68

Nulls in Relational Databases: Revisited

By
Raju Kocharekar
International Bank for Reconstruction and Development
1818, H st, Washington, DC 20433

Abstract

This paper discusses the semantic issues related to null
values problem in relational databases. We argue that the
proposed set of maybe operations with the three valued logic is
still not adequate and needs further enhancements.

1. Introduction

Support for the null values in existing relational database
management systems is ad-hoc in nature and has led to confusion
because of the inaccurate or ambiguous results from queries on
tuples with nulls. Many researchers ([Codd,86], [Codd,87],
[Date,82] have addressed these problems and proposed solutions.
The main thrust of the proposals is to have a new set of MAYBE
operations on the relational databases. In informal terms, the
maybe operations yield not only the tuples for which the query
predicate holds true, but also those tuples for which the
predicate may be true. The maybe operations are based on the
three valued predicate logic. We briefly outline the methodology
below.

For all atomic predicates 'x theta y’, where theta is =,
NOT=, ¢, NOT ¢, >, and NOT », if either x or y or both are null
then the result of the operation is null (denoted by ’?’ later).
For all arithmatic operations, such as x+y, 1if either of the
arguments is null then the result is null. The truth tables for
the three logic operators ’‘and’, ‘or’ and ’‘not’ are:

AND{ T ? F OR | T ? F NOT
T|{T ? F T| T TT T|F
? ? 2 F ? T 72 ? ? ?
F|F F F F|T 2 F FIT

E.F. Codd [Codd,87] has also proposed a four valued logic
based on the fact that two types of null values exist in the
database; the ’'applicable null’ values and the ‘inapplicable
null’ values. The former nulls indicate that the corresponding
attribute value is currently unknown, but may later be replaced
by a valid nonnull value. The 1later null indicates that the
corresponding attribute is not applicable for the tuple in
consideration. This null value can never be changed. 1In
[Koch,?], we have argued that inapplicable null values are

SIGMOD RECORD, Vol. 18, No. 1, March 1989

redundant with a new design methodology. The details of the
proposal are beyond the scope of the paper. We restrict
ourselves to the three valued logic.

2. Problems with MAYBE operations as it stands today:

2.1 Proble One.

Maybe operations have solved many of the null value
problems. However, the definition of maybe operations still
needs to be enhanced to get useful answers. To give an example,
consider the following personnel database.

Employee Department

Empno |WorkDeptNo Salary Deptno |MgrNo | DeptName
EO1 D101 40,000 D101 EO1 Engineering
E02 D101 45,000 D105 ? Marketing
EO3 D202 ? D202 EO3 Accounting
EO04 ? ? D303 ? Research
EOS5 D303 30,000 D404 ? Personnel

The following referential integrity constraints exist.
Range of x is Employee
Range of y is Department
(for all x) ((x.WorkDeptNo is null)

or ((there exists y) (y.Deptno=x.WorkDeptNo)))
(for all y) ((y.MgrNo is null)

or ((there exists x) (y.Mgrno=x.Empno)))

Now if we ask the query: "find the employees that MAYBE
working in D404", we get the resulting employee tuple with empno
EO4. If we ask the same question for WorkDeptNo D505, we still
get the same answer. The difference between the first and the
second query is that the department D505 does not exist. This is
indicated by the fact that there is no corresponding tuple in
the Department relation. We therefore argue that the answer to
the second query is wrong.

At this point we digress slightly from the null value
problem and talk about the entity-relationships in the database
design. To begin with, all entities in the database are defined
on domains. Many DBMSs support primitive domains such as
integers and characters. In this context, domains are similar to
types in the programming language. In particular, the domain
membership check is done at the query compilation time and is
based on the syntactical notation. In the database design
process, we define kernel entities that are ungiuely identified
by a value that is a member of a particular domain. Most of the
domains have infinite number of possible members. At a given
time, the database holds a set of entity values that is a subset

SIGMOD RECORD, Vol. 18, No. 1, March 1989 69

70

of the domain. For example, the employee and deparments are
kernel entities uniquely identified by the empno and the deptno
over the domain of character strings. In addition, the kernel
and associative (defined 1later) entities have properties that
are other kernel or associative entities and are designated by
the identifiers of those entities. Thus, Salary and WorkDeptNo
are properties of the employee entity. As you may already have
noticed, we call salary as an entity, but do not have a
corresponding salary relation that identifies all salaries. The
problem is that we are not interested in identifying all salary
values. More important, we assume that the Salary relation
contains all values that are possible in the domain, and this
leads to an infinite relation. We state that the DBMS is
intelligent enough to postulate the existence of such a salary
relation for all practical purposes. We define associative
entities to be those entities for which we do not have a
seperate identifier but use a combination of one or more
identifiers of other entities. We mention that this is only for
convenience and assume that the associative entities are the
same as kernel entities for further discussion. We also assume
that the DBMS 1is enriched with the referential integrity
management and allows the database designer to define all
primary and foreign keys for the above relationships.

What we have achieved from this discussion is the
introduction of a dynamically defined domain for a property of
the entity. In formal terms, the only permissible non-null
values in the property of an entity are those that exist in the
corresponding entity relation for that property. For example,
the Workdeptno property of the Employee relation can only have
those values that currently exist in the Deptno of Department.
If the Workdeptno value is currently unknown, the wvalid
assumption is that the Workdeptno posseses any one of the
existing values from the Deptno in the Department relation.
Therefore in the example queries above, the predicate
'Employee.WorkDeptNo = D404’ has a value ’‘maybe’ for the tuples
with unknown Workdeptno, while the predicate
'Employee.WorkDeptNo = D505’ has a value ‘false’.

2.2 Problem Two.

[Gran,77], (Lips,79])] and [Codd,87] discuss MAYBE operations
on tautologies. They show that in some cases where the arguments
have null values, the MAYBE predicates yield a ’'maybe’ instead
of a ’'true’. The following example shows one such case.

(Employee.Ssalary »= 25,000) Or (Employee.Salary ¢ 25,000)
- example 1

We discuss the inverse case where the result of the

predicate should always be false. Consider the following example
predicate:

SIGMOD RECORD, Vol. 18, No. 1, March 1989

(Employee.Workdeptno = ‘D404’') And (Employee.Workdeptno =
‘D303’) example 2

It is hard to believe that a user would explicitely pose
such a predicate, but if we assume that one of the predicates is
embedded in a view then it is concievable to have such a select
criteria in the query obtained after merging the view definition
with the user query. The evaluation of the above predicate with
three-valued logic leads to a 'maybe’ in cases where workdeptno
is null. Note that this case is worse than the tautology because
now we see an incorrect answer set. For tautologies, though the
predicate value is different than what it should be, we get the
correct answer set of tuples.

Codd [Codd,86] describes the problem as ’‘non-traumatic’ and
one that could temporarily be ignored. Unfortunately, as we show
below, the problem with maybe set of operations exists not just
in tautologies, but in other predicates where the argument
containing a null value appears more than once. The following
example illustrates such a case.

(Deptartment.Deptno=Employee.Workdeptno) and
(Employee.WorkDeptno = ‘D404') - example 3

Consider a case where Department.Deptno has a value D303
and Employee.Workdeptno is null. The predicate evaluates to a
‘maybe’ with the three valued logic. The correct value should
however be a '‘false’. The problem is very clear.
Employee.Workdeptno is assumed to have two different values in
evaluating two different parts of the predicate.

(Gran,77) and [Lips,79] have proposed solutions to the
problem. We discribe here a modified version of the Grant’s
proposal. In the second example discussed above, if the
workdeptno contains a null for the tuple in consideration, we
temporarily substitute it with D404 before evaluating the
predicate Employee.Workdeptno = ‘D404’. The predicate then holds
‘true’. We retain the temporary value of the workdeptno for the
evaluation of the rest of the predicate. Employee.Workdeptno =
‘D303’ therfore yields a ‘'false’ with the temporary workdeptno
value leading the final result to be a false value. In the
second attempt, we try with the inverse of the first assumption,
i.e. the Workdeptno is now not equal to D404. The first
predicate yields a ‘false’. We have two choices while evaluating
the second predicate; either to assume that the Workdeptno is
D303 or that it is not. Both choices are consistent with our
earlier assumption that the Workdeptno is not D404. The first
choice yields a ‘true’ while the second choice yields a ‘false’.
In both cases, the final result is false. Actually, we could
stop the evaluation after realizing a false result for the first
predicate. We can apply the same method to the first (tautology)
and the third example. The basic approach then is to assign
truth values to the atomic predicate containing argument with a

SIGMOD RECORD, Vol. 18, No. 1, March 1989 71

72

null value. In doing so, we constrain the possible set of values
that the argument could hold for the further evaluation of the
predicate. The tuple in consideration is included in the answer
set if the entire predicate evaluates to true, with a logically
consistent substitution of nulls with atleast one non-null
value. We can also work backward by first assuming the value of
the entire predicate to true.

Adnmittedly, the mechanism described above is more complex
than the maybe logic. In fact, the problem of deriving any
theorem in the first order 1logic is unsolvable. However, by
confining to a subset of the first order logic and controlling
the execution, we can probably manage the problem. Many current
A.I. systems incorporate the required deduction machinery to
develop the mechanism.

Before closing the discussion, we want to show an example
where the system knowledge of null valued arguments could be
used to further optimize the queries. Consider the following
query, written in an SQL format.

Select Department.Deptname
From Deparment
Where (not) exists (Select Employee.Empno
From Employee
Where Employee.Workdeptno=Department.Deptno
and Employee.Salary > 10000)

If we find a single tuple in the Employee relation with a
null WorkDeptNo and Salary greater than 10000, we no longer need
to evaluate the inner query for each Department.Deptno value,
since the query will have atleast one answer tuple for any value
of Department.Deptno. This condition could possibly be detected
at the first evaluation of the inner query.

4. Bibiliography.

[Codd,86] Codd,E.F. Missing Information (Applicable and
Inapplicable) in relational databases, SIGMOD Rec. Vol. 15, No.
4, December 86.

[Codd,87] Codd,E.F. More Commentary on Missing Information
(Applicable and 1Inapplicable) in relational databases, SIGMOD
Rec. Vol. 16, No. 1, March 87.

(Date,82] Date,C.J. Null values in Database Management, Proc.
2nd British National Conference on Databases (Invited Paper),
July 1982.

[Gran,77] Grant,J. Null values in a Relational Database,
Information Processing Letters 5(1977), 156-157.

SIGMOD RECORD, Vol. 18, No. 1, March 1989

[Koch,?] Kocharekar,R. Unifications in Relational Databases,
Submitted to the Hawaii International Conference on Systems
Sciences-22, to be held in January 89.

[Lips,79] Lipski Witold, Jr. On Semantic Issues Connected with
Incomplete Information, ACM-TODS, September 79, Vol 4 No 3.

SIGMOD RECORD, Vol. 18, No. 1, March 1989 73

