
D A T A B A S E S Y S T E M S : A C H I E V E M E N T S A N D O P P O R T U N I T I E S

The "Lagunita" Report of the NSF Invitational Workshop on
the Future of Database Systems Research,

held in Palo Alto, California,
February 22-23, 19901

Editors
Avi Silberschatz

Michael Stonebraker
Jeffrey D. Ullman

I. E X E C U T I V E S U M M A R Y

The history of database system research in the U.S. is one of exceptional productivity
and startl ing economic impact. Barely twenty years old as a basic science research field,
database research conducted with Federal support in the nation's universities and in its
industrial research laboratories has fueled an information services industry estimated at
$10 billion per year in the U.S. alone. This industry has grown at an average rate of
20 percent per year since 1965 and is continuing to expand at this rate. Achievements
in database research underpin fundamental advances in communications systems, trans-
portat ion and logistics, financial management, knowledge-based systems, accessibility to
scientific literature, and a host of other civilian and defense applications. They also serve
as the foundation for considerable progress in basic science in various fields ranging from
computing to biology.

As impressive as the accomplishments of basic database research have been, there
is a growing awareness and concern in the U.S. and abroad that only the surface has
been scratched in developing an understanding of the database principles and techniques
required to support the advanced information management applications that are expected
to revolutionize industrialized economies early in the next century. Rapid advances in areas
such as manufacturing science, scientific visualization, robotics, optical storage, and high-
speed communications already threaten to overwhelm the existing substrate of database
theory and practice.

In February 1990, the National Science Foundation convened a 2-day workshop in Palo
Alto, California for the purpose of identifying the technology pull factors that will serve as
forcing functions for advanced database technology, and the corresponding basic research
needed to enable that technology. The invited workshop participants included represen-
tatives from both the academic and industrial sides of the database research community.
The primary conclusions of the workshop participants can be summarized as follows:

1 The workshop was attended by Michael Brodie, Peter Buneman, Mike Carey, Ashok Chandra, Hector
Garcia-Molina, Jim Gray, Ron Fagin, Dave Lomet, Dave Maier, Marie Ann Niemat, Avi Silberschatz,
Michael Stonebraker, Irv Traiger, Jeff Ullman, Gio Wiederhold, Carlo Zaniolo, and Maria Zemankova.
Post-workshop contributors to this report include Phil Bernstein, Won Kim, Hank Korth, and Andre
van Tilborg. The workshop was supported by NSF grant IRI-89-19556. Any opinions, findings,
conclusions, or recommendations expressed in this report are those of the panel and do not necessamly
reflect the views of the National Science Foundation.

6 SIGMOD RECORD, Vol. 19, No. 4, December 1990

1. A substantial number of the advanced technologies that will underpin industrialized
economies in the early twenty-first century depend on radically new database technolo-
gies that are currently not well understood, and that require intensive and sustained
basic research.

2. Next-generation database applications will have little in common with today's business
data processing databases. They will involve much more data, require new capabilities
including type extensions, multi-media support, complex objects, rule processing, and
archival storage, and will necessitate rethinking the algorithms for almost all DBMS
operations.

3. The cooperation between different organizations on common scientific, engineering,
and commercial problems will require large-scMe, heterogeneous, distributed data-
bases. Very difficult problems await in the areas of inconsistent databases, security,
and massive scale-up of distributed DBMS technology.

4. Basic research at universities and industrial research laboratories continues to serve
as the bedrock on which current U.S. and global database systems technology rests.

5. The U.S. university infrastructure for conducting leading database research appears
to be at risk of withering due to inadequate funding for work in this field.

Workshop participants reached a consensus that the challenges inherent in these con-
clusions demand energetic and proactive responses from U.S. industry, government, and
academia. In particular, it is recommended that:

1. The National Science Foundation, together with the other Federal Government agen-
cies represented in the Federal Coordinating Council on Science, Engineering, and
Technology that fund basic research, should develop a strategy to ensure that basic
research in the database area is funded at a level commensurate with its importance
to scientific research and national economic well-being.

2. The National Research Council, through its Scientific and Technical Information
Board, should prepare a study that clearly indicates the appropriate level of Fed-
eral support for basic database research to maintain U.S. strength in this increasingly
critical technology. Included should be a comparative study of international invest-
ments in database research, an assessment of the potential utility of international
cooperation in selected areas of database research, and the delineation of a strat-
egy for maintaining U.S. strength in database technology while allowing for potential
international cooperation and joint projects.

3. Database research must constitute a substantial portion of the High Performance
Computing Plan endorsed by the Office of Science and Technology Policy, and it
must be a major component of Congressional legislation intended to ensure adequate
support for computing, such as S. 1067 (the Gore bill) and S. 1976 (the Johnston bill).
The Computing Research Board should help to ensure that database research is not
neglected in these important plans.

4. U.S. industrial firms with a substantial stake in database technology must keep in
mind the inherent linkage between the ongoing success of their commercial pursuits
and university research and be vigorous in their support of academic research in the
database area.

SIGMOD RECORD, Vol. 19, No. 4, December 1990 7

I I . B A C K G R O U N D A N D S C O P E

The database research community has been in existence since the late 1960s. Start ing
with modest representation, mostly in industrial research laboratories, it has expanded
dramatical ly over the last two decades to include substantial efforts at major universities,
government laboratories and research consortia. Initially database research centered on a
vital but limited class of applications, the management of data in business applications
such as automated banking, record keeping, and reservation systems. These applications
have four requirements that characterize database systems:

1. E]ficiency in the access to and modification of very large amounts of data.

2. Resilience, the ability of the data to survive hardware crashes and software errors,
without sustaining loss or becoming inconsistent.

3. Access control, including simultaneous access of data by multiple users in a consistent
manner and assuring only authorized access to information (security).

4. Persistence, the maintenance of data over long periods of time, independent of any
programs that access the data.

Database systems research has centered around methods for designing systems with these
characteristics, and also around the languages and conceptual tools that help users to
access, manipulate, and design databases.

From large corporate information systems to small personal databases, database man-
agement systems (DBMSs) are now used in almost every computing environment to or-
ganize, create and maintain important collections of information. The technology that
makes these systems possible is the direct result of a successful program of database re-
search. Section III of this report highlights some important achievements of the database
research community over the past two decades, including the scope and significance of the
technological transfer of database research results to industry. We focus on the major ac-
complishments of relational databases, transaction management, and distributed databases.

Today we stand at the threshold of applying database technology in a variety of new
and important directions, including scientific databases, design databases, and universal
access to information. Thus, in Section IV we pinpoint two key areas where targeted
research funding will make a significant impact in the next few years: next-generation
database applications and heterogeneous, distributed databases. Section V summarizes the
need to mainta in the momentum in this vital area of computer science and provides several
concrete suggestions for doing so.

I I I . A C C O M P L I S H M E N T S O F T H E L A S T T W O D E C A D E S

From among the various directions that the database research community has explored,
the following three have perhaps had the most impact:

• Relational database systems,
• Transaction management, and
• Distributed database systems.

Each has fundamentally affected users of database systems, offering either radical simpli-
fications in dealing with data, or great enhancement of their capability to manage infor-
mation.

8 SIGMOD RECORD, Vol. 19, No. 4, December 1990

3.1. Re la t iona l D a t a b a s e s

In 1970, there were two popular approaches used to construct database management sys-
tems. The first approach, exemplified by IBM's Information Management System (IMS),
has a data model (mathematical abstraction of data and operations on data) that requires
all data records to be assembled into a collection of trees. Consequently, some records are
root records and all others have unique parent records. IMS had a low-level query language,
by which an application programmer could navigate from root records to the records of
interest, accessing one record at a time.

The second approach was typified by the proposal of the Conference on Data Systems
Languages (CODASYL). They suggested that the collection of DBMS records be arranged
into a directed graph. Again, a navigational query language was proposed, by which an
application program could move from a specific entry point record to desired information.

Both the tree-based (called hierarchical) and graph-based (network) approaches to
data management have several fundamental disadvantages.

1. To answer a specific database request, an application programmer, skilled in perform-
ing disk-oriented optimization, must write a complex program to navigate through
the database. For example, the company president cannot, at short notice, pose the
query "How many employees in the Widget department will retire in the next three
years?" unless he has the skill and patience to write a detailed program.

2. When the structure of the database changes, as it will whenever new kinds of infor-
mation are added, application programs usually need to be rewritten.

As a result, the database systems of 1970 were costly to use because of the low-level
interface between the application program and the DBMS, and because the dynamic nature
of user data mandates repeated program maintenance.

The relational data model, pioneered by E. F. Codd in a series of papers in 1970-72,
offered a fundamentally different approach to data storage. Codd suggested that concep-
tually all data be represented by simple tabular data structures (relations), and that users
access data through a high-level, nonprocedural (or declarative) query language. Instead of
writing an algorithm to obtain desired records one at a time, the application programmer
is only required to specify a predicate that identifies the desired records, or combination
of records. A query optimizer in the DBMS translates the predicate specification into an
algorithm to perform database access to solve the query. These nonprocedural languages
are dramatically easier to use than the navigation languages of IMS and CODASYL; they
lead to higher programmer productivity and facilitate direct database access by end users.

During the 1970s the database research community extensively investigated the rela-
tional DBMS concept. They:

• Invented high-level relational query languages to ease the use of the DBMS by both
end users and application programmers. The theory of higher level query languages
has been developed to provide a firm basis for understanding and evaluating the
expressive power of database language constructs.

• Developed the theory and algorithms necessary to "optimize" queries, that is, to trans-
late queries in the high-level relational query languages into plans for accessing the
data that are as efficient as what a skilled programmer would have written using one

SIGMOD RECORD, Vol. 19, No. 4, December 1990 9

of the earlier DBMSs. This technology probably represents the most successful ex-
periment in optimization of very high-level languages among all varieties of computer
systems.

• Formulated a theory of "normalization" to help with database design by eliminating
redundancy and certain logical anomalies from the data.

• Constructed algorithms to allocate tuples of relations to pages (blocks of records) in
files on secondary storage, to minimize the average cost of accessing those tuples.

• Constructed buffer management algorithms to exploit knowledge of access pat terns
for moving pages back and forth between disk and a main memory buffer pool.

• Constructed indexing techniques to provide fast associative access to random single
records and /o r sets of records specified by values or value ranges for one or more
attr ibutes.

• Implemented prototype relational DBMSs that formed the nucleus for many of the
present commercial relational DBMSs.

As a result of this research in the 1970s, numerous commercial products based on
the relational concept appeared in the 1980s. Not only were the ideas identified by the
research community picked up and used by the vendors, but also, several of the commer-
cial developments were led by implementors of the earlier research prototypes. Today,
commercial relational database systems are available on virtually any hardware platform
from personal computer to mainframe, and are likely to become s tandard software on all
new computers in the 1990s.

There is a moral to be learned from the success of relational database systems. When
the relational data model was first proposed, it was regarded as an elegant theoretical
construct but implementable only as a "toy." It was only with considerable research, much
of it focused on basic principles of relational databases, that large-scale implementations
were made possible. The next generation of databases calls for continued research into
the foundations of database systems, in the expectation that other such useful "toys" will
emerge.

3.2. Transaction Management

During the last two decades, database researchers have also pioneered the t ransact ion
concept. A transaction is a sequence of operations that must appear "atomic" when
executed. For example, when a bank customer moves $100 from account A to account ./3,
the database system must ensure that either both of the operations

1. Debit A

2. Credit t3

happen or that neither happens (and the customer is informed). If only the first occurs,
then the customer has lost $100, and an inconsistent database state results.

To guarantee that a transaction transforms the database from one consistent state to
another requires tha t :

10 SIGMOD RECORD, Vol. 19, No. 4, December 1990

• The concurrent execution of transactions must be such that each transaction appears
to execute in isolation. Concurrency control is the technique used to provide this
assurance.

• System failures, either of hardware or software, must not result in inconsistent data-
base states. A transaction must execute in its entirety or not at all. Recovery is the
technique used to provide this assurance.

We briefly elaborate on these two issues below.
Concurrent transactions in the system must be synchronized correctly in order to

guarantee that consistency is preserved. For instance, while we are moving $100 from A to
B, a simultaneous movement of $300 from account B to account C should result in a net
deduction of $200 from B. The normal view of "correct" synchronization of transactions
is that they must be serializable; that is, the effect on the database of any number of
transactions executing in parallel must be the same as if they were executed one after
another, in some order.

During the 1970s and early 1980s the DBMS research community worked extensively
on the transaction model. First, the theory of serializability was worked out in detail, and
precise definitions of the correctness of schedulers (algorithms for deciding when trans-
actions could execute) were produced. Second, numerous concurrency control algorithms
were invented that ensure serializablity. These included algorithms based on

1. Zocking data items so conflicting accesses were prohibited. Especially important is a
technique called two-phase locking, which guarantees serializability by requiring that
a transaction obtain all the locks it will ever need before releasing any locks.

2. Timestamping accesses so the system could check that no violations of serializability
were possible.

3. Keeping multiple versions of data objects available.

The various algorithms were subjected to rigorous experimental studies and theoretical
analysis to determine the conditions under which each was preferred.

Recovery is the other essential component of transaction management. We must
guarantee that all the effects of a transaction are installed in the database, or that none
of them are, and this guarantee must be kept even when a system crash loses the contents
of main memory. During the late 1970s and early 1980s, two major approaches to this
service were investigated, namely:

1. Write-ahead logging. A summary of the effects of a transaction is stored in a sequential
file, called a log, before the changes are installed in the database itself. The log is
on disk or tape where it can survive system crashes and power failures. When a
transaction completes, the logged changes are then posted to the database. If a
transaction fails to complete, the log is used to restore the prior database state.

2. Shadow file techniques. New copies of entire data items, usually disk pages, are created
to reflect the effects of a transaction and are written to the disk in entirely new
locations. A single atomic action remaps the data pages, so as to substitute the new
versions for the old when the transaction completes. If a transaction fails, the new
versions are discarded.

SIGMOD RECORD, Vol. 19, No. 4, December 1990 11

Recovery techniques have been extended to cope with the failure of the "stable" medium
as well. A backup copy of the data is stored on an entirely separate device. Then, with
logging, the log can be used to "roll forward" the backup copy to the current state.

3.3 . D i s t r i b u t e d D a t a b a s e s

A third area in which the DBMS research community played a vital role is distributed
databases. In the late 1970s there was a realization that organizations are fundamental ly
decentralized and require databases at multiple sites. For example, information about the
California customers of a company might be stored on a machine in Los Angeles, while
da ta about the New England customers could exist on a machine in Boston. Such data
distr ibution moves the data closer to the people who actually use it and reduces remote
communication costs.

Furthermore, the decentralized system is more available when crashes occur. If a
single, central site goes down, all data is unavailable. However, if one of several regional
sites goes down, only part of the total database is inaccessible. Moreover, if the company
chooses to pay the cost of multiple copies of important data , then a single site failure need
not cause data inaccessibility.

In a mul t idatabase environment we strive to provide location transparency. That is, all
da ta should appear to the user as if they are located at his or her particular site. Moreover,
the user should be able to execute normal transactions against such data. Providing loca-
tion t ransparency required the DBMS research community to investigate new algorithms
for distr ibuted query optimization, concurrency control, crash recovery, and support of
multiple copies of data objects for higher performance and availability.

In the early 1980s the research community rose to this challenge. Distributed con-
currency control algorithms were designed, implemented and tested. Again, simulation
studies and analysis compared the candidates to see which algorithms were dominant.
The fundamental notion of a two-phase commit to ensure the possibility of crash recov-
ery in a distr ibuted database was discovered. Algorithms were designed to recover from
processor and communication failures, and data patch schemes were put forward to re-
join distr ibuted databases that had been forced to operate independently after a network
failure. Technology for optimizing distributed queries was developed, along with new al-
gorithms to perform the basic operations on data in a distributed environment. Lastly,
various algorithms for the update of multiple copies of a data item were invented; these
ensure that all copies of each item are consistent.

All the major DBMS vendors are presently commercializing distributed DBMS tech-
nology. Again we see the same pat tern discussed above for relational databases and trans-
actions, namely aggressive research funding by government and industry, followed by rapid
technology transfer from research labs to commercial products.

IV . T H E N E X T C H A L L E N G E S

Some might argue that database systems are a mature technology and it is therefore t ime
to refocus research onto other topics. Certainly relational DBMSs, both centralized and
distributed, are well studied, and commercialization is well along. Object management
ideas, following the philosophy of "object-oriented programming," have been extensively

12 SIGMOD RECORD, Vol. 19, No. 4, December 1990

investigated over the last few years and should allow more general kinds of data elements
to be placed in databases than the numbers and character strings supported in traditional
systems. The relentless pace of advances in hardware technology makes CPUs, memory
and disks drastically cheaper each year. Current databases will therefore become progres-
sively cheaper to deploy as the 1990s unfold. Perhaps the DBMS area should be declared
"solved," and energy and research money allocated elsewhere.

We argue strongly here that such a turn of events would be a serious mistake. Rather,
we claim that solutions to the important database problems of the year 2000 and beyond
are not known. Moreover, hardware advances of the next decade will not make brute force
solutions economical, because the scale of the prospective applications is simply too great.

In this section we highlight two key areas where we feel important research contribu-
tions are required in order to make future DBMS applications viable:

1. Next-generation database applications
2. Heterogeneous, distributed databases.

In addition to being important intellectual challenges in their own right, their solu-
tions offer products and technology of great social and economic importance, including,
among many others, improved delivery of medical care, advanced design and manufacturing
systems, enhanced tools for scientists, greater per capita productivity through increased
personal access to information, and new military applications.

4.:1.. T h e Resea r ch A g e n d a for N e x t - G e n e r a t i o n DBMS App l i ca t i ons

To motivate the discussion of research problems that follows, in this section we present
several examples of the kinds of database applications that we expect will be built during
the next decade.

1. For many years, NASA has been collecting vast amounts of information from space.
They estimate that they require storage for 1016 bytes of data (about 10,000 optical
disk jukeboxes) just to maintain a few years worth of satellite image data that they
will collect in the 1990s. Moreover, they are very reluctant to throw anything away,
lest it be exactly the data set needed by a future scientist to test some hypothesis.
It is unclear how this database can be stored and searched for relevant images using
current or soon-to-be available technology.

2. Databases serve as the backbone of computer-aided design systems. For example, civil
engineers envision a facilities-engineering design system that manages all information
about a project, such as a skyscraper. This database must maintain and integrate
information about the project from the viewpoints of hundreds of subcontractors. For
example, when an electrician puts a hole in a beam to let a wire through, the load-
bearing soundness of the structure could be compromised. The design system should,
ideally, recalculate the stresses, or at the least, warn the cognizant engineer that a
problem may exist.

3. The National Institutes of Health (NIH) and the U.S. Department of Energy (DOE)
have embarked on a joint national initiative to construct the DNA sequence corre-
sponding to the human genome. The gene sequence is several billion elements long
and each element is a complex and somewhat variable object. The matching of in-

SIGMOD RECORD, Vol. 19, No. 4, December 1990 13

dividuals' medical problems to differences in genetic makeup is a staggering problem
and will require new technologies of data representation and search.

4. Several large department stores already record every price-scanning action of every
cashier in every store in their chain. Buyers run ad-hoc queries on this historical
database, in an attempt to discover buying patterns and make stocking decisions.
This application taxes the capacity of available disk systems. Moreover, as the cost
of disk space declines, the retail chain will keep a larger and larger history to track
buying habits more accurately. This process of "mining" data for hidden patterns is
not limited to commercial applications. We foresee similar applications, often with
even larger databases, in science, medicine, intelligence gathering, and many other
a r e a s .

5. Most insurance firms have a substantial on-line database that records the policy cov-
erage of the firm's customers. These databases will soon be enhanced with multimedia
data such as photographs of property damaged, digitized images of handwritten claim
forms, audio transcripts of appraisers' evaluations, images of specially insured ob-
jects, and so on. Since image data is exceedingly large, such databases will become
enormous. Moreover, future systems may well store video walk-throughs of houses
in conjunction with a homeowners policy, further enlarging the size of this class of
databases. Again, applications of this type are not limited to commercial enterprises.

These applications not only introduce problems of size, they also introduce problems
with respect to all conventional aspects of DBMS technology (e.g., they pose fundamen-
tally new requirements for access patterns, transactions, concurrency control, and data
representation). These applications have in common the property that they will push the
limits of available technology for the foreseeable future. As computing resources become
cheaper, these problems are all likely to expand at the same or at a faster rate. Hence,
they cannot be overcome simply by waiting for the technology to bring computing costs
down to an acceptable level.

We now turn to the research problems that must be solved to make such next-
generation applications work. Next-generation applications require new services in several
different areas in order to succeed.

New Kinds of Data

Many next-generation applications entail storing large and internally complex objects. The
insurance example, (5) above, requires storage of images. Scientific and design databases
often deal with very large arrays or sequences of data elements. A database for software
engineering might store program statements, and a chemical database might store protein
structures. We need solutions to two classes of problems: data access and data type
management.

Current databases are optimized for delivering small records to an application pro-
gram. When fields in a record become very large, this paradigm breaks down. The DBMS
should read a large object only once and place it directly at its final destination. Protocols
must be designed to chunk large objects into manageable-size pieces for the application to
process. A new generation of query languages will be required to support querying of array
and sequence data as will mechanisms for easily manipulating disk and archive represen-

14 SIGMOD RECORD, Vol. 19, No. 4, December 1990

rations of such objects. In addition, extended storage structures and indexing techniques
will be needed to support efficient processing of such data.

A second class of problems concerns type management. There must be a way for
the programmer to construct the types appropriate for his application. The need for more
flexible type systems has been one of the major forces in the development of object-oriented
databases. One of the drawbacks of the systems developed so far is that type-checking is
largely dynamic, which lays open the possibility that programming errors tend to show up
at run-time, not during compilation. In order to provide the database application designer
with the same safety-nets that are provided by modern high-level programming languages,
we need to determine how we can combine static type disciplines with persistent data and
evolution of the database structure over time.

Rule Processing

Next-generation applications will frequently involve a large number of rules, which take
declarative ("if A is true, then B is true"), and imperative ("if A is true, then do C")
forms. For example, a design database should notify the proper designer if a modification
by a second designer may have affected the subsystem that is the responsibility of the first
designer. Such rules may include elaborate constraints that the designer wants enforced,
triggered actions that require processing when specific events take place, and complex
deductions that should be made automatically within the system. It is common to call
such systems "knowledge-base systems," although we prefer to view them as a natural,
a l though difficult, extension of DBMS technology.

Rules have received considerable at tent ion as the mechanism for triggering, data min-
ing (as discussed in the department store example), and other forms of reasoning about
data. Declarative rules are advantageous because they provide a logical declaration of what
the user wants rather than a detailed specification of how the results are to be obtained.
Similarly, imperative rules allow for a declarative specification of the conditions under
which a certain action is to be taken. The value of declarativeness in relational query
languages like SQL (the most common such language) has been amply demonstrated, and
an extension of the idea to the next generation of query languages is desirable.

Traditionally, rule processing has been performed by separate subsystems, usually
called "expert system shells." However, applications such as the notification example
above cannot be done efficiently by a separate subsystem, and such rule processing must
be performed directly by the DBMS. Research is needed on how to specify the rules and on
how to process a large rule base efficiently. Although considerable effort has been directed
at these topics by the Artificial Intelligence community, the focus has been on approaches
that assume all relevant data structures are in main memory, such as RETE networks.
Next-generation applications are far too big to be amenable to such techniques.

We also need tools that will allow us to validate and debug very large collections of
rules. In a large system, the addition of a single rule can easily introduce an inconsistency in
the knowledge base or cause chaotic and unexpected effects and can even end up repeatedly
"firing" itself. We need techniques to decompose sets of rules into manageable components
and prevent (or control in a useful way) such inconsistencies and repeated rule firing.

SIGMOD RECORD, Vol. 19, No. 4, December 1990 15

New Concepts in Data Models

Many of the new applications will involve primitive concepts not found in most current
applications, and there is a need to build them cleanly into specialized or extended query
languages. Issues range from effciency of implementation to the fundamental theory un-
derlying impor tant primitives. For example, we need to consider:

1. Spatial Data. Many scientific databases have two- or three-dimensional points, lines,
and polygons as data elements. A typical search is to find the ten closest neighbors
to some given data element. Solving such queries will require sophisticated, new
multidimensional access methods. There has been substantial research in this area,
but most has been oriented toward main memory data structures, such as quad trees
and segment trees. The disk oriented structures, including K-D-B trees and R-trees,
do not perform part icularly well when given real world data.

Time. In many exploratory applications, one might wish to retrieve and explore the
database state as of some point in the past or to retrieve the t ime history of a particular
da ta value. Engineers, shopkeepers, and physicists all require different notions of time.
No support for an algebra over time exists in any current commercial DBMS, al though
research prototypes and special-purpose systems have been built. However, there is
not even an agreement across systems on what a "time interval" is; for example, is it
discrete or continuous, open ended or closed?

3. Uncertainty. There are applications, such as identification of features from satellite
photographs, where we need to at tach a likelihood that data represents a certain
phenomenon. Reasoning under uncertainty, especially when a conclusion must be
derived from several inter-related partial or alternative results, is a problem that the
Artificial Intelligence community has addressed for many years, with only modest
success. Further research is essential, as we must learn not only to cope with data of
limited reliability, but to do so efficiently, with massive amounts of data.

.

Scaling Up

It will be necessary to 3cale all DBMS algorithms to operate effectively on databases of
the size contemplated by next-generation applications, often several orders of magnitude
bigger than the largest databases found today. Databases larger than a terabyte (1012
bytes) will not be unusual. The current architecture of DBMSs will not scale to such
magnitudes. For example, current DBMSs build a new index on a relation by locking it,
building the index and then releasing the lock. Building an index for a 1-terabyte table
may require several days of computing. Hence, it is imperative tha t algorithms be designed
to construct indexes incrementally without making the table being indexed inaccessible.

Similarly, making a dump on tape of a l - terabyte database will take days, and obvi-
ously must be done incrementally, without taking the database off line. In the event tha t
a database is corrupted because of a head crash on a disk or for some other reason, the
t radi t ional algori thm is to restore the most recent dump from tape and then to roll the
database forward to the present time using the database log. However, reading a 1-terabyte
dump will take days, leading to unacceptably long recovery times. Hence, a new approach
to backup and recovery in very large databases must be found.

16 SIGMOD RECORD, Vol. 19, No. 4, December 1990

Parallelism

Ad-hoc queries over the large databases contemplated by next-generation application de-
signers will take a long time to process. A scan of a 1-terabyte table may take days, and
it is clearly unreasonable for a user to have to submit a query on Monday morning and
then go home until Thursday when his answer will appear.

First, imagine a 1-terabyte database stored on a collection of disks, with a large num-
ber of CPUs available. The goal is to process a user's query with nearly linear speedup;
tha t is, the query is processed in time inversely proportional to the number of processors
and disks allocated. To obtain linear speedup, the DBMS architecture must avoid bottle-
necks, and the storage system must ensure that relevant data is spread over all disk drives.
Moreover, parallelizing a user command will allow it to be executed faster, but it will also
use a larger fraction of the available computing resources, thereby penalizing the response
t ime of other concurrent users, and possibly causing the system to thrash, as many queries
compete for limited resources. Research on multiuser aspects of parallelism such as this
one is in its infancy.

On the other hand, if the table in question is resident on an archive, a different form of
parallelism may be required. If there are no indexes to speed the search, a sequential scan
may be necessary, in which case the DBMS should evaluate as many queries as possible in
parallel, while performing a single scan of the data.

In general, it remains a challenge to develop a realistic theory for data movement
throughout the memory hierarchy of parallel computers. The challenges posed by next-
generation database systems will force computer scientists to confront these issues.

Tertiary Storage

For the foreseeable future, ul tra large databases will require both secondary (disk) storage
and the integration of an archive or tert iary store into the DBMS. All current commercial
DBMSs require data to be either disk or main-memory resident. Future systems will have
to deal with the more complex issue of optimizing queries when a portion of the data to be
accessed is in an archive. Current archive devices have a very long latency period. Hence,
query optimizers must choose strategies that avoid frequent movement of data between
storage media. Moreover, the DBMS must also optimize the placement of data records on
the archive to minimize subsequent retrieval times. Lastly, in such a system, disk storage
can be used as a read or write cache for archive objects. New algorithms will be needed
to manage intelligently the buffering in a three-level system.

Long-Duration Transactions

The next-generation applications often aim to facilitate collaborative and interactive access
to a database. The tradit ional transaction model discussed in Section I n assumes that
transactions are short, perhaps a fraction of a second. However, a designer may lock a file
for a day, during which it is redesigned. We need entirely new approaches to maintaining
the integrity of data, sharing data, and recovery of data, when transactions can take hours
or days.

SIGMOD RECORD, Vol. 19, No. 4, December 1990 17

Versions and Configurations

Some next-generation applications need versions of objects to represent alternative or suc-
cessive states of a single conceptual entity. For instance, in a facilities-engineering data-
base, numerous revisions of the electric plans will occur during the design, construction
and maintenance of the building, and it may be necessary to keep all the revisions for
accounting or legal reasons. Furthermore, it is necessary to maintain consistent configu-
rations, consisting of versions of related objects, such as the electrical plan, the heating
plan, general and detailed architectural drawings.

While there has been much discussion and many proposals for proper version and
configuration models in different domains, little has been implemented. Much remains to
be done in the creation of space-efficient algorithms for version management and techniques
for ensuring the consistency of configurations.

4.2. Heterogeneous~ Distributed Databases

There is now effectively one world-wide telephone system and one world-wide computer
network. Visionaries in the field of computer networks speak of a single world-wide file
system. Likewise, we should now begin to contemplate the existence of a single, world-
wide database system, from which users can obtain information on any topic covered by
data made available by purveyors, and on which business can be transacted in a uniform
way. While such an accomplishment is a generation away, we can and must begin now to
develop the underlying technology in coUaboration with other nations.

Indeed, there are a number of applications that are now becoming feasible and that
will help drive the technology needed for worldwide interconnection of information.

1. Collaborative efforts are underway in many physical science disciplines, entailing mul-
t iproject databases. The project has a database composed of portions assembled by
each researcher, and a collaborative database results. The human genome project is
one example of this phenomenon.

2. A typical defense contractor has a collection of subcontractors assisting with portions
of the contractor project. The contractor wants to have a single project database that
spans the portions of the project database administered by the contractor and each
subcontractor.

3. An automobile company wishes to allow its suppliers to access new designs of cars
that it is contemplating building. In this way, suppliers can give early feedback on
the cost of components. Such feedback will allow the most cost-effective car to be de-
signed and manufactured. However, this goal requires a database that spans multiple
organizations, that is, an intercompany database.

These examples all concern the necessity of logically integrating databases from mul-
tiple organizations, often across company boundaries, into what appears to be a single
database. The databases involved are heterogeneous, in the sense that they do not nor-
mally share a complete set of common assumptions about the information with which they
deal, and they are distributed, meaning that individual databases are under local control
and are connected by relatively low-bandwidth links. The problem of making heteroge-
neous, distributed databases behave as if they formed part of a single database is often

18 SIGMOD RECORD, Vol. 19, No. 4, December 1990

called interoperability; we now use two very simple examples to i l lustrate the problems
that arise in this environment.

First, consider a hypothetical program manager at the NSF, who wishes to find the
total number of Computer Science Ph.D. students in the U.S. There are over 100 institu-
tions that grant a Ph.D. degree in Computer Science. In theory, all have an on-line student
database tha t allows queries to be asked of its contents. Moreover, the NSF program man-
ager can, in theory, discover how to access all of these databases and then ask the correct
local query at each site.

Unfortunately, the sum of the responses to these 100+ local queries will not necessarily
be the answer to his overall query. Some institutions record only full-time students; others
record full- and part- t ime students. Furthermore, some distinguish Ph.D. from Masters
candidates, and some do not. Some erroneously may omit certain classes of students, such
as foreign students. Some may mistakenly include students, such as Electrical Engineering
candidates in an EECS department. The basic problem is that these 100+ databases are
semantically inconsistent.

A second problem is equally illustrative. Consider the possibility of an electronic
version of a travel assistant, such as the Michelin Guide. Most people traveling on vacation
consult two or more such travel guides, which list prices and quality ratings for restaurants
and hotels. Obviously, one might want to ask the price of a room at a specific hotel, and
each guide is likely to give a different answer. One might quote last year's price, while
another might indicate the price with tax, and a third might quote the price including
meals. To answer the user's query, it is necessary to treat each value obtained as evidence,
and then to provide fusion of this evidence to form a best answer to the user's query.

To properly support heterogeneous, distributed databases, there is a difficult research
agenda, outlined below, that must be accomplished.

Browsing

Let us suppose tha t the problems of access have been solved in any one of the scenarios
mentioned above; tha t is, the user has a uniform query language that can be applied to any
one of the individual databases or to some merged "view" of the collection of databases.
If an inconsistency is detected, or if missing information appears to invalidate a query, we
cannot simply give up. There must be some system for explaining to the user how the
data arrived in that state and, in particular, from what databases it was derived. With
this information, it may be possible to filter out the offending data elements and still
arrive at a meaningful query. Without it, it is highly unlikely that any automatic agent
could do a t rustworthy job. Thus, we need to support browsing, the ability to interrogate
the structure of the database and, when multiple databases are combined, interrogate the
nature of the process that merges data.

Incompleteness and Inconsistency

The Ph.D. student and travel-advisor examples above indicate the problems with seman-
tic inconsistency and with data fusion. In the Ph.D. student example there are 100+
disparate databases each containing student information. Since the individual participant
databases were never designed with the objective of interoperating with other databases,
there is no single global schema to which all individual databases conform. Rather there

SIGMOD RECORD, Vol. 19, No. 4, December 1990 19

are individual differences that must be addressed. These include differences in units. For
example, one database might give s tar t ing salaries for graduates in dollars per month while
another records annual salaries. In this case, it is possible to apply a conversion to obtain
composite consistent answers. More seriously, the definition of a part- t ime student may
be different in the different databases. This difference will result in composite answers
tha t are semantically inconsistent. Worse still is the case where the local database omits
information, such as data on foreign students, and is therefore simply wrong.

Future interoperabil i ty of databases will require dramatic progress to be made on these
semantic issues. We must extend the data model that is used by a DBMS to include much
more semantic information about the meaning of the data in each database. Research on
extended data models is required to discover the form that this information should take.

Mediators

As the problems of fusion and semantic inconsistency are so severe, there is need for a
class of information sources that s tand between the user and the heterogeneous databases.
For example, if there were sufficient demand, it would make sense to create a "CS Ph.D.
mediator" tha t could be queried as if it were a consistent, unified database containing the
information tha t actually sits in the 100+ local databases of the CS departments. A "travel
advisor" tha t provided the information obtained by fusing the various databases of travel
guides, hotels, car-rental companies, and so on, could be commercially viable. Perhaps
most valuable of all would be a mediator that provided the information available in the
world's libraries, or at least tha t portion of the libraries that are stored electronically.

Mediators must be accessible by people who have not had a chance to s tudy the details
of their query language and data model. Thus, some agreement regarding language and
model s tandards is essential, and we .need to do extensive experiments before standardiza-
t ion can be addressed. Self-description of data is another important research problem that
must be addressed if access to unfamiliar data is to become a reality.

Name Services

The NSF program manager must be able to consult a national name service to discover the
location and name of the databases or medi~ors of interest. Similarly, a scientist working
in on inter-disciplinary problem domain must be able to discover the existence of relevant
da ta sets collected in other disciplines. The mechanism by which items enter and leave
such name servers and the organization of such systems is an open issue.

Security

Security is a major problem (failing) in current DBMSs. Heterogeneity and distr ibution
makes this open problem even more difficult. A corporation may want to make parts of
its database accessible to certain parties, as with the automobile company in (3) above
offering preliminary design information to potential suppliers. However, the automobile
company certainly does not want the same designs accessed by its competitors, and it
doesn ' t want any outsider accessing its salary data.

Authentication is the reliable identification of subjects making database access. A
heterogeneous, distr ibuted database system will need to cope with a world of multiple
authenticators of variable trustworthiness. Database systems must be resistant to compro-
mise by remote systems masquerading as authorized uses. We forsee a need for mandatory

20 SIGMOD RECORD, Vol. 19, No. 4, December 1990

security and research into the analysis of covert channels, in order that distributed, hetero-
geneous database systems do not increase user uncertainty about the security and integrity
of his data.

A widely distributed system may have thousands or millions of users. Moreover, a
given user may be identified differently on different systems. Further, access permission
might be based on role (e.g., current company Treasurer) or access site. Finally, sites can
act as intermediate agents for users, and data may pass through and be manipulated by
these intervening sites. Whether an access is permitted may well be influenced by who
is acting on a user's behalf. Current authorization systems will surely require substantial
extensions to deal with these problems.

Site Scale-up
The security issue is just one element of scale-up, which must be addressed in a large dis-
t r ibuted DBMS. Current distributed DBMS algorithms for query processing, concurrency
control, and support of multiple copies were designed to function with a few sites, and
they must all be rethought for 1000 or 10,000 sites. For example, some query processing
algorithms expect to find the location of an object by searching all sites for it. This ap-
proach is clearly impossible in a large network. Other algorithms expect all sites in the
network to be operational, and clearly in a 10,000 site network, several sites will be down
at any given time. Lastly, certain query processing algorithms expect to optimize a join
by considering all possible sites and choosing the one with the cheapest overall cost. Wi th
a very large number of sites, a query optimizer that loops over all sites in this fashion may
well spend more time trying to "optimize" the query than it would have spent in simply
executing the query in a naive and expensive way.

Powerful desktop computers, cheap and frequently underutilized, must be factored
into the query optimization space, as using them will frequently be the most responsive
and least expensive way to execute a query. Ensuring good user response time becomes
increasingly difficult as the number of sites and the distances between them increase. Local
caching, and even local replication, of remote data at the desktop will become increasingly
important . Efficient cache maintenance is an open problem.

Transaction Management"

Transaction management in a heterogeneous, distributed database system is a difficult is-
sue. The main problem is that each of the local database management systems may be
using a different type of a concurrency control scheme. Integrating these is a challeng-
ing problem, made worse if we wish to preserve the local autonomy of each of the local
databases and allow local and global transactions to execute in parallel.

One simple solution is to restrict global transactions to retrieve-only access. However,
the issue of reliable transaction management in the general case, where global and local
transactions are allowed to both read and write data, is still open.

V. C O N C L U S I O N S A N D C A L L T O A C T I O N

In brief, next-generation applications will little resemble current business data processing
databases. They will have much larger data sets, require new capabilities such as type ex-
tensions, multi-media support, complex objects, rule processing, and archival storage, and

SIGMOD RECORD, Vol. 19, No. 4, December 1990 21

they will entail rethinking algorithms for almost all DBMS operations. In addition, the
cooperation between different organizations on common problems will require heteroge-
neous, distributed databases. Such databases bring very difficult problems in the areas of
querying semantically inconsistent databases, security, and scale-up of distributed DBMS
technology to large numbers of sites. Thus, database systems research offers

• A host of new intellectual challenges for computer scientists.

• Resulting technology that will enable a broad spectrum o£ new applications in business,
science, medicine, defense, and other areas.

In order to address the crucial DBMS issues that face the world in the 1990s, and to
ensure that the commercial DBMS business remains healthy on into the next century, we
feel it is imperative that NSF initiate strong new programs of research in the areas out-
lined in Section IV: next-generation database applications and heterogeneous, distributed
databases. We also call on government agencies charged with promotion of research in the
target application areas, and on companies that today benefit from the previous round of
database research, to support the next round of basic research. We specifically recommend
the following:

• NSF, together with the other agencies represented in the Federal Coordinating Council
on Science, Engineering, and Technology that fund basic research, should develop a
strategy to ensure that basic database research is funded at a level commensurate
with its importance to scientific research and national economic well-being.

• The Scientific and Technical Information Board of the National Research Council
should prepare a study indicating the level of Federal funding required for basic data-
base research in order to maintain U.S. strength in this increasingly critical technology.
Specific issues addressed should include a comparative study of international invest-
ments in database research, an assessment of the potential utility of international
cooperation in selected areas of database research based on areas o£ actual and poten-
tial research overlap, and the delineation of a strategy for maintaining U.S. strength in
database technology while allowing for potential international cooperation and joint
projects.

• The Computing Research Board should help to ensure that database research consti-
tutes a substantial portion of the High Performance Computing Plan endorsed by the
Office of Science and Technology Pohcy and that it is a major component of Congres-
sional legislation intended to ensure adequate support for computing, such as S. 1067
(the Gore bill) and S. 1976 (the Johnston bill).

• U.S. industrial firms with a substantial stake in database technology should vigorously
support existing programs and the development of new programs that provide funding
for basic university research in the database area.

To date, the database industry has shown remarkable success in transforming scientific
ideas into major products, and it is crucial that advanced research be encouraged actively
as the database community tackles the challenges ahead. The fate of a major industry in
the year 2000 and beyond will be determined by the decisions made in the next few years.

22 SIGMOD RECORD, Vol. 19, No. 4, December 1990

