to build CASE
application layer programs

4.1 Neptune’s Documentation User Interface

Neptune’s user nterface 1s implemented n
Smalltalk-80 [Gol84]. The user interface process com-
municates with the HAM using a remote procedure call
mechanmsm, the HAM runs as a separate process, typi-
cally on a machine accessed over a network The
hyperdocuments and the contents of nodes are viewed
and edited in display windows called browsers There
are three pnmary kinds of browsers a graph browser
provides a pictonial view of a sub-graph of nodes and
links, a document browser supports the browsing of
hierarchical structures of nodes and links, and a node
browser views an individual node 1n a hyperdocument
Several other browsers are provided by Neptune includ-
mg attnbute browsers, version browsers, node differ-
ences browsers and demon browsers

Graph Browsers

The graph browser shows a pictonal view of a
hyperdocument or a portion of a hyperdocument. A
graph browser that views this paper 1s shown 1n Figure
1 Each node 1s represented by an icon that consists of a
name enclosed 1n a rectangle The user specifies the
name associated with a node by attaching the attribute
tcon to the node and defining the desired character
string as the attribute’s value The graph browser itself
has four panes, the upper pane contains the view of the
graph, the lower left pane 1s a scroll area for zoom and
pan operations, the two panes on the lower nght contain
text editors used to define the visibility predicates on
nodes and links

Document Browsers

The document browser 1s destgned to simplify the
manipulation of hierarchically structured hyperdocu-
ments Figure 2 shows a document browser viewing
this paper It consists of five panes: the four upper
panes contain lists of names of nodes, the lower pane 1s
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Document Browsers

The document browser is designed to simplify the
mantpulation of hierarchically structured
hyperdocuments

Figure 2 shows a document browser

It consists of five panes the four upper panes contain
ists of names of nodes, the lower pane s a node
browser which can be used to view the contents of
one of the nodes listed in the top panes

The node-lists in the upper panes are built from
queries using predicates specified by the user

The node-list in the upper-left pane is formed by
executing a getGraphQuery HAM operation (see
Appendix for detals of HAM operations)

The node-list in each pane to the nght 1s formed by
accessing the immediate descendents of the selected
node In the left adjacent pane via the nearnizeGraph
HAM operation

Commands are avalable to shift the panes in order to
view deeply nested hierarchies

Figure 2 A Document Browser

a node browser which can be used to view the contents
of one of the nodes listed 1n the top panes The node-

lists 1 the upper panes are built from queres using
predicates specified by the user The node-list 1n the
upper-left pane 1s formed by executing a getGraph-
Query HAM operation (see Appendix for detals of
HAM operations) The node-list n each pane to the
night 1s formed by accessing the immediate descendents
of the selected node 1n the left adjacent pane via the
ImearizeGraph HAM operation Commands are avail-
able to shift the panes in order to view deeply nested
hierarchies
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Node Browsers

The node browser allows the contents of an Individual
node to be edited and supports both navigation via links
and the creation of new links

Figure 3 shows a node browser

Within a node browser, a link appears as an icon
composed using the value of the node’s icon attribute
As for node icons n the graph browser, If the attribute
1con i1s attached to the link its value will be used to
compose the icon, otherwise a default icon 1s used

Link icons can be edited just like regular characters using
the editing operations of the Smalitalk paragraph editor
(copy/cut/paste) [Gol84]

There are special commands that bundle together several
primtive hypertext operations into a single transaction
For example, an annotate command creates a new node,
creates a Iink from the current cursor position to the
new node, attaches attribute values that distinguish the
new node and link as an annotation and finally, opens

a browser on the new annotation node

In addition to being used as an independent window,

the node browser is used as the lower pane of the
document browser

A special browser called a node differences browser
places two node browsers side~by-side, each viewing a
specific version of a node with highlighting used to show
differences between the two versions

Figure 3 A Node Browser

Node Browsers

The node browser allows the contents of an indi-
vidual node to be edited and supports both navigation
via links and the creation of new links Figure 3 shows
a node browser Within a node browser, a link appears
as an 1con composed using the value of the node’s icon
attribute As for node 1cons 1n the graph browser, 1if the
attribute icon 1s attached to the link its value will be
used to compose the icon, otherwise a default icon 1s
used. Link icons can be edited just like regular charac-
ters using the editing operations of the Smalltalk para-
graph editor (copy/cut/paste) [Gol84]

There are special commands that bundle together
several primitive hypertext operations into a single tran-
saction For example, an annotate command creates a
new node, creates a link from the current cursor position



to the new node, attaches attnibute values that distin-
guish the new node and link as an annotation and
finally, opens a browser on the new annotation node In
addition to being used as an independent window, the
node browser 1s used as the lower pane of the document
browser A special browser called a node differences
browser places two node browsers side-by-side, each
viewing a spectfic version of a node with lughlighting
used to show differences between the two versions

4.2 Specializing Hypertext for a CASE Application

Our primary motivation for building a hypertext
system was to provide database support for software
engineering environments Recent proposals describing
project data base support for software engineering
environments [Hun81, PeS85] repeatedly state the need
to logically link together documentation and source
code, the need for making annotations for recording
explanations and assumptions, and the need for good
version management. PSI/PSA, a popular software
specification tool, can be thought of as a very special-
1zed hypertext system [TeH77] PIE was an experimen-
tal system which allowed for multuple views of docu-
mentation as well as providing for design alternatives
[GoB81] PIE was based on a network of nodes — a
hypertext-like structure

Two questions must be addressed to determine
how Neptune’s primitives should be used for a particu-
lar CAD application Farst, how will nodes and links be
used to represent each item of project data, second,
what attributes need to be attached to each node and
link

Structuring Hyperdocuments

The first question 1s probably the easier to
answer Documents are typically organized as a hierar-
chy of sections and sub-sections This structure can be
directly expressed in hypertext by using a node to
represent each section or sub-section with links con-
necting each node to its immediate descendent sections
or sub-sections If a section 1s lengthy, portions of the
section can be broken out mto separate nodes Addi-
tionally, if a section contains 1llustrations or tables,
separate nodes can be used for these portions so that
specialized editors can be used to view the node The
HAM’s linearizeGraph operation can be used to
extract a document from the hypertext graph so that
hardcopies can be produced

The static structure of program source code can
also be directly represented using hypertext For exam-
ple, a Pascal program 1s a simple hierarchy of nested
procedures and functions and can be represented
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directly as a tree with a node for each procedure or
function In a language like Modula-2 a program
requires a directed graph to represent its static structure
Each module can be represented by a simple tree similar
to the Pascal program, the need for a directed graph 1s
due to hinks that are used to specify tmported modules
Associated with each import list in a module 1s a link
that points to the node representing the module being
mmported A compiler integrated with hypertext can use
nodes for object code and symbol tables, links can be
used to associate these objects with their source code

Within the framework outlined above, the ques-
tion of how much or how Iittle should go nto a node 1s
still not answered completely In our hypertext system
the node 1s the atomic data umit. The getGraphQuery
and hnearizeGraph HAM operations return nodes, not
portions of nodes, our link attachments point to posi-
tions within a node, not to spans of the node’s contents
Therefore, if a piece of mformation needs to be viewed
m several distinct sub-graphs, then this information
must be 1n a separate node For example, 1f a paragraph
1n a design document 1s also being used as a comment 1n
the source code, then that paragraph should be
represented by 1ts own node An additional considera-
tion nvolves the unit of incrementality that will be used
to process the information For example, a compiler
may be able to recompile a changed procedure individu-
ally, that 1s without recompiling the entire module that
contamns the procedure {[SDB84, MeF81] In this case,
the unit of incrementality of the compiler should be
used to determine what syntactic code fragment the
source code nodes represent

Exploiting Attributes/Value Pairs

Having determuned how to represent CAD infor-
mation as a directed graph, the next step 1s to decide
how to use attributes to orgamze sub-graphs The pn-
mary objective 1s to make 1t easy to access all the mfor-
mation that 15 needed and to restrict the access to only
what 1s needed

The general guideline for using attributes 1s that
attributes attached to nodes describe what object the
node represents and attributes attached to links describe
the relationship that the link forms between two nodes
In Neptune there are no tmuts to the number of attri-
butes that can be attached to a node or link Addition-
ally, both users of Neptune and application programs
built on top of Neptune can define attributes Neptune’s
attribute/value patrs are very dynamic — at any time the
user or an application program can attach an additional
attribute to a node or link, delete an attribute attach-
ment, or modify the value of an attribute The next two
paragraphs outline how attributes could be used 1n a



Modula-2 CASE environment built on top of Neptune
For a more complete treatment on how to use attributes
m a CASE environment see [PeS85]

In a Modula-2 CASE environment every node has
an attached attribute, named contentType, that 1dentifies
what the node contains (if this attribute 1s not attached, a
default value 1s assumed) Values of contentType could
include text, graphics, Modula-2 source code, Modula-2
object code or Modula-2 symbol table Additional attri-
butes could be used to further describe the type of the
node’s contents For example, nodes that contain por-
tions of a Modula-2 source program could have an attri-
bute codeType with values that describe what kind of
syntactic code fragment the node represents, such as
definiionModule, implementationModule, or procedure
Every link has an attached attribute, named relation,
that names the relationship that the link denotes Values
of ‘relation’ could include isPartQf, annotates, refer-
ences, or compilesinto

Additional attributes can be assigned to nodes or
links by the user or by the application level programs to
provide semantic information that 1s useful for compos-
g quenies Examples include attributes to describe
which document the node 1s contained 1n, what function
of the software system the node describes, or manage-
ment information such as which project team member 15
responstble for the node

5 CONCLUSIONS

The major shortcomings 1n the current defimtion
and implementation of Neptune are two-fold In a
multi-person design effort, there 1s frequently the need
for an individual to try out tentative designs in that
mdividual’s own “private world” and then eventually to
merge the chosen design back with the mamn design
database There are currently no provisions for multiple
version threads m any existing hypertext systems The
second major shortcoming 1s that as defined, the func-
tionality provided by demons 1s very weak There
needs to be a set of parameters associated with each
demon, such as the demon invoking event, an 1nvoca-
tion time-stamp, or an identification of the invoking
node or graph Examples of demon use could be send-
ing mail to the person responsible for a node when
someone other than that person modifies the node, per-
forming special checking code when a node 1s modified,
or invoking an incremental compiler when a node which
contains code 1s modified.

The two current shortcomings of Neptune, 1denti-
fied above, are being addressed We have designed,
and are currentlty implementing, a scheme for multiple
version threads that allows multiple simultaneous con-
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texts to exist 1n a given Neptune database These con-
texts can also be used for clustering related nodes and
links as well as for configuration management We will
be providing an environment that will allow parameter-
1zed demons to be wrntten in Smalltalk, Modula-2, or C

There 1s a possible synergy, which 1s not currently
being addressed, between the use of a relational data-
base in conjunction with hypertext Hypertext can ade-
quately capture the relationship between all the major
pieces of information that are created as part of an
engineering project Hypertext mught not be as suitable
for finer gramed relationships such as definition-use
Imks 1n an icremental compiler’s symbol tables It
could be very beneficial to combine the advantages that
hypertext provides with those provided by a relational
data base For example, given such fine gramned infor-
mation as a symbol table, one nught want to find all
references to a vanable, not only m the code, but 1 all
the documentation as well A relationally complete
query language makes possible a wide range of interest-
ing questions which can be asked

We have shown how hypertext can provide an
appropniate storage model for CAD, and in particular
CASE We have briefly decribed Neptune, a hypertext
system currently bemg used in software development
environments research Hypertext 1s particularly good
as a storage system for all the information associated
with a software (or hardware) project because 1t allows
arbitrary structuring of the nformation, and 1t keeps a
complete version history of the information and the
structure In Neptune, we have provided a hypertext
machine that 1s particularly suited for building applica-
tions, especially CASE systems
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APPENDIX: Hypertext Abstract Machine Specification
The notation used for describing the hyperdata abstract machine operations is of the form:
operation: operand; X operand, X . . . X operand, —» resulty X result; X resulty X . . . Xresult,,

where n > 1 and m 2 0. Each operand; and result; has a domain of values. Additionally, x” means x X x X ... X x with n
X’s, x* means x" for some n > 0, and x* means x* for some n 2 1. The atomic domains used are the followmg (in alpha-
betical order):

Attribute: an attribute name.

Attributelndex: unique identification for an attribute name.

Boolean: either true or false,

Contents: .data which can reside in a node.

Context: unique identification for the “current graph.”

Demon; a demon value,

Difference: a deletion, insertion or replacement.

Directory: : a valid file directory name.

Event: a demon event.

Explanation: explanatory text.

Linkindex: unique identification for a hyperdata link.

Machine: . a valid computer name in a networking environment.
Nodelndex: unique identification for a hyperdata node.

Position: an ordinal number.

Predicate: a Boolean formula in terms of attributes and their values.
Projectld: unique identification for a hyperdata graph.

Protections: - one of the possible file protection modes.

Time: a non-negative integer representauon for a given-date and time.
Value: an attribute value.

There are some additional domains which can described as combinations of the above domains:

LinkPt = Nodelndex X Position X Time X Boolean
Version = Time X Explanation

For all of the hyperdata abstract machine operations, result, has domain Boolean; result, is implicit. If the operation is
successful then true is returned otherwise false is returned.

A.1 Graph Operations

createGraph: Directory X Protections — Projectld X Time
Creates a new empty hyperdata graph, in Directory using Protections to set up the files representing the new hyperdata
directory. If successful, returns Projectld, a unique identification for the graph, and Time, the creation time of the new
graph.

destroyGraph: Projectld X Directory —
Destroys the existing graph, located in Directory. Projectld must have the same value as returned by the createGraph
operation that created the graph in the first place.

openGraph: Projectld X Machine X Directory — Context
Opens an existing graph, located in Directory on Machine. Projectld must have the same value as returned by the
createGraph operation that created the graph in the first place. Context is the unique 1dent1ﬁcat10n for the graph. This
operation can trigger a demon.

addNode: Context X Boolean — NodelIndex X Time
Creates a new empty node in the graph given by Context. If Boolean has value true then a complete version history is
maintained for the node. If successful, returns Nodelndex, the unique identification for the new node, and Time, the
creation time of the node. This operation can trigger a demon.
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deleteNode Context x Nodelndex —

Removes node Nodelndex from the graph given by Context All Iinks 1nto or out of the node are deleted This operation
can trigger a demon

addLink Context x LinkPt; X LinkPty — LinkIndex x Time
Creates a new link between two nodes LinkPt; represents the “from node” and LinkPt, represents the “to node ” The
from and to nodes must exist at their respective times  If a Time 1s zero then the link always refers to the current version
of the corresponding node If successful, returns LinkIndex, a unique 1dentification for the new link and Time, the crea-
tion time of the link This operation can trigger a demon

copyLink Context X LinkIndex x Time; x Boolean x LinkPt — LinkIndex X Time
Creates a new link between two nodes where one end of the link 1s :dentical to that of link LinkIndex at Time; and the
other end of the link 1s specified by LinkPt If Boolean has value true then the source of the new link 1s 1dentical to that
of LinkIndex, otherwise the destination of the new Iink 1s 1denucal to that of linkIndex The link defined by LinkIndex
must exist at Time; If a Time 15 zero then the link always refers to the current version of the corresponding node If
successful, returns LinkIndex, a unique 1dentification for the new hnk and Time, the creation time of the ink This
operation can trigger a demon

deleteLink Context X Linkindex —
Removes link LinkIndex from the graph given by Context This operation can trigger a demon

linearizeGraph Context X Nodelndex X Time X Predicate; X Predicate, X AttributeIndex ;™ X Attributelndex," —
(Nodelndex x Value™)* x (LinkIndex X Value™)*
Returns a sub-graph of the graph given by Context at Time, composed by a depth first search via links starting at node
Nodelndex Each of the nodes in Nodelndex* satsfies Predicate , each link traversed satisfies Predicate, and each link
in LinkIndex* connects two nodes in Nodelndex* For each node also returns Value™ for the m requested attributes
Attributelndex ;™ and for each link returns Value” for the n requested attributes Attributelndex,”

getGraphQuery Context X Tune X Predicate; X Predicate, X Attributelndex ;™ X AttributeIndex,™ —
(Nodelndex x Value™)* X (LinkIndex x Value™)*
Returns a sub-graph of the graph given by Context at Time, composed by all nodes and links such that each of the nodes
n Nodelndex* sausfies Predicate;, each link traversed satsfies Predicate, and each hnk in LinkIndex* connects two
nodes 1n Nodelndex* For each node also returns Value™ for the m requested attributes Attributelndex™ and for each
link returns Value” for the n requested attributes Attributelndex,”

A 2 Node Operations

Each node 1s exther an archive or a file Complete version histories are maintamned for archives, only the current
version 1s available for files

openNode Nodelndex x Time; X Attributelndex™ — Contents X LinkPt* X Value™ x Time,
If successful returns the Contents for node Nodelndex 1If node Nodelndex 1s an archive then the Contents are at me
Time,; 1f Time, 1s zero then the Contents are current  Also returned are the LinkPt* attached to the desired version of the
node as well as Value™ for the m requested attributes Attributelndex™ The Time, returned 1s the version ttme of the
current version of the node This operation can trigger a demon

modifyNode Nodelndex x Time x Contents X LinkPt* —
Check 1n a node with modified Contents. Time must be equal to the version time of the current version of the node
There must be a LinkPt for each link associated with the current version of the node If the node 1s an archive then
creates a new version of node and a new version of each of its ink attachments whose Posttion has changed This
operation can trigger a demon

getNodeTimeStamp Nodelndex — Time
Returns the current version Time for node Nodelndex

changeNodeProtection Nodelndex X Protections —»
Sets the protections for the file storing the contents of node Nodelndex to protections
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getNodeVersions Nodelndex — Version;* X Version,*
Returns the version history for node Nodelndex Major versions are updates to the contents of the node and are returned

mn Version;* Minor versions are updates that relate to the node but do not change 1ts contents, for example adding a
link or defining an attribute value, they are returned in Versiony*

getNodeDifferences Nodelndex x Time; X Time, — Difference*
For node Nodelndex returns 1n Difference* the differences between the version at time Time; and at ime Time,

A 3 Link Operations

getToNode LinkIndex X Time; — Nodelndex X Time,
Retums the node Nodelndex and 1ts version Time; corresponding to the destination of the link LinkIndex at tme Time,

getFromNode Linkindex X Time; — Nodelndex X Time,
Returns the node Nodelndex and 1ts version Tune; corresponding to the source of the link LinkIndex at time Time,

A 4 Attribute Operations

getAttributes Context X Time — (Attribute X AttributeIndex)*
For the graph given by Context returns i (Attribute x AttributeIndex)* all the attributes, and their respective unique
1dentifiers, that existed at time Time

getAttributeValues Context X Attributelndex X Time — Value*
For the graph given by Context returns in Value* the set of all values defined for attribute Attributelndex at ume Time

getAttributeIndex Context X Attribute — Attributelndex
Returns the unique 1dentification for Attribute in AttributeIndex 1f no attribute Autribute exists, then creates one

setNodeAttributeValue Nodelndex X AttributeIndex X Value —
Sets the value for attribute Attributelndex for the node Nodelndex to Value If the node nodelndex 1s an archive then
creates a new version of the attribute value

deleteNodeAttribute Nodelndex x Attributelndex —
Deletes the attribute Attributelndex for the node nodelndex

getNodeAttributeValue Nodelndex x Attributelndex X Time — Value
Returns Value for attnibute AttributeIndex at time Time for node Nodelndex

getNodeAttributes Nodelndex x Time — (Attribute X Attributelndex X Value)*
Returns 1n (Attribute X Attributelndex X Value)* all the attributes, their respective unique 1dentifiers, and their values that
existed at time Tumne for node Nodelndex

setLinkAttributeValue Linkindex x AtiributeIndex X Value —
Sets the value Value for attribute Attributelndex for the link LinkIndex 1f the link LinkiIndex 1s attached to an archive
then creates a new version of the attnbute value

deleteLinkAttribute LinkIndex X Attributelndex —»
Deletes the attribute Attributelndex for the link Linkindex

getLinkAttributeValue LinkIndex x Attributelndex x Time — Value
Returns Value for attribute AttributeIndex at time Ttme for link LinkIndex

getLinkAttributes LinkIndex x Time — (Attribute X AttributeIndex X Value)*
Returns 1n (Attribute X AttributeIndex X Value)* all the attributes, their respective umque 1dentifiers, and their values that
existed at ime Time for link LinkIndex
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A 5 Demon Operations

setGraphDemonValue Context X Event X Demon —»
For the graph given by Context sets the demon corresponding to event Event to Demon Creates a new version of the
graph demon If Demon 1s null then demon 1s disabled

getGraphDemons Context X Time — (Event X Demon)*
For the graph given by Context returns the demons for the graph at tme Tume

setNodeDemon Nodelndex X Event X Demon —
For node Nodelndex sets the demon corresponding to event Event to Demon Creates a new version of the node demon
If Demon 1s null then demon 1s disabled

getNodeDemons Nodelndex x Time —> (Event X Demon)*
For node Nodelndex returns the demons for the node at ime Time
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