54

GESTALT: An Expressive Database Programming System*

Michael L. Heytens'
Rishiyur S. Nikhil}
Massachusetts Institute of Technology

June 23, 1988

Abstract

Many new database applications require computational and data modelling power simply not
present in conventional database management systems. Developers are forced to design complex
encodings of complex data into a limited set of database types, and to embed DML commands
into a host programming language, a notoriously tricky and error-prone enterprise.

In this paper, we describe the design and implementation of GESTALT, a system and
methodology for organizing and interfacing to multiple heterogeneous, existing database sys-
tems. Application programs are written in a supported programming language (currently C
and Lisp) using high-level data and control abstractions native to the language. The system
is ¢ :ible in that the underlying database systems can easily be replaced/upgraded/augmented
wi..iout affecting existing application programs.

We also describe our experience with the system: GESTALT has been in daily operational
use at MIT for over a year, supporting an information system for CAF, a research facility for
the automation of semiconductor fabrication.

1 Introduction

Database management systems have traditionally been used in administrative applications to pro-
vide efficient access to large data sets, preserve data integrity and consistency, and to control
access. Recently, however, database systems have been applied to diverse new domains such as
VLSI computer-aided design and voice and image processing,.

A straightforward application of conventional database technology (e.g., current relational sys-
tems) to these nontraditional areas has met with limited success. A key problem is the difficulty
inherent in expressing complex objects and operations in terms of relations and relational operators.
Moreover, conventional systems provide no general mechanism for abstracting over a given set of
operations or data, thus all representation and manipulation must be encoded directly in terms of

primitive constructs. In many instances, such a relational representation is cumbersome, leading
to abstruse application logic.

“This research was sponsored in part by the Defense Advanced Research Projects Agency (DoD) through the
Office of Naval Research under Contract Number N00014-85-K-0213.

"Room 36-667, MIT, 77 Massachusetts Avenue, Cambridge MA 02139, USA; Phone: (617)-253-7811;
Arpanet: heytenstcaf.mit.edu

IMIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA;
Phone: (617)-253-0237; Arpanet: nikbil@xx.lcs.mit.edu

SIGMOD RECORD, Vol. 18, No. 1, March 1989

To obtain adequate expressivity and abstraction, application developers typically embed query
language commands into a host programming language. An embedded interface, however, is noto-
riously tricky and error-prone. Programmers must contend with both database and programming
language concepts, e.g., two mismatched type systems, two error /exception mechanisms, two types
of control structures, etc. These inherent difficulties make it accessible only to database experts.

A number of research efforts are currently underway aimed at developing more expressive
database systems [1,4,7,11,16]. Still, conventional systems are likely to remain the commercially-
available state of the art for a number of years. Thus, a natural question is: How can we more
effectively organize and interface to today’s database systems.

This paper presents one possible organization, developed as part of the integrated circuit com-
puter integrated manufacturing (IC-CIM) effort at the Massachusetts Institute of Technology. Our
system, called GESTALT, is currently employed by CAFE (Computer-Aided Fabrication Environ-
ment) a sophisticated information system supporting the many facets of IC manufacturing. From a
database perspective, CAFE is an especially challenging domain due to the diversity of information
it manages, and the many complex programs it supports for the acquisition and manipulation of
semiconductor manufacturing data. (For a discussion of IC-CIM data, see {8].)

One of the main motivations behind GESTALT was the need for an application development
paradigm that did not require database and/or programming language expertise. The implied
requirement for simplicity, however, had to be tempered with enough expressive power to permit a
conceptually natural representation of the complex structures found in the domain of semiconductor
manufacturing.

Another aim of GESTALT was database independence, i.e., the model visible to applications
was to be independent of the actual underlying database management system or systems. This
capability provides a great deal of implementation flexibility as well as an elegant way to support
“cross system” queries. The latter (similar to {3,15]) is especially useful in a manufacturing setting,
e.g., it can provide applications with a unified view of design, manufacturing, test, and product
sales data, even though this information may physically reside at multiple heterogeneous database
systems. Without this kind of support, application programmers must query component databases
directly (after first mastering all the necessary interfaces!) combining partial results to form the
desired answer. This process is complicated, tedious, and error-prone.

Finally, in a design and manufacturing environment, an effective data management system must
seamlessly encompass a variety of CAD/CAM tools; it is simply not feasible to rewrite data and

operations supported by these tools into a single monolithic DBMS. Thus, the GESTALT data
model had to support the databases and procedural primitives of such tools.

We begin by presenting an overview of GESTALT in the next section. Section 3 describes the
application interface, illustrating the programming model with sample applications. In Section 4
we describe the internal organization of GESTALT, and finally, we conclude with a discussion of
the experience gained from using GESTALT in CAFE— a large, complicated system.

2 Overview of GESTALT

In essence, GESTALT is a layer of abstraction which shields application programs from underly-
ing database systems. The application programming paradigm consists of a supported language
(currently C and Common Lisp) and a set of abstractions for accessing and manipulating persis-
tent data. An important point is that these abstractions are constructed using mechanisms native

SIGMOD RECORD, Vol. 18, No. 1, March 1989 35

56

to the host language, thus application developers do not have to contend with the programming
language—database dichotomy typically found in conventional approaches.

The two supported languages have their strengths and weaknesses. Many new database appli-
cations have an artificial intelligence component, for which Lisp is the preferred language. Also,
the interactive nature of Lisp is convenient for posing ad hoc interpreted queries (analogous to
query interpreters in conventional systems). The C interface is available for lower-level tasks or for
applications requiring the compactness and speed of compiled C code.

The basic architecture of GESTALT consists of a software system running atop existing het-
erogeneous databases. GESTALT is not itself a full-fledged DBMS, rather it is a mechanism for
logically integrating disparate data managers. This integration enables applications to view data in
terms of a unified “global” schema. While GESTALT supports both read-only and update queries,
it does not allow dynamic schema modifications. Such updates require changes to the system data
dictionary, which must be “hand-coded™ by the database administrator (DBA).

Figure 1 illustrates both a conventional application architecture (a) and the organization of
applications written in GESTALT (b). In conventional systems, applications are written using an
embedded query language interface (e.g., QUEL in C); the resulting program is then transliterated
by a pre-processor and finally compiled. Conceptual entities and operations must be encoded
and manipulated explicitly in terms of primitives supported by the data model, leading to much
complexity in coding applications.

Application

Programs

(a) (b)
Figure 1: Structure of (a) conventional systems and (b) GESTALT.

In GESTALT, applications are also coded in a host programming language (C or Common
Lisp.) Application programmers determine how to query and update persistent data by examining
a specification detailing the interface to a collection of procedural, data, and iteration abstractions.
(For a good discussion of the techniques of abstraction and specification, see [10].) The abstractions

'A structured schema-interface tool has been implemented which makes updating the data dictionary also
straight{orward.

SIGMOD RECORD, Vol. 18, No. 1, March 1989

which describe persistent data are object-oriented in nature?, enabling applications to view domain
data at a level commensurate with the actual real-world structure.

GESTALT provides a rich set of primitive data types and explicit support for null objects.
Without system support of this kind, programmers often resort to nonstandard representations of
null values and awkward encodings of, say, temporal and engineering data. In a large project where
communication between developers is difficult, this can lead to inconsistencies and incompatibilities
between applications.

Many of the procedural abstractions supported by the system are higher-order (e.g., maps and
filters). Operations of this sort encourage a clear and elegant style of programming, allowing concise
expression of a wider range of computational processes {12,18].

3 The Application Interface

The interface visible to application programs is similar, in many respects, to the functional data
model [12,14]. A GESTALT schema consists of a specification of entity or object types, and
a collection of operations defined on instances of those types. This information is available to
application programmers in two different forms. The first is a textual specification (maintained
by the system) which provides an overview of each object type and a description of the effects,
modifications, and requirements of the associated operators. The second is the data dictionary; all
query facilities supported by GESTALT are available for accessing schema information stored in

the system catalogs. The interpreted Lisp interface provides a convenient mechanism for browsing
through meta-data of this form.

At the end of this section we present an example application as a concrete illustration of the
programming model. We first, however, examine various aspects of the interface in more detail.

3.1 Object Types

All data in a GESTALT system are viewed as abstract types, i.e., each abstract type specifies
an object type, a list of named typed slots (which record attributes and relationships) and the
set of procedures available for manipulating objects of that type. This is a very powerful tool,

enabling the DBA to add new kinds of data objects cleanly, effectively extending the application
programmer’s virtual machine.

Operations in data abstractions can be divided into the following categories:

selectors — procedures to select an object component
mutators —— procedures to update or delete an object
constructors — procedures to create objects

generators — procedures to generate null objects and iterators

A GESTALT system contains both pre-defined and domain-specific abstract types. The latter
are abstractions of objects present in the application domain, while the former encompass all the

built-in types, including an extended set of primitive entity types, abstract types for the data
dictionary, and list- and tuple-structured types.

2In.the following sense: Real-world entities are modelled as “objects” of various abstract types, objects can
“contain” other objects, and objects can share other contained objects. We do not model inheritance.

SIGMOD RECORD, Vol. 18, No. 1, March 1989 57

58

It is important to realize that even though a particular type may be built-in, its behavior is still
specified only in terms of the operators defined on instances of that type, so that the user sees no
semantic difference between built-in and user-defined types. Hiding the representation of built-in
types enables the system to perform run-time type checking. It also eliminates the possibility that
applications depend on particular encodings of values.

3.1.1 Pre-defined Types

The set of primitive types supported was designed specifically to facilitate modelling the temporal
and engineering data commonly found in manufacturing and design domains. The atomic members
of this set are:

TEXT - variable length array of bytes

INTEGER - fixed point number

FLOAT - floating point number

BOOLEAN - “true” or “false”

DATE - month, day, and year

TIMEOFDAY - hours, minutes, and seconds

TIMEDURATION - elapsed time in hours, minutes, and seconds.

Also pre-defined are several inezact and interval types. The inexact types record a value and
an uncertainty; interval types consist of an upper and lower bound. These provide a convenient
means of encoding engineering and scientific data, e.g., the thickness of a layer of epitaxial silicon

(say 1250 + 30 A) can be naturally expressed as an INTEGER_INEXACT with the appropriate value
and uncertainty.

To provide applications with a convenient mechanism for grouping related objects, GESTALT
provides the structured types LIST and NTUPLE (n-tuples). The former is a homogeneous sequence

of objects of unspecified length, while the latter is a heterogeneous collection of a fixed number of
objects.

GESTALT provides operators to map between pre-defined types and host programming lan-
guage values. These routines are needed because the representations of even atomic GESTALT
types are hidden from application programs. For example, the following Lisp procedure prints
the id, crystal orientation, and sheet resistivity of a specified wafer by applying dbl-coerce— an
operator which coerces atomic built-in data objects to corresponding Lisp values— to the desired
wafer attributes.

(defun wafer-print (w output-stream)
(let ((wd (wafer-waferdesc w)))
(format output-stream "wafer "A: <"A>, “A ohm/square %"
(dbl-coerce (wafer-id w))
(dbl-coerce (waferdesc-orientation wd))
(dbl-coerce (waferdesc-sheet-resistivity wd)))))

The data-dictionary is represented as a pre-defined set of abstract types, complete with selectors
and generators, so that the same computational model can be used to peruse it. These include:

TYPE - built-in and domain-specific types
ATTRIBUTE - object components or slots

SIGMOD RECORD, Vol. 18, No. 1, March 1989

OPERATOR - structure for describing operators
OPERATORARG - formal operator arguments

8.1.2 Domain-Specific Types

It is the responsibility of the DBA to augment the data dictionary accordingly with the domain-
specific abstract types for a given domain. We have implemented many tools to facilitate this
activity.

An example specification is shown in Figure 2. Such specifications are automatically generated
by the system from information stored in the data dictionary and are used by application devel-
opers. The first three operations (machine_name, machine_available, and machine_labuser) are
selectors; they take objects of type MACHINE and return an object corresponding to the desired
property or attribute. The next two (modify machine_available and modify machine_labuser)
provide a mechanism for mutating or modifying objects. Entities of type MACHINE are created by
constructor create_machine; this operator takes a name, labuser, available triple and returns a
newly-created machine. Finally, generators nul1_MACHINE and machine_iterator produce a null
machine and machine iterator, respectively.

Another example from the CAFE system is the type WAFER, with components: a TEXT id, a
wafer description (WAFERDESC, which records dopant, crystal orientation, sheet resistivity, etc.),
and a BOOLEAN flag indicating whether or not a layer of epitaxial silicon is present.

3.2 Procedural Abstractions

GESTALT’s procedural abstractions include generic operators for LISTs and NTUPLEs, as well as
common computational processes (such as maps and filters) packaged as higher-order procedures.
For example, the following Lisp code prints all wafers from a named lot (a logical set of wafers)
with resistivity values below a certain threshold:

(map (lambda (w) (wafer-print w t))
(filter (lot-wafers (lot-with-name name))
*low-resistivity?))

where name identifies the desired lot. Note that map and filter take arbitrary procedures as

arguments. Applications can also make use of the procedure mechanism of the host language to
create new procedural abstractions.

In addition, a variety of others procedures are supported, e.g., to copy and (extensionally)
compare data objects, a simple mark-and-release memory management scheme, etc.

3.3 Iterators

GESTALT iterators offer a convenient and space-efficient way to examine instances of a particular
type, and are inspired by CLU [10]. Iterators serve the function of “retrieve loops” or “record

cursors” found in conventional embedded query languages. For example, the following fragment of
C code illustrates how an application might operate on all machines:

SIGMOD RECORD, Vol. 18, No. 1, March 1989 59

Overview

A MACHIRE is a piece of equipment used in the fabrication of integrated
circuits. Attributes name, labuser, and available are maintained for each
machine, recording the machine’s name, a list of labusers waiting to use the
machine, and the current availability, respectively. Only the latter two are
mutable.

Operations

TEXT machine_name(m)
MACHINE m;
effects Returns machine name.

BOOLEAN machine_available(m)
MACHINE m;
effects Returns machine availability.

LIST machine_labuser(m)
MACHINE m;
effects Returns list of labusers waiting to use machine.

MACHINE modify.machine_available(m, available)
MACHINE m; BOOLEAN available;

modifies m.

effects Sets availability of m to available.

MACHINE modify.machine_labuser(m, labuser)
MACHINE m; LIST labuser;

modifies m.

effects Sets labuser list of m to labuser.

MACHINE create_machine(name, available, labuser)

TEXT name; BOOLEAN available; LIST labuser;
effects Returns newly created machine.
requires Name attribute must be unique.

MACHINE null_MACHINE()
effects Generate null machine.

ITERATOR machine.iterator()
effects Returns a machine iterator.

Figure 2: MACHINE data abstraction.

SIGMOD RECORD, Vol. 18, No. 1, March 1989

while (BOOLEANtoi(iter_more(machines))) {
current_machine = iter_current(machines);
. computation involving current_machine ..

}

where machines is an iterator, and iter_more and iter_current test for an exhausted iterator
and return the head of an iterator, respectively.

3.4 Type and Exception Checking

All GESTALT operators perform dynamic type checking. While static type checking could (in prin-
ciple) be performed, an unobtrusive implementation would require modifications of the C compiler
and Lisp interpreter, which we wished to avoid.

Certain operators also perform null checks at runtime. Generally speaking, operators that
examine object components are strict with respect to null objects, whereas operators which do not
examine components are nonstrict. For example, a null wafer can be freely included in a list or
tuple; a null exception is detected only when an attempt is made to, say, select the id component.

Routines that detect type or null errors generate a run-time warning message and return a null
object consistent with their range type. If an attempt is made to coerce a null object to a host
language type, then a pre-defined value is returned, after printing a suitable warning message.

In the case of domain-specific abstractions, the DBA is free to augment the run-time checking
with additional integrity constraints (or invarignts in programming language parlance.)

3.5 Object Persistence

In GESTALT, all objects of a user-defined type persist, whereas objects of atomic, list and tuple
types are ephemeral (unless they are part of a persistent type). For example, the constructor
createmachine creates a persistent machine object, whereas itoINTEGER - which coerces a C
integer value to a GESTALT INTEGER- returns a heap-based object whose lifetime is bounded by
the duration of the enclosing program.

Associated with each user-defined type is a single persistent extent. The system automatically
updates these extents in response to creation and deletion of objects of the appropriate type.
Applications can easily examine the contents of an extent via an iterator.

3.6 A Sample Application

As an illustration, we present a simple C application. The program, which utilizes the data abstrac-
tion of Figure 2, informs the next laboratory user waiting to use a particular piece of processing
equipment when he or she is free to do so. The code is shown in Figure 3; for brevity, it assumes

(1) there are always waiting users for a machine, and (2) a procedure send.mail msg, which does
the obvious thing.

The application constructs a machine iterator (machines) and then uses it to examine the
availability of each machine. If a machine is available, a message is sent to the next labuser, and
the availability and waiting list are updated. Finally, the iterator is deallocated.

SIGMOD RECORD, Vol. 18, No. 1, March 1989 61

62

#include "specification.h"

main()

{
ITERATOR machines = machine_iterator();
MACBINE current_machine;

while (BOOLEANtoi(iter_more(machines)))

{
current_machine = iter_current(machines);
/* grab machine at head of iterator #*/
if (BOOLEANtoi(machine_available(current_machine)))
{
LIST labusers = machine_labuser(current_machine);
send_mail_msg(machine_name(current_machine), head(labusers));
/* inform next user =/
modify_machine_available(current_machine, itoBOOLEAN(0));
modify_machine_labuser(current_machine, tail{ labusers));
/* modify availability and labuser list */
}
}

iter_free(machines);

Figure 3: Sample C application program.

SIGMOD RECORD, Vol. 18, No. 1, March 1989

Notice that nowhere is the programmer forced to deal with representational issues; one need
only concentrate on the logic of the application at hand.

Note also that one does not have to annotate or flag the database commands in a program
(e.g., the ## of embedded QUEL and embedded SQL’s EXEC [6].) The programming language
and database have been integrated into a single framework, so that the actual encoding of a task
closely matches the corresponding abstract computational process, resulting in programs that are
perspicuous and easily modifiable.

Finally, since programs have no way of determining where data actually reside, the DBA is free
to change the underlying database systems without compromising the correctness of application
programs. (They will have to be relinked, however.)

4 The Implementation of GESTALT

Our implementation relies heavily on the proven software engineering principles of abstraction and
modularization. First, such techniques constitute a programming methodology which is effective
at controlling the complexities inherent in any large programming effort. Second, since the DBA
was expected to modify the implementation (e.g., to add a new component database) a clear,
well-partitioned internal structure was deemed essential.

In this section we present the internal structure of GESTALT, including a discussion of the

steps required to modify the system. We conclude by describing the system configuration currently
in use by CAFE.

4.1 System Architecture

The organization of GESTALT (Figure 4) is similar to that of Multibase [15]. The schema ar-
chitecture consists of a GESTALT global schema, and a GESTALT local schema-local DBMS
schema pair for each component system. As in Multibase, the latter insulates the global system
from local database details, allowing it to be structured in a clean and extensible manner. All
component-specific details are confined to translator modules (one per underlying database) which
are responsible for mapping operations on GESTALT local schemas to local database operations.

GESTALT, however, is responsible for translating global requests into operations (in terms of
GESTALT local schemas) on one or more of the underlying databases. This translation is performed
by the GESTALT evaluator, which is coded in a manner independent of the number and nature of
the underlying database systems. All such dependencies are recorded in a dispatch table, enabling
the DBA to extend the system in a straightforward way. This table-driven approach is possible
because the evaluator assumes a standard interface to each of the underlying systems.

The system is made available to applications in the form of a library of procedures. This library

is either linked into compiled application programs (e.g., in C), or made available to an interpreter
(e.g., in Lisp).

4.2 Modifying the System

Due to the modular implementation, modifying the system is relatively straightforward. Modifi-

cations are required when the underlying database configuration changes or when abstractions are
added, deleted, or modified.

SIGMOD RECORD, Vol. 18, No. 1, March 1989 63

GESTALT OPERATORS

GESTALT
EVALUATOR

global data
dictionary

/ N

~Z ™~
GESTALT GESTALT \
/ local schema \ / local schema

e o o /
G2z G
local schema/ \ / local schema./

S local ~

‘I translators E

Figure 4: GESTALT system structure.

Adding a database to the system requires updating the dispatch table used by the evaluator,
recording the new database in the data dictionary, and incorporating the corresponding implemen-
tation module into the system.

Altering the set of procedural abstractions supported by the system simply entails adding,
deleting, or modifying the appropriate library routine. When updating data abstractions, however,
things are a bit more involved. In the simplest case, modifications of existing data abstractions only
involve source-level changes to routines in the corresponding abstraction module (e.g., performing
additional integrity constraint checks prior to invoking the evaluator). Modifications that are
tantamount to changing the GESTALT schema require adding or ‘deleting abstraction operators,
entering new or updated information into the data dictionary and (possibly) changing the schema
at one or more of the underlying database systems.

As an illustration, consider the steps required to introduce type LABUSER, which captures the
notion of a certified laboratory user. The first step is to add the approriate type, attribute, and
operator information to the data dictionary. Secondly, suitable logical structures must be created
at one or more of the underlying databases. Finally, a LABUSER specification and implementation
module are generated (based on information in the data dictionary) and incorporated into the
system.

4.3 Sample Configuration, and Experience

GESTALT has been the database manager of the CAFE system since January, 1987. Since then,
approximately 50 programs totalling some 30,000 lines of GESTALT code have been written by

SIGMOD RECORD, Vol. 18, No. 1, March 1989

several applications programmers. An example is an electronic machine reservation system (EMR)
which provides laboratory users with a convenient mechanism for reserving time on processing
machines. EMR eliminates paper sign-up sheets from the clean-room, a potential source of con-
taminating particles. The system is regularly used in the microtechnology laboratories at MIT.

An early database configuration used by CAFE had GESTALT running atop three component
databases: University INGRES [17], PRELUDE [13], and a home-brewed system. Each of these
databases made an important contribution to the overall system. INGRES provided a reliable,
fully-functional data manager. However, due to its lengthy startup time, it was unable to support
applications requiring fast, simple data access. To remedy this, PRELUDE— a lightweight ASCII-
based DBMS— was incorporated. Finally, the home-brewed system was employed to store the
large, variable-length data objects commonly found in the IC manufacturing domain. Storing such
objects in either of the other systems would have been difficult or impossible.

The current configuration utilizes only two databases: commercial INGRES from Relational
Technology, Inc.[9] and WiSS, the Wisconsin Storage System [5]. Most CAFE data are stored
in INGRES; WiSS, because of its support for variable-length data items, handles those objects
not easily captured by the relational data model. For example, WiSS is used to store voluminous
execution “traces” of program-like process flow descriptions.

Despite the wholesale database changes to move to the current configuration, application pro-
grams remained unchanged— they only needed relinking. Thus systems using GESTALT are not
locked in to a particular database system; they are free to incorporate newer, more powerful data
managers as they become available.

CAFE developers may still write applications using INGRES or WiSS directly, e.g., to take
advantage of INGRES’ report-writer tools.

5 Conclusions and Future Work

We have described GESTALT, a system which offers an expressive application programming paradigm
in which the database and programming language have been integrated into a single framework.
The system provides uniform access to existing heterogeneous databases.

While GESTALT offers a number of benefits, there are some difficulties and limitations inherent
in its approach. One obvious limitation is the lack of a dynamic data definition capability. Because
GESTALT does not have control over the entire programming environment, this is simply not

feasible in the system. In general, this problem is very difficult in a multiple heterogeneous database
environment (it is analogous to view updating in conventional systems).

Another limitation is the lack of global concurrency control and recovery. Although all interac-
tions with component databases are atomic, the system contains no general mechanism for grouping
several GESTALT operations together into a transaction.

GESTALT does no query optimization of its own, thus certain kinds of queries execute ineffi-
ciently. For example, tasks implementing the equivalent of a multiway join are not supported well,
unless there is a data abstraction that executes it entirely within a component database system.

Our experience to date with the system has been encouraging: CAFE application developers
have responded very positively. Despite the wide range of programmer experience (from novices
to veteran software engineers) all have commented on how easy the model was to understand, and
how quickly they were able to produce sophisticated, working applications.

SIGMOD RECORD, Vol. 18, No. 1, March 1989 65

66

An immediate need that we plan to address soon is a coherent access control strategy. Currently
applications using GESTALT must rely on component database and /or operating system protection
mechanisms.

Our longer-term plans involve extending GESTALT so that it is a computationally complete,
stand-alone system, incorporating its own persistent objects. We are currently exloring a functional
database programming language with an immutable or functional database [11]. We feel that this
combination offers an expressive system for high level applications programming, admits much
parallelism (for high performance), and facilitates the management of historical data.

Acknowledgements

We would like to acknowledge the contributions made by Michael McIllrath and Rajeev Jayavant

to both the design and implementation of GESTALT. Duane Boning, Paul Penfield, and Donald
Troxel also made many helpful suggestions.

References
[1] Albano, A., Cardelli, L., and Orsini, R. Galileo: A Strongly Typed Interactive Concep-
tual Language. Technical Report 83-11271-2, Bell Laboratories, 1983.

[2] Atkinson, M.P., Chisholm, K.J., and Cockshott, W.P. Ps-Algol: An Algol with a Per-
sistent Heap. SIGPLAN Notices 17(7):24-31, July, 1981.

[3] Brodie, M.L., Blaustein, B., Dayal, U., Manola, F., Rosenthal, A., CAD/CAM
Database Management. Database Engineering, Vol. 7, No. 2, IEEE, June 1984.

[4] Carey, M.J., and DeWitt, D.J. Extensible Database Systems. In Proceedings of the
Islamorada Workshop, February 1985.

[5] Chou, H.T., DeWitt, D.J., Katz, R.H., and Klug, A.C. Design and Implementation

of the Wisconsin Storage System, Software — Practice and Ezperience, Vol. 15(10),
943-962, IEEE, October 1985.

[6] Date, C.J. An Introduction to Database Systems. Addison Wesley, Reading, Mass.,
1986. '

(7] Dayal, U., and Smith, J.M. PROBE: A Knowledge-oriented Database Management
System. In Proceedings of the Islamorada Workshop, February 1985.

[8] Hodges, D.A., and Rowe, L.A. Information management for CIM. In Proceedings of
Advanced Research in VLSI. Palo Alto, CA, March 1987.

[9] INGRES Reference Manual, Version 3.0, VAX/VMS, Relational Technology, Inc.,
Berkeley, CA, May 1984.

[10] Liskov, B.H. and Guttag, J.V. Abstraction and Specification in Program Development,
The MIT Press, Cambridge, MA, 1986.

SIGMOD RECORD, Vol. 18, No. 1, March 1989

[11] Nikhil, R.S. Functional Databases, Functional Languages. In Proceedings 1985 Persis-
tence and Data Types Workshop, Appin, Scotland, August 1985.

[12] Nikhil,R.S. An Incremental, Strongly-Typed Database Query Language. PhD thesis,
Moore School, University of Pennsylvania, Philadelphia, PA, August 1984.

(13] PRELUDE Reference Manual, Release 2.0, VenturCom, Inc., Cambridge, MA 1986.

(14] Shipman, D.W. The Functional Data Model and the Data Language DAPLEX. ACM
Transactions on Database Systems 6(1):140-173, March 1981.

[15) Smith, J.M., et al., MULTIBASE-Integrating Heterogeneous Distributed Database
Systems. In Proceedings National Computer Conference, Chicago, May 1981.

[16] Stonebraker, M. and Rowe, L.A. The Design of POSTGRES. In Proceedings 1986
SIGMOD Conference, Washington, DC, pp. 340-355, May 1986.

[17] Stonebraker, M., Wong, G., Kreps, P., and Held, G. The Design and Implementation
of INGRES, ACM Transactions on Database Systems 1(3):189-222 1976.

{18] Turner, D.A. The Semantic Elegance of Applicative Languages. In Proceedings
ACM Conference on Functional Programming Languages and Computer Architecture,
Portsmouth, NH, pp. 85-92, ACM, October 1981.

SIGMOD RECORD, Vol. 18, No. 1, March 1989 67

