
Neptune: a Hypertext System for CAD Applications

Norman Del&e
Mayer Schwartz

Computer Research Laboratory
Tektronix Laboratones

Tektromx, Inc
PO Box500

Beaverton, Oregon 97077

ABSTRACT

Even though many of the essential notions of
hypertext were first contained m the descnption of a
“memex,” wntten by Vannevar Bush m 1945 [Bus45],
there are today only a few scattered lmplementatlons of
hypertext, let alone any serious use of It m a CAD
environment In what follows, we descnbe what hyper-
text 1s all about We descnbe a prototype hypertext sys-
tem, named Neptune, that we have budt We show how
it 1s useful, especially its broad appllcablhty to CAD

1 INTRODUCTION

TradItional databases have certain weaknesses
when It comes to theta use m Computer Aided Design
(CAD) systems for elecmcal engmeermg, software
engineering, and other design dlsclplmes The most
glarmg weakness 1s the relative lack of support they
give to version control and configuration management,
though Katz and Lehman [KaL84] descnbe an expen-
mental system that attacks one aspect of the version
control problem Another weakness 1s that the tradl-
banal models (hierarchical, CODASYL, and relational)
do not map well to the kinds of data which need to be
stored m a CAD system However, the entlty-
relationship model, and other semantic models, seem to
provide a better fit [BaK85] At the very lowest levels a
relatlonal model can be useful, possibly at the expense
of performance IJm84]

PermIssIon to copy wthout fee all or part of this material 1s granted
prowded that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrlght notice and the title of the
pubhcatlon and 1t.s date appear, and notlce 1s gwen that copymg 1s by
permwton of the Assoclatton for Computmg Machmery To copy
otherwse, or to repubhsh, requires a fee and/or speclftc permlwon

To support a large CAD apphcation, many dlf-
ferent kmds of data, both textual and graphical, need to
be kept This data mcludes the design data itself, such
as IC layouts, logic descnpbons, ummg descrlpuons
and so forth m a VLSI CAD system It also includes
source and object code in a CASE (Computer-Aded
Software Engineering) system, as well as many forms
of supportmg documentation

Hypertext has typically been apphed to documen-
tation m all of its various guises Yankelovlch et al
give an excellent mtroduction to this view of hypertext
systems [YMD85] We beheve that hypertext can pro-
vlde an excellent storage model for CAD systems In
particular, hypertext can provide for complete version
histones, for making arbitrary connecuons between
pieces of data, and for mteractlvely viewing and travers-
mg the hypertext storage system

In Sechon 2 we give a brief descnption, history,
and representative sampling of hypertext systems Sec-
tion 3 gives an overview of Neptune, a hypertext system
we have budt at Tektromx Laboratones An Appendix
gives a detaded descrlptlon of the Hypertext Abstract
Machine upon which CAD apphcabons can be built
This machme has been implemented and 1s currently
runmng on top of Unix* 4 2 BSD In Section 4 we
briefly descnbe how the hypertext abstract machme 1s
bemg used to support a genenc documentation apphca-
tlon and bnefly show how It can be apphed to a CASE
apphcation In the last sectlon of this paper we ldenufy
the major shortcommgs of this approach and mdlcate
future research directions

The original conmbutlons reported m this paper
are the recogmtlon that hypertext can provide an
appropriate storage model for CAD systems, the
description of an abstract hypertext machme sultable for
use in a CAD environment, as well as extensions of the
hypertext notion itself These extensions include com-

c
plete versions of “everythmg” and a query facility on

0 1986 ACM 0-89791-191-1/86/0500/0132 $00 7,
* Untx IS a trademark of AT&T

132

attnbutes

2 HYPERTEXT

Hypertext m Its essence 1s non-hnear or non-
sequential text In a hypertext system, documents con-
sist of a collectlon of nodes connected by directed l&s
A node by itself 1s smular to a piece of normal text -
the hnks between nodes give hypertext its non-lmear
aspects The nodes of a hyperdocument are not res-
tncted to be text They can represent graphical Images,
combined text and graphics, &gltally encoded VOW, or
even an ammatlon Either end of a hnk may be attached
to a specific place w&m a node (e g a character pan-
Qon), a span (of text) wlthm a node, or simply attached
to the entire node Lmks can be made between a node
m one document and another node m the same or a &f-
ferent document The complete collection of documents
m a hypertext system can be thought of as one big
hyperdocument If the nodes and hnks of a hyperdocu-
ment are mapped m the obvious way to nodes and edges
of an abstract graph, then a hyperdocument can map
mto an arbitrary graph (with the posslblhty of cycles)
called a hypergraph

2.1 Existing Hypertext Systems

Vannevar Bush was clearly being a futunst when
he described his “memex” m 1945 Bus451 Bush
described the memex as a supplement to a person’s own
memory m which all of the person’s books, records and
commumcatlons are stored, the memex has an mdexmg
scheme provldmg the functionahty of hypertext hnks
Nothing practical was done with Bush’s ideas until the
1960’s when Douglas Engelbart developed a hypertext-
hke system, ongmally named NLS but now called Aug-
ment, at the Stanford Research Institute [Eng63,EnE68]
In many ways the system was ahead of its ttme, It mtro-
duced such notions as structured eQtmg, using a mouse
for cursor manipulation, and mulu-person dstnbuted
edltmg [EnE68,Eng84] The term “hypertext” was
comed by Ted Nelson more than a decade ago to
descnbe Xanadu [Nel81], an electromc pubhshmg sys-
tem. A number of hypertext systems have been
developed at Brown Umverslty [YMDSS] mcludmg an
early documentahon system called FRESS, a graphl-
tally onented hypertext system called the Electromc
Document System [FND82], and a new system bang
developed called Intermeha Other hypertext systems
include Xerox PARC’s Notecards lJIaT851, and the
Electromc Encyclopedia [weB851 CMU’s ZOG sys-
tem BMN81] has some features of hypertext, but it is
hnuted to hlerarchlcally structured text Finally there 1s
Neptune - the hypertext system described here

2.2 Properties of Hypertext Systems

This section outlmes some of the important pro-
perties that have been demonstrated m exlstmg hyper-
text systems

Edmng Hyperdocuments

The most basic capablhty of hypertext systems IS
the ablhty to create (and delete) nodes and lmks, to
m&fy the mformahon contamed wlthm nodes, and to
modify the structure of the hyperdocument. A complete
version hlstory of nodes and hnks may be mamtamed so
that it 1s possible to see any version of the hyperdocu-
ment back to its begmnmg Neptune and Xanadu pro-
vide the capablhty for complete version hlstones at the
granulanty of “wntes” from a text e&tor Both systems
allow side-by-nde comparison of hfferent versions of
the same node Most hypertext systems mclude a facll-
lty that ensures that a lmk attached to an old version
retams an attachment m a correspondmg place m a new
version

Traversmg the Hyperdocument

The directed-graph structure supported by hyper-
text systems can be used by authors as the means for
structurmg documents Because a document 1s fre-
quently structured as a tree, several systems, mcludmg
Zag, Augment and Neptune, provide special support for
constructmg and vlewmg hlerarchlcal documents
Lmks are also used as a cross-referencmg device allow-
mg a part of a document to reference or actually access
a part of another document,

A hypertext document 1s browsed by traversmg
lmks Readers may restnct their attenhon to a single
document by followmg only the lmks that serve to
structure that part~ular document or readers may
choose to follow dIversions such as footnotes, refer-
ences or annotations that are linked to the document.
As a hypertext reader follows hnk after lmk m readmg
potions of hyperdocuments, he or she may want to
keep a trill1 of which lmks were followed This trail
allows other readers to follow the same path and makes
It easier to resume readmg a document after a &version
has been followed. A capablhty for savmg a traversal
hlstory was a key component of Bush’s memex and is
supported both m Zog and m the Electromc Document
System

MultlmeQa content

The name “hypertext” 1s actually a nusnomer for
many of the Implementations. Several systems, mclud-
mg Augment, Xanadu, Notecards, Neptune and the
Electronic Document System, do not restnct the con-

133

tents of a node to text In general the contents of a node
m a hypertext system can be arbitrary digital data whose
mterpretauon may mclude graphics, animations or &gl-
ttzed speech

Multi-person, dstnbuted access

The concept of multi-person, &stnbuted edmng,
allowing Jomt authorshlp, was ploneered by Augment.
Several persons can access a hyperdocument smmltane-
ously and the hyperdocument Itself can be &smbuted
over mul@e, networked machmes A hypertext Imple-
mentahon therefore must deal with concurrency control
and recovery Issues (e g , m case a s1t.e crashes m the
nuddle of a hypertext transaction) Neptune has a cen-
tral server which 1s accessible over a local area network
from a varzty of worksmons, it 1s transacuon-onented
and provides for complete recovery from any aborted
transacuon

Interacuve User Interface

A hypertext document 1s meant to be viewed
mteracuvely As the reader views a node, visible lmks
may be followed or not at the ticretion of the reader
If a hnk 1s followed, then the node at the end of the lmk
1s ma& vlslble so that it may be read m turn In a
mulu-wmdow &splay with some sort of pomtmg dev-
ice, the operation of followmg a lmk and vlewmg what
It pomts to 1s stralghtforward to Implement. The map-
pmg of a hyperdocument to an abstract graph can also
be made vlewable, provldmg an alternate way of select-
mg a node for readmg Both Neptune and Notecards
mclude a pictorial view of a hyperdocument, and both
provide a wmdowed user-mterface

2.3 Applications of Hypertext

The most obvious application of hypertext 1s to
documentation Ted Nelson m his book, L~rerury
Muchrnes [Ne181], describes an all-encompassmg elec-
tronic pubhshmg system, where all books and amcles
are m one gigantic hypertext system mcludmg even pro-
vlslon for royalties to be collected. The vision 1s awe-
some * An mterestmg docurnentauon example 1s a snn-
ple dynanuc history book developed at Xerox PARC by
Stephen Weyer [wey82] Weyer and Alan Bommg
have also done some related work m developmg
browsers for an ammated encycloma [WeB85] -
these browsers give a hypertext flavor to the encyclo-

* Imagme If all computer scrence. electrical engmeenng, and
mathematm books, Journals, techmcal reports, and confer-
ence proceedmgs were m one hypertext dlstnbuted worldwide
and accessrble na some network lmked by satelbte Any
refennce could tmmtiately be tracked down Reader com-
ments could be read by all ComUons could eanly be made
whde ptondmg easy access to prevmus versions.

3 AN OVERVIEW OF NEPTUNE

Neptune 1s designed as a layered architecture
The bottom level is a transaction-based server named
the Hypertext Abstract Machme (HAM) The HAM
presents a genenc hypertext model which provides
storage and access mechanisms for nodes and hnks
The HAM prov&s dsmbuted access over a computer
network, synchronization for multi-user access and
transaction-based crash recovery.

Ad&honal layers of functmnahty are bullt on top
of the HAM Typically, one or more apphcatlon layers
are built on top of the HAM and a user mterface layer 1s
built on top of the apphcation layers. The apphcahon
layers consist of progams that automatically mampulate
or transform hypertext data In a CAD appllcatmn tlus
layer could include VLSI destgn tools, tigh level
language compliers or document processors The user
m&face layer can provide a wmdowed m&ace for
browsmg and &tmg hypertext data and for controllmg
application layer programs

Sectlon 4 outlmes some requirements for an
application layer and describes a typical user interface
layer The remamder of this section gives a summary of
the HAM m enough &tad to understand the rest of the
paper The Appen&x provides a more de&led descnp-
tton of the HAM

When we speak of Neptune, we are generally
referrmg to the functionality provided by the HAM
The HAM defines operations for creatmg, modlfymg
and accessmg nodes and lmks It mamtams a complete
version hlstory of the hypergraph and provides rapld
access to any version of a hypergraph The HAM
makes no resmcttons about the contents of nodes
There IS no interpretation at the HAM level - it 1s Just
binary data

Each end of a lmk can be attached to an offset
w&in the contents of a node. If the node contams text,
the offset can be mterpreted as a character posItion If
the node contams graphics, the offset could be mter-
preted as a carteslan or polar coordmate Additionally,
Neptune supports two mechamsms for assoclatmg the
lmk attachment with versions of a node, the lmk attach-
ment may refer to a pamcular version of a node or it
may always refer to the ‘current’ version of the node
The former mechamsm 1s a useful prmuuve for butldmg
a configurauon manager. The latter form of attachment
1s best thought of as an automatic update mechanum, a
history of lmk attachment offsets 1s saved, allowmg the
lmk to be attached to cllfferent offsets for each version
of the node

134

The HAM provides two mechamsms that are par-
hculmly useful for bulldmg appllcatlon layers First,
an unhnuted number of attnbute/value pairs can be
attached to a node or lmk Second, a demon mechamsm
1s provided that invokes application or user code when a
spemfic HAM event occurs, such as an update to a par-
hcular node

Two basic query mechanisms are supported by
the HAh4 traversal and query The traversal mechan-
lsm, linearizeGraph, starts at a designated node and
follows a depth-first traversal of out-h& ordered by
the hnks’ offsets wlthm the node The associative query
mechanism, getGraphQuery, tiectly accesses a set of
nodes and their mterconnectmg lmks Both of these
mechanisms use predicates based on attrrbutelvalue
pars to determme which nodes and lmks sat&y the
query As an example, suppose a user (or an appllcahon
program) adopts the convention of attachmg an atmbute
called document to each no& This attribute is used to
mdlcate which document the node contams, m a CASE
system its values could mclude requirements, desrgn,
sourcecode and objectcode The no& vlslblhty predl-
cate ‘document = requrrements’ could then be used m a
getGraphQuery operation to access only those nodes
that are part of the speclficatlon document.

Our goal was to put as Me semanucs as possible
mto the HAM, but still mamtam performance and
storage efficiency The range of apphcauons that we
considered (from documentation to CASE) places a
heavy, though certamly not exclusive, emphasis on text
and other mterpretations of large chunks of binary data
(such as executable bmanes and bitmaps) The
mterpretahon of no& data is enmly up to the applica-
tion which uses it. For example, an appllcauon could
consider the data m a node to represent a set of constant
length records or fields Because version control is a
central theme of Neptune, we wanted effective storage
of many versions of such data without copying each
mdlvldual item, for nodes this is provided by backward
deltas smular to RCS [T1c823 AttrIbutes, on the other
hand, as we envision them provide the semanhcs for
these chunks (no&s) and the relahonshlps (hnks)
between them Atmbute names and values tend there-
fore to be short strmgs of characters In view of the
above cons&rations, we made a separation between
the data m a node and the value of an attnbute This
separation led us to choose the particular HAh4 opera-
hOIIS that we &d

4 HYPERTEXT-BASED CAD SYSTEMS

For a CASE application, all documentauon,
source and obJect code, proJect management infOrma-

bon and any other data associated with a design project

are stored m hyperdocuments A hypertext system pro-
vldes complete version hrstotles, allows simultaneous
access by proJect members and provides the capablhty
for exphcltly bmldmg lmks between related potions of
the project mformatlon Addmonally, hypertext pro-
vides the prmuhves needed to structure and organize the
proJect data

This sechon outlines how we are usmg Neptune
to build a CAD system for software engmeermg Fust,
we give a bnef overvtew of Neptune’s genenc docu-
mentahon user mterface Then, we outlme how to take
advantage of Neptune’s capabllmes to bmld CASE
application layer programs

4.1 Neptune’s Documentation User Interface

Neptune’s user interface 1s implemented m
Smalltalk- [Go184]. The user interface process com-
municates with the HAM usmg a remote procedure call
mechanism, the HAM runs as a separate process, typl-
tally on a machme accessed over a network The
hyperdocuments and the contents of nodes are viewed
and e&ted m display wmdows called browsers There
are three pnmary kmds of browsers a graph browser
provides a plctonal view of a sub-graph of nodes and
lmks, a document browser supports the browsing of
hlerarchlcal structures of nodes and lmks, and a node
browser views an mdlvldual node m a hyperdocument
Several other browsers are provided by Neptune mclud-
mg atmbute browsers, version browsers, node &ffer-
ences browsers and demon browsers

Graph Browsers

The graph browser shows a plctonal wew of a
hyperdocument or a pomon of a hyperdocument. A
graph browser that views this paper 1s shown m Figure
1 Each node 1s represented by an icon that consists of a
name enclosed m a rectangle The user specifies the
name associated with a node by attachmg the atmbute
zcon to the node and defining the &sued character
smng as the atmbute’s value The graph browser itself
has four panes, the upper pane contams the view of the
graph, the lower left pane 1s a scroll area for zoom and
pan operauons, the two panes on the lower nght contam
text editors used to define the vlslblhty predicates on
nodes and hnks

Document Browsers

The document browser is deslgned to snnpllfy the
manipulation of hlerarchlcally structured hyperdocu-
ments Figure 2 shows a document browser vlewmg
thts paper It consrsts of five panes the four upper
panes contam hsts of names of nodes, the lower pane is

Figure 1 A Graph Browser

IDocument Browser1
_--~~~~~~~~~--~~-~--~--,-----~~~--- -----------
Spec Introductron QRnRtR Llnclr Grabh Brow:
;x;,pe&ext Us Hypertext B s 1 I(

]

Ik,rllmPtll 111
Hypertext a ----- 1 N - ,1

Converters Hyp*rteKt-bs, -----------
BlGMCXl l$p Conclusions
Spec2 References
------------ Hypertext Ab

)uLhwment Browse
Document Browsers

The document browser IS desrgned to srmpkfy the
manrpulatron of hrerarchmally structured
hyperdocuments
Figure 2 shows a document browser
It consmts of five panes the four upper panes contam
ksts of names of nodes, the lower pane IS a node
browser whrch can be used to view the contents of
one of the nodes ksted m the top panes
The node-lmts m the upper panes are burlt from
queries usmg predrcates specrfred by the user
The node-lmt m the upper-left pane is formed by
executmg a getGraphQuery HAM operation (see
Appendrx for detarls of HAM operahons)
The node-lmt in each pane to the rrght IS formed by
accessing the rmmedrate descendents of the selected
node In the left adjacent pane via the ImsarrzeGraph
HAM operatron
Commands are available to shaft the panes m order to
view deeply nested hrerarchres

Figure 2 A Document Browser

a node browser which can be used to view the contents
of one of the nodes listed m the top panes The node-

lists m the upper panes are budt from quenes usmg
predicates specified by the user The node-hst m the
upper-left pane IS formed by executmg a getGraph-
Query HAh4 operation (see Appen&x for detruls of
HAM operahons) The node-list m each pane to the
nght IS formed by accessing the nnrne&ate descendents
of the selected node m the left adjacent pane via the
1meanzeGraph HAM operation Commands are ava&
able to shift the panes m order to view deeply nested
hierarchies

Uode Browser
)Nodr Browseer[
Node Browsert

The node browser allows the contents of an lndrvldual
node to be edrted and supports both navrgation via knks
and the creation of new links
Figure 3 shows a node browser
Wrthm a node browser, a lmk appears as an icon
composed using the value of the node’s ,con attribute
As for node /cons m the graph browser, If the attrrbute
loon IS attached to the lmk its value wall be used to

compose the Icon, otherwme a default Icon IS used
Lmk icons can be edrted Just kke regular characters using
the edrtmg operahons of the Smalltalk paragraph edrtor
(copy/cut/paste) [Go1841

There are specral commands that bundle together several
prrmrtrve hypertext operattons mto a smgle transaction
For example, an annotate command creates a new node,
creates a lmk from the current cursor posrtton to the
new node, attaches attrrbute values that dmtingumh the
new node and lmk as an annotation and fmally, opens
a browser on the new annotatron node
In addttron to being used as an Independent wmdow,
the node browser is used as the lower pane of the
document browser
A special browser called a node dtfferences browser
places two node browsers srde-by-srde, each vtewmg a
specrftc versron of a node with highkghtmg used to show
drfferences between the two versrons

Figure 3 A Node Browser

Node Browsers

The node browser allows the contents of an in&-
vldual node to be edlted and supports both navigation
via links and the creation of new lmks Figure 3 shows
a node browser Wlthm a node browser, a hnk appears
as an icon composed using the value of the node’s zcon
attrrbute As for node icons m the graph browser, if the
atttlbute icon IS attached to the hnk its value will be
used to compose the icon, otherwise a default icon IS
used Lmk icons can be e&ted Just hke regular charac-
ters using the edmng operations of the Smalltalk para-
graph &tor (copy/cut/paste) [Go1841

There are special commands that bundle together
several prmuuve hypertext operations mto a single tran-
saction For example, an annotate command creates a
new node, creates a hnk from the current cursor position

136

to the new node, attaches attnbute values that duUn-
gulsh the new node and lmk as an annotation and
finally, opens a browser on the new annotatton node In
addlUon to being used as an independent wmdow, the
no& browser 1s used as the lower pane of the document
browser A special browser called a node drfferences
browser places two node browsers side-by-side, each
vlewmg a specific version of a node with hlghhghUng
used to show Qfferences between the two versions

4.2 Specializing Hypertext for a CASE Application

Our pnmary mouvatlon for building a hypertext
system was to provide database support for software
engineering environments Recent proposals descnbmg
project data base support for software engmeermg
environments MunSl, PeS85] repeatedly state the need
to logically lmk together document&on and source
code, the need for making annotaUons for recording
explanaUons and assumpuons, and the need for good
version management. PSUPSA, a popular software
specficauon tool, can be thought of as a very speaal-
lzed hypertext system [TeH77] PIE was an expenmen-
tal system which allowed for muluple views of docu-
mentatton as well as provldmg for design altemauves
[GoB81] PIE was based on a network of nodes - a
hypertext-l&e structure

Two questions must be addressed to determme
how Neptune’s pnnuuves should be used for a par~cu-
lar CAD appllcaUon First, how will nodes and links be
used to represent each item of project data, second,
what attnbutes need to be attached to each node and
lmk

Structuring Hyperdocuments

The first quesuon 1s probably the easier to
answer Documents are typically orgamzed as a hlerar-
thy of sechons and sub-sections This structure can be
dm~tly expressed m hypertext by usmg a node to
represent each secuon or sub-se&on with lmks con-
necttng each node to rts mm&ate descendent sections
or sub-secuons If a section 1s lengthy, porUons of the
section can be broken out. mto separate nodes Addl-
uonally, d a secuon contains lllustratlons or tables,
separate nodes can be used for these porUons so that
speclahzed editors can be used to view the node The
HAM’s linearizeGraph operauon can be used to
extract a document from the hypertext graph so that
hardcopies can be produced

The stauc structure of program source code can
also be duectly represented usmg hypertext For exam-
ple, a Pascal program 1s a simple hierarchy of nested
procedures and funcuons and can be represented

directly as a tree with a node for each procedure or
function In a language hke Modula-2 a program
requires a &rected graph to represent. Its static structure
Each module can be represented by a snnple tree smulat
to the Pascal program, the need for a directed graph 1s
due to links that are used to specify imported modules
Associated with each import list m a module 1s a lmk
that points to the node representmg the module being
imported A compiler integrated with hypertext can use
nodes for ObJect code and symbol tables, lmks can be
used to associate these ObJects with their source code

Within the framework outlined above, the ques-
tion of how much or how little should go mto a node 1s
still not answered completely In our hypertext system
the node 1s the atomic data unit. The getGraphQuery
and 1mearlzeGraph HAM operauons return nodes, not
portions of nodes, our lmk attachments point to posl-
Uons within a node, not to spans of the node’s contents
Therefore, if a piece of mformauon needs to be viewed
m several duunct sub-graphs, then thrs mformauon
must be m a separate node For example, da paragraph
m a design document 1s also bemg used as a comment m
the source code, then that paragraph should be
represented by its own node An addmonal consldera-
tlon mvolves the unit of mcrementahty that wdl be used
to process the mformauon For example, a compiler
may be able to recompile a changed procedure mdlvldu-
ally, that 1s without recompllmg the entire module that
contams the procedure [SDB84, MeF811 In this case,
the unit of mcrementahty of the compder should be
used to determme what syntactic code fragment the
source code nodes represent

Exploiting AttrlbutesNalue Pairs

Havmg determmed how to represent CAD mfor-
maUon as a &ected graph, the next step 1s to decide
how to use atmbutes to orgamze sub-graphs The pn-
mary objective IS to make it easy to access all the mfor-
maUon that 1s needed and to resmct the access to only
what is needed

The general guldelme for using atmbutes 1s that
atmbutes attached to nodes descnbe what ObJeCt the
node represents and attributes attached to links descnbe
the relauonshlp that the lmk forms between two nodes
In Neptune there are no lmuts to the number of atm-
butes that can be attached to a node or lmk Addition-
ally, both users of Neptune and application programs
budt on top of Neptune can define atmbutes Neptune’s
atmbute/value pans are very dynanuc - at any Ume the
user or an apphcauon program can attach an ad&Uonal
attnbute to a node or lmk, delete an atmbute attach-
ment, or mtify the value of an atmbute The next two
paragraphs outlme how atmbutes could be used m a

137

Modula-2 CASE environment built on top of Neptune
For a more complete treatment on how to use attributes
m a CASE environment see [peS85]

In a Modula-2 CASE environment every node has
an attached atmbute, named contentType, that ldenties
what the node contams (if thts attibute 1s not attached, a
default value 1s assumed) Values of contentType could
mclude text, graphtcs, Modula-2 source code, Modula-2
object code or Modula-2 symbol table Add&onal aMr-
butes could be used to further descnbe the type of the
node’s contents For example, nodes that contam por-
tions of a Modula-2 source program could have an attrr-
bute codeType with values that descnbe what kmd of
syntactic code fragment the node represents, such as
dejin&onModule, lmplementat~onModule, or procedure
Every lmk has an attached attnbute, named relation,
that names the relatlonshlp that the hnk denotes Values
of ‘relauon’ could include IsPartOf, annotates, refer-
ences, or compileslnto

Additional atmbutes can be assigned to nodes or
hnks by the user or by the application level programs to
provide semantic mformaaon that 1s useful for compos-
mg quetles Examples include attrrbutes to descnbe
which document the node 1s contamed m, what funchon
of the software system the node describes,, or manage-
ment mformation such as which proJect team member 1s
responsible for the node

5 CONCLUSIONS

The maJor shortcommgs m the current definition
and nnplementauon of Neptune are two-fold In a
mulu-person design effort, there is frequently the need
for an mQvldua1 to try out tentative designs m that
mdlvldual’s own “pnvate world” and then eventually to
merge the chosen design back with the mam design
database There are currently no provlslons for multiple
version threads m any exlstmg hypertext systems The
second maJor shortcornmg 1s that as defined, the func-
ttonallty provided by demons 1s very weak Thexe
needs to be a set of parameters associated with each
demon, such as the demon mvokmg event, an mvoca-
hon me-stamp, or an ldenticahon of the mvokmg
node or graph Examples of demon use could be send-
mg mall to the person responsible for a node when
someone other than that person modifies the node, per-
fomung special checkmg code when a node 1s modified,
or mvokmg an incremental compiler when a node wluch
contams code 1s mtified.

The two current shortcommgs of Neptune, ldentl-
fied above, are bemg addressed We have designed,
and are current.@ nnplementmg, a scheme for muluple
version threads that allows muluple simultaneous con-

texts to exist m a given Neptune database These con-
texts can also be used for clustermg related nodes and
links as well as for conflguratlon management We will
be provldmg an environment that will allow parameter-
lzed demons to be wntten m Smalltalk, Modula-2, or C

There is a possible synergy, which is not currently
being addressed, between the use of a relational data-
base m conJunchon with hypertext Hypertext can ade-
quately capture the relauonshlp between all the major
pieces of information that are created as part of an
engmeermg proJect Hypertext nught not be as suitable
for finer gramed relationships such as defimtion-use
links m an incremental compler’s symbol tables It
could be very beneficial to combme the advantages that
hypertext provides with those provided by a relational
data base For example, given such fine gramed mfor-
matlon as a symbol table, one might want to find all
references to a vanable, not only m the code, but m all
the documentation as well A relationally complete
query language makes possible a wide range of mterest-
mg questions which can be asked

We have shown how hypertext can provide an
appropnate storage model for CAD, and m partzular
CASE We have bnefly decrlbed Neptune, a hypertext
system currently bemg used m software development
environments research Hypertext 1s part~ularly good
as a storage system for all the information associated
with a software (or hardware) project because It allows
arbitrary structurmg of the mformahon, and It keeps a
complete version hlstory of the mformauon and the
structure In Neptune, we have provided a hypertext
machme that 1s particularly sulted for bmldmg apphca-
tions, especially CASE systems

REFERENCES

[BaK85] Batory, D S and Knn, W Modelmg concepts
for VLSI CAD ObJects ACM Transactions on
Database Systems 10,3 (Sep 85), 322-346

[Bus451 Bush, V As we may tlunk Atlantrc Monthly
176, 1 (July 1945), 101-108

lj%E68] Engelbart, D C and Enghsh, W K A research
center for augmentmg human mtellect. AFZPS
Proceedings, Fall Joint Computer Conference,
33,395-410

[Eng63] Engelbart, D C A conceptual framework for
the augmentahon of man’s mtellect In Vistas zn
Informatron Handling. Vol 1, P D Howerton and
DC Weeks, eds Spartan Books, Washmgton,
D C 1963, l-29

138

lEng841 Engelbart, DC. Authorship provisions in
Augment. IEEE 1984 COMPCOM Proceedings,
Spring 1984,465-472.

[FND82] Feiner, S., Nagey, S., and van Dam, A. An
experimental system for creating and preserving
graphical documents. ACM Transactions on
Graphics 1,l (Jan. 1982), 59-77.

[Go1841 Goldberg, A. Smalltalk-80: The Interactive
Programming Environment. Addison-Wesley
Publishing Company, Reading, Mass. 1984.

[GoB81] Goldstein, I. and Bobrow, D. An Experimen-
taI Description-Based Programming Environ-
ment: Four Reports. C&81-3 Xerox Palo AIto
Research Center (Mar. 1981).

IHaT Halasz, F. and Trigg, R. personal communica-
tion.

[Hun811 Wnke, H., editor. Sofrware Engineering
Environments (Proceedings of the Symposium
held in Lahnstein, Federal Republic of Germany,
June 16-20, 1980). North-Holland Publishing
Company, Amsterdam, the Netherlands, 1981.

[KaL84] Katz, R.H. and Lehman, T J. Database support
for versions and ahematives of large design files.
IEEE Transactions on Sofware Engineering SE-
10,2 (Mar. 1984), 191-200.

&in841 Linton, M.A. Implementing relational views of
programs. Proceedings of the ACM
SIGSOI?TISIGPL.AN Software Engineering Sym-
posium on Practical Sofware Development
Environments, Pittsburg, PA, April 1984, pub-
lished as SIGPLAN Notices 19, 5 (May 1984),
132-140.

IMeFBl] Medina-Mom, R. and Fe&r, P.H. An incre-
mentaI programming environment. IEEE Tran-
sactions on Sofware Engineering SE-7, 5 (Sep.
1981), 472-482.

tIvIeD821 Meyrowitz, N and van Dam, A. Interactive
editing systems. ACM Computing Surveys, 14, 3
(Sep. 1982) especially pp. 339-340,380-383.

[Ne181] Nelson, T.H. Literary Machines. T.H. Nelson,
Swarthmore, PA., 198 1.

[peS85] Penedo, M.H., and StuckIe, ED. PMDB - a
project master database for software engineering
environments. Proceedings of the 8th Interna-
tional Conference on Sofware Engineering, Aug.
1985,150-157.

[RMN81] Robertson, G., McCracken, D. and Newell,
A. The ZOG approach to man-machine com-

munication. International Journal of Man-
Machine Studies, 14,461-488,1981.

[SDB84] Schwartz, M.D., Delisle, N&I., and Begwani,
V.S. Incremental compilation in Magpie.
Proceedings of the SIGPLAN ‘84 Symposium on (
Compiler Construction, Montreal, Canada, June
17-22, 1984, published as SIGPLAN Notices 19,6
(June 1984), 122-131.

[lreH77] Teichrow, D. and Hershey, E. PSUPSA: A
computer aided technique for structured docu-
mentation and analysis of information processing
systems. IEEE Trans. on Soft. Eng. SE-3, 1 (Jan.
1977), 41-48.

(Wey82] Weyer, S.A. The design of a dynamic book
for information search. International Journal of
Man-Machine Studies, 17,87-107,1982.

IWeB Weyer, S.A. and Boming, A.H. A prototype
electronic encyclopedia. ACM Transactions on
Office Information Systems, 3, 1 (Jan. 1985), 66-
88.

[YMD85] Yankelovich, N., Meyrowitz, N., and van
Dam, A Reading and writing the electronic
book. Computer 18,lO (Oct. 1985), 15-30.

139

APPENDIX: Hypertext Abstract Machine Specification

The notation used for describing the hyperdata abstract machine operations is of the fornu

operation: operand1 x operand2 x . . . x operand,, + result0 x result1 x result2 x . . . x result,,,

where n 2 1 and m 2 0. Each operandi and reszd$ has a domain of values. Additionally, x” means x XX x . . . xx with n
x’s, x* means n” for some” n 2 0, and x+ means n” for some n 2 I. The atomic domains used are the following (in alpha-
betical order):

Attribute:
AttributeZndex:
Boolean:
Contents:
Context:
Demon:
Difference:
Directory:
Event:
Explanation:
LinkZndex:
Machine:
NodeZndex:
Position:
Predicate:
ProjectZd
Protections:
Time:
Value:

an attribute name.
unique identification for an attribute name.
either true or false.
data which can reside in a node.
unique identification for the “current graph.”
a demon value.
a deletion, insertion or replacement.
a valid file directory name.
a demon event.
explanatory text.
unique identification for a hyperdata link.
a valid computer name in a networking environment.
unique identification for a hyperdata node.
an ordinal number.
a Boolean formula in terms of attributes and their values.
unique identification for a hyperdata graph.
one of the possible file protection modes.
a non-negative integer representation for a givendate and time.
an attribute value.

There are some additional domains which can described as combinations of the above domains:

LinkPt = Nodelndex x Position x Time x Boolean
Version = Time x Explanation

For all of the hyperdata abstract machine operations, result0 has domain Boolean; result0 is implicit. If the operation is
successful then true is returned otherwise false is returned.

A.1 Graph Operations

createGraph: Directory x Protections + Projectld x Time
Creates a new empty hyperdata graph, in Directory using Protections to set up the files representing the new hyperdata
directory. If successful, returns Projectld, a unique identification for the graph, and Time, the creation time of the new
graph.

destroyGraph: Projectld x Directory +
Destroys the existing graph, located in Directory. ProjectZd must have the same value as returned by the CreateGraph
operation that created the graph in the first place.

openGraph: Projectld x Machine x Directory + Context
Opens an existing graph, located in Directory on Machine. Projectld must have the same value as returned by the
createGraph operation that created the graph in the first place. Context is the unique identification for the graph. This
operation can trigger a demon.

addNode: Context x Boolean + Nodelndex x Time
Creates a new empty node in the graph given by Context. If Boolean has value true then a complete version history is
maintained for the node. If successful, returns NodeZndex, the unique identification for the new node, and Time, the
creation time of the node. This operation can trigger a demon.

140

deleteNode Context x NodeIndex +
Removes node Nodelndex from the graph given by Context All hnks mto or out of the node are deleted This operation
can trigger a demon

addLink Context x LmkPtl x LmkPtZ + L&Index x Time
Creates a new lmk between two nodes LmnkPt, represents the “from node” and LmkPt2 represents the “to node ” The
from and to nodes must exist at then respechve times If a Time 1s zero then the lmk always refers to the current version
of the correspondmg node If successful, returns L&Index, a unique ldentlficahon for the new lmk and Twe, the crea-
bon time of the lmk Thrs operahon can tngger a demon

copyLink Context x L&Index x Twne, x Boolean x LtnkPt + L&Index x Tune
Creates a new lmk between two nodes where one end of the link 1s identical to that of lmk L&Index at Trmel and the
other end of the lmk 1s specified by LlnkPt If Boolean has value true then the source of the new lmk 1s ldenucal to that
of LmkZndex, otherwise the destmation of the new lmk 1s ldenacal to that of l&Index The hnk defined by L&Index
must exist at Tune, If a Twne is zero then the lmk always refers to the current version of the correspondmg node If
successful, returns Lznkhdex, a umque identification for the new hnk and Tvne, the creation tnne of the hnk This
operation can mgger a demon

deleteLink Context x Lmkhdex +
Removes lmk L&Index from the graph given by Context This operation can trigger a demon

linearizeGraph Context x Nodelndex x Time x Predrcatel x PredrcateZ x AttrrbuteIndex,m x AttrrbuteIndexzn +
(NodeIndex x Valuem)* x (Lmkhdex x Value”)*

Returns a sub-graph of the graph given by Context at Ttme, composed by a depth first search yla lmks startmg at node
Nodelndex Each of the nodes m NodeIndex* satisfies Predicate,, each lmk traversed satisfies Predrcatez and each lmk
m L&In&x* connects two nodes m NodeIndex * For each node also returns Value” for the m requested attributes
AttrrbuteIndexlm and for each lmk returns Value” for the n requested atmbutes Attrrbutelndexzn

getGraphQuery Context x Tune x Preaicatel x Predrcate2 x AttrrbuteIndexlm x Attrrbutehiex2n +
(Nodelndex x ValUem)* x (L&Index x Value”)*

Returns a sub-graph of the graph given by Context at Tune, composed by all nodes and hnks such that each of the nodes
m NodeZndex* satMies PredicateI, each hnk traversed satisfies Predicate2 and each hnk m LmkIndex* connects two
nodes m NodeZndex* For each node also returns Value” for the m requested atmbutes AttrrbuteIndexlm and for each
lmk returns Value” for the n requested atmbutes AttrrbuteZndexzn

A 2 Node Operations

Each node 1s either an archive or a file Complete version histories are mamtamed for archives, only the current
version 1s avalable for files

openNode NodeIndex x Tvnel x Attrrbutelndep + Contents x LmkPt* x Valuem x Tmze2
If successful returns the Contents for no& Nodelndex If node Nodelndex 1s an archive then the Contents are at time
Time]; if Tame, 1s zero then the Contents are current Also returned are the LmkPt* attached to the desired verSlon of the
node as well as Valuem for the m requested atmbutes Attnbutelndefl The Tune, returned 1s the version ume of the
current version of the node This operauon can tngger a demon

modifyNode NodeIndex x Time x Contents x LmkPt* +
Check m a node W&I m&&d Contents. Twne must be equal to the version time of the current version of the node
There must be a Lmk.Pt for each lmk associated with the current version of the node If the node is an archive then
creates a new version of node and a new version of each of its lmk attachments whose Posrtron has changed This
operation can mgger a demon

getNodeTimeStamp NodeIndex + Time
Returns the current version Ttme for node Nodehdex

ChangeNudeProtection NodeIndex x Protections +
Sets the protections for the file stormg the contents of node NodeIndex to protections

141

ge tNodeVersions NodeIndex + Verszonl + x Verszon2 *
Returns the version history for node Nodelndex MaJOr versions are updates to the contents of the node and are returned
m Verszonl+ Minor versions are updates that relate to the node but do not change US contents, for example adding a
hnk or defining an attirbute value, they are returned m Verszon2*

getNodeDifferences No&Index x Time, x Time2 + Difference*
For node NodeZndex returns m Difference* the differences between the version at time Tzme, and at ume Time2

A 3 Lmk Operations

getToNode LznkInakx x Tzmel + NodeIndex x Time2
Returns the node Nodelndex and its version Time, correspondmg to the destmauon of the lmk Lvzkhdex at ume Tzme2

getFromNode Lznklndex x Tzme, + NodeIndex x Time2
Returns the node NodeIndex and its version Tzme, correspondmg to the source of the link Lznklndex at tnne Time2

A 4 Atmbute Operations

getAttrIbutes Context x Tzme + (Attribute x AttrzbuteIndex)*
For the graph given by Context returns m (Attribute x AttributeIndex)* all the attributes, and then respecuve unique
ldenttfiers, that existed at tnne Tzme

getAttrlbuteValues Context x AttrzbuteIndex x Tzme + Value*
For the graph given by Context returns in Value* the set of all values defined for attrIbute Attrzbutelndex at time Tzme

getAttrlbuteIndex Context x Attribute + Attrzbutelndex
Returns the unique ldentlficauon for Attrzbute m Attrzbutelndex If no attribute Attrzbute exists, then creates one

SetNodeAttributeValue No&Index x Attrzbutelndex x Value +
Sets the value for attribute Attrzbutelndex for the node Nodelndex to Value If the node nodeIndex 1s an archive then
creates a new version of the attnbute value

deleteNodeAttrlbute NodeIndex x Attrzbutelndex +
Deletes the atmbute Attrzbutelndex for the node nodelndex

getNodeAttributeValue NodeIndex x Attrzbutelndex x Tzme + Value
Returns Value for atmbute Attrzbutelndex at time Tzme for node Nodelndex

getNodeAttributes NodeIndex x Tzme + (Attribute x Attrzbutelndex x Value)*
Returns m (Attrzbute x Attrrbutelndex x Value)* all the attributes, their respective unique ldentlfiers, and their values that
existed at tune Tzme for node Nodehzdex

setLinkAttrlbuteValue Lznklndex x Attrzbutelndex x Value +
Sets the value Value for attribute Attrzbutelndex for the lmk Lznkhzdex If the lmk LznkZndex 1s attached to an archive
then creates a new version of the attrrbute value

deleteLinkAttribute Lznklndex x Attrzbutelndex -+
Deletes the attribute Attrzbutelndex for the hnk Lznkhzdex

getLinkAttributeValue Lznklndex x Attrzbutehdex x Tzme + Value
Returns Value for attnbute Attrzbutelndex at hme Tame for lmk Lznklndex

getLinkAttributes LznkJndex x Tzme + (Attribute x Attrzbutelndex x Value)*
Returns m (Attrzbute x Attrzbutelndex x Value)* all the attnbutes, their respective unique ldenufiers, and their values that
existed at tune Tzme for hnk Lznkhdex

142

A 5 Demon Operahons

setGraphDemonValue Context x Event x Demon +
For the graph given by Context sets the demon correspondmg to event Event to Demon Creates a new version of the
graph demon If Demon 1s null then demon 1s lsabled

getGraphDemons Context x Tune + (Event x Demon)*
For the graph given by Context returns the demons for the graph at ume Tune

setNodeDemon NodeIndex x Event x Demon +
For node NodeIndex sets the demon corresponding to event Event to Demon Creates a new version of the node demon
If Demon 1s null then demon 1s babied

getNodeDemons Noa’eIna!ex x Tune + (Event x Demon)*
For node No&Z&x returns the demons for the node at tnne Tune

143

