Language Features for Interoperability
of Databases with Schematic Discrepancies

Ravi Krishnamurthy

Witold Litwin*

William Kent

H.P. Labs, Mailstop 3U-4, P.O. Box 10490, Palo Alto, 94303-0969

Abstract

Present relational language capabilities are insufficient to
provide interoperability of databases even if they are all
relational. In particular, unified multidatabase view def-
initions cannot reconcile schematic discrepancies, where
data in one database correspond to metadata of another.
We claim that following new features are necessary:

1. Higher order expressions where variables can range
over data and metadata, including database names.

2. Higher order {multidatabase) view definitions, where
the number of relations or of attributes defined, is
dependent on the state of the database(s).

3. Complete view updatability for the users of multi-
database views.

We propose these features in the context of a Horn clause
based language, called Interoperable Database Language,
(IDL).

1 Introduction

While databases were traditionally called heterogeneous
when they had different data models, semantic hetero-
geneity exists even if all the databases follow a com-
mon model and language [NSF]. Traditionally observed
aspects of semantic heterogeneity[K89] include hetero-
geneous values, data representations, names and de-
compositions ge.g., different normalizations in relational
databases). A less addressed problem is that of schematic
discrepancies (SDs) (see examples 21-23 in [K89]), when
one database’s data (valuesg correspond to metadata
(schema elements) in others. Schematic discrepancies will
be frequent, as exemplified by the following abstraction
of a real life application.

*Visiting H.P Labs and Stanford University

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1991 ACM 0-89791-425-2/91/0005/0040...$1.50

Example: Consider three stock databases. All contain
the closing price for each day of each stock in the stock
market. The schemata for the three databases are as
follows:
database euter!:

relation r : {(date, stkCode, clsPrice) ...}

database chwab!:
relation r : {(date, stkl, stk2, ...) ...}

database ource’
relation stkl: {(date, clsPrice) ...},
relation stk2 : {(date, clsPrice) ...},

The euter database consists of a single relation that has a
tuple per day per stock with its closing price. The chwab
database also has a single relation, but with one attribute
per stock, and one tuple per day, where the value of the
attribute is the closing price of the stock. The ource
database has, in contrast, one relation per stock that has
a tuple per day with its closing price?. For now we con-
sider that the stkCode values in euter are the names of
the attributes and relations in the other databases (e.g.,
stkl, stk2). This assumption will be relaxed in Section 6
when explicit name mappings are introduced. N

These schematically disparate databases have similar pur-
poses although they may deal with different stocks, dates,
or closing prices. A user of one of these databases may
need to work with the other databases also. Our goal is to
provide the interoperability of such disparate databases.
Typical needs of a multidatabase user, are:

o to formulate queries with the same intention to each
database, using the same formal expression in spite
of schematic discrepancies; e.g. all stocks (in ali three
databases) that closed above $200.

¢ to formulate queries spanning over several databases;
e.g., all stocks that are quoted in all the three
databases, for the same day.

lAny similarity of names of the database (i.e., (R)euter,
(S)chwab, and (S)ource) to popularly known names is purely
coincidental.

2This ource schema may seem contrived to a database researcher
but lo and behold, this is a popular schema among stock market
data vendors.

40

euter’ chwab’ ource’
&
Unified View
] §
euter chwab ource

Figure 1: Two level mapping

to formulate queries about the databases and the in-
formation they contain; e.g., list the stocks in ource
and chwab that have the same closing price (which
means to list the relation names and attribute names
satisfying the join on attribute values).

to be provided with a unified view of all the
databases ((multiple) database transparency).

to see all the databases as if they had the schema
(e.g., chwab) the user knew before the integration
or similar to this schema (e.g., with additional at-
tributes) (integration transparency).

to be able to update all the databases through the
individual views or the unified view. (multidatabase
view updatability).

The relationship between individual views and the uni-
fied views is shown at Figure 1 for stock databases.
The unified (multidatabase) view U is defined over all the
databases, in general, D;,i = 1,...,n. The customized
views D/,i = 1,...,n, are defined using U to preserve
integration transparency according to original databases

Dis.

The above new needs require the capabilities to quantify
over data and metadata using higher order variables, and
to define higher order multidatabase views. Our goal is
therefore to cull the necessary language features. The
relational languages, including the SQL dialects of the
database industry, cannot suffice as they are first order
languages. This is also the case of Horn clause languages
such as LD L, Datalog and Prolog. The language for in-
teroperability has to be a higher order language. Even
though there were higher order languages proposed in the
literature [AG88, KN88, CKW89], none of them addresses
the interoperability needs.

In what follows, we propose a language called IDL (read
as wdeal) for Interoperable Database Language. IDL pro-
vides the higher order capabilities by extending Horn
clauses for higher-order logic. IDL is an extension of the

41

language in [KN88] that subsumes LDL, and Datalog,
as well as SQL and other relational languages. Its inter-
operability features subsumes also those of MSQL(Li89).
IDL is nevertheless defined only to-demonstrate the new
capabilities and not per se to present another language.
We define IDL’s syntax and semantics and show that it
fulfills the interoperability needs through a series of ex-
amples. This research is being done in the context of
Pegasus project in H.P. Labs.

Section 2 discusses the multidatabase language require-
ments more in depth. We show the need for higher order
query, higher order views and view updatability. Sec-
tion 3 presents the overview of IDL. Section 4 deals with
higher order queries. Section 5 deals with update expres-
sions. Section 6 describes higher order views in IDL. The
update through customized views is the topic of section
7. Section 8 concludes the paper.

2 Language Requirements

In order to handle SDs, it is necessary to model each
database as a complex object wherein the metadata (i.e.,
relation names, attribute names, keys, types, etc.) and
data are explicitly represented and can be used in the
reasoning necessary for reconciling heterogeneity. In this
paper, we concentrate on the relation names and attribute
names only. It is easy to extend this to other metadata
such as keys, types, authorization, etc. One such exten-
sion was given in [KN88] which is the basis of the language
proposed here.

Higher Order Queries

Consider an euter user posing the following queries to
all the databases.

1) Did any stock ever close above $2007?
2) For each day, list the stock with
the highest closing price.

Both queries, against chwab/ource databases, cannot be
posed as a relational query. They require higher or-
der quantification (i.e., iteration over relation/attribute
names) and the expressions requiring the join of the do-
mains of these higher order variables. The language fea-
ture that is needed is higher order (query) expressions,
which are the topic of section 4.

The higher order expressions are used to define a uni-
fied view over multiple databases. The view definition is
the mapping from the individual databases to the uni-
fied view. Such a view definition requires the expression
defining the view to allow variables over relation names
and attribute names, for the same reasons observed be-
fore. Therefore, the use of higher order expressions in the
unified view definition is considered necessary.

Higher Order Views

This integration transparency poses a new requirement
to the language. Consider the customized view for the

ource users. . The number of relations in the ource view
of the unified database will be data dependent; i.e., there
will be as many relations in the ource view as there are
stocks in the three databases. This necessitates the view
definition to be capable of defining a varying number of
relations, where the number is data dependent. Tradi-
tional view definition facility, in a relational language,
allows the specification of a fixed set of named relations
for all states of the database. In contrast, the language
construct needed for view definition in a multidatabase
language is one that is capable of defining a variable set of
relations each with its own name, the number of relations
and their names being data dependent. This language
feature is termed higher order views and is discussed in
section 6.

View Updatability

Given that the users are accessing the databases through
their individual views then the ability to update via a
given view becomes a necessity. View update requires
the translation of the update (to the view) into a se-
ries of updates to the databases such that the subse-
quent computation of the view faithfully reflects the view
update.[BS81, DB82, K85] The crux of the problem is
that the translation 1s not unique as seen in the update
of the following view defined using Datalog syntax.

empMgr(Name, Mgr) — emp(Name,Dno), dept(Dno, Mgr).

This view computes the manager of a given employee by
joining the emp relation with dept relation. In order to
update the manager of a given employee through this
view, either the Dno of the employee can be changed
or the Mgr in the dept relation can be changed. Either
update to the base relation will have the net effect of
changing this employee’s manager in the view.

In order to resolve this ambiguity, previous re-
searchers have proposed using functional dependency and
other semantics to determine the wupdate translation
uniquely[BS81, DB82, K85]. In contrast, using the ap-
proach taken for integrating multiple databases, we pro-
pose to use additional language features to allow the
schema administrator to provide the update translation.

Our approach is based on the notion of an update pro-
gram that is similar to the view definition for queries.
Just as view definition is a named, parameterized col-
lection of (query) expressions, an update program is a
named parameterized collection of update and query ex-
pressions. Parameterized view definitions allowed the use
of the named views with varying set of bindings. For ex-
ample, the above empMgr view can be used to query the
managers of any employee, employees of any manager,
and managers of all employees. The update programs has
similar reuse capability and such a reuse enables update
programs to be defined, successively on other update pro-
grams, in a nonrecursive fashion. This parallels approach
taken in LDL[NKB88] and extended to allow updates to
other structures beyond set (e.g., tuple) as well as inte-
grate it with the higher order expressions.

Using the update program capability, a view update can
be defined as a named parameterized definition of the

42

update to the view. In such a definition, the schema
administrator who is setting up the program can unam-
biguously state the necessary update (e.g., either update
emp or dept relation) and the users can then use these up-
dates transparently. Further, the reuse and parameteriza-
tion capability provides the ability to build view updates
using other view updates, especially for views which are
defined on other views. Thus, the ability to allow update
programs and the availability of update programs set up
by the schema administratorﬂs) provide the view update
capability. A similar proposal to provide updatability of
E'iew? was originally proposed in the context of OSQL in
K86].

In summary, we have outlined the need to use metadata
and data to define the unified view as well as the cus-
tomized user view. We have argued that the view defi-
nition should be capable of defining not only the content
of the view but the number of views as well. Finally, the
language should be capable of providing updates to the
views.

3 IDL Overview

The conceptual structure of the language proposed in
[KN88] is based on objects and expressions on objects.
An object can be classified into one of three3 categories:
a set of objects, a tuple of objects, or atomic objects. Ex-
amples of atomic objects are integers, characters, etc. A
tuple object is recursively defined as a collection of at-
tribute/objects pairs, which is syntactically denoted as
(attry : objecty,...,attry : objecty), in which each
attr; : object; pair refers to the object; that is the unique
attr; attribute of the tuple. We refer to object; as the
attr; object of the tuple. For example (name : john, sal :
10K) is a tuple object. A set object is a collection of ob-
jects. For example, {(name : john,sal : 10K),...} is a
set object whose elements are tuple objects.

Elements of a tuple can be accessed by reference to the
unique attributes, serving to “name” objects, whereas a
set 1s queried by the contents of the object alone. Using
this intuition we model a collection of named relational
databases as a tuple; the collection of named relations in
a database also as a tuple; and each relation as a set of
(unnamed) tuples.

Modeling Multiple Relational Databases:

Define the universe of databases to be a tuple of relational
databases* as follows:

u =(dbl:(rqq: {(a111 : O114,--)-- -},
ry9: {(a121 104014,) .. } .. .),

db2: (r21 :{(a211 : 0211,---)---},
T2t {(a221 : 0221,.-) -})

)
3The original proposal also included the category of a functor
object which has been omitted throughout this paper for brevity.
4The databases are assumed to be relational for purely conve-
nience of exposition. The reader will readily realize that the pro-
posal allows more general DBMS in the same formalism.

Each relational database dbi in the above tuple is a tuple
of relations. Each relation r;; in each database is a set of
tuples, and each tuple in a relation is a tuple of objects.
These objects in a tuple are atomic, as per relational data
model.

In short, we have outlined a nested relational model de-
fined recursively using the three categories of objects (i.e.,
set, tuple and atom). There are couple of salient points
of distinction that need to be emphasized here.

e Objects are value based and as defined above does
not have a notion of object identity.

e Set can contain heterogeneous objects. Therefore,
tuples in the above definition can have varying arity
in a given relation. In contrast, tuples in relational
model have a fixed arity.

o The above definition assumes that the attributes of
each tuple in a relation to be atomic. This is done
for ease of exposition and can be easily generalized
to allow any nested object.

Using this model of the universe of databases, we develop
the language features of interest.

4 Higher Order Queries

We develop the syntax and semantics of the query ex-
pression recursively using the three categories of objects.
Corresponding to each kind of object we have a query
expression (or referred to as expression, if there is no am-
biguity) of that type. An expression, evaluated on an
object, returns true or false®. An atomic (resp. tuple or
set) expression evaluates on an atomic (resp. tuple or set)
object and returns true only for an atomic {resp. tuple
or set) object. If an expression evaluated to true on an
object then we say that the object satisfies the expres-
sion. We define € (i.e., empty string) to be a tautological
expression that is satisfied by any set, tuple or atomic
object.

In the first subsection we develop the syntax of the query
expression. The evaluation of the query expression on an
object, (i.e., semantics) is the topic of the next subsection.

4.1 Query Expression on Objects

An atomic expression is of the form aX where X is either
a variable (denoted by a word beginning with a capital
letter) or a constant (denoted by a word that is not a
variable) and & € {<, <, >,>,=,#}. For example, > Cat

RS

and = cat are atomic expressions.

A tuple expression is a conjunct of the form:
.34 €Xp4,.22€Xpy,...,.ax6XpPk, Where each expj is an

expression on the aj—object of the tuple.

SIn this sense, the term expression is a misnomer. A more ap-
propriate name would be an operator. Nevertheless, we define it as
it was done in [KN88g].

43

A set expression is defined to be (exp) in which exp is
an expression on an object of the set.

Any expression exp can be negated by prefixing the nega-
tion operator - to get —exp.

The subset of atomic expressions ensuing from restrict-
ing o € {=} shall be called simple atomic expressions;
a simple expression, in general, does not use any atomic
expressions that is not simple and that does not have
any negated expression; a simple ground expression is a
simple expression that does not have any variable. Such
simple expressions can be further qualified as simple tu-
ple expression or simple ground set expression to mean
the obvious restriction.

In summary we show below the grammar for expres-
sions, on constants and variables. Readers familiar with
[KN88] will readily see the extensions for negation and
the more general ability to have variable representing ag-
gregate objects (i.e., tuple and set).

Ezp — =PEzp| PEzp

PEzp — Aezp|Texp| Sexp|e

Aexp — Relop constant | Relop variable
Texp — .Aname Ezp | .Aname Exp,Texp
Sexzp — (Ezp)

Aname — constant

Relop —<| <| = #| >| >

We define a query to be an expression of the form, ‘?exp’
where exp is an expression on the universe tuple as de-
fined above.

We have so far presented the syntax of an expression.
The evaluation of an expression (on an object) provides
the sermantics of the expression.

4.2 Expression Evaluation

A substitution is defined, in the usual way, as a non-
empty finite set of ordered pairs {X4/0y,...,Xn/on} such
that (Vi<i<n) X3 is a distinct variable, oy is an object.
We view a substitution as a mapping on variables that
is the identity almost everywhere. Thus, if o is a sub-
stitution and X a variable the result of applying o to X
is defined as o if (X/0) € o and X otherwise. We extend
this mapping to expressions in a manner consistent with
the above. definition. The idea behind an application of
o to an expression e is to replace the free occurrences of
Xq,...,Xn in e by the objects 04,...,0n. A substitution
o 1s said to be a grounding substitution for an expression
e if ec is ground; i.e., all variables are substituted in the
expression.

The evaluation of the expression is a recursive algorithm
with the base case being the evaluation of an atomic ex-
pression.

A ground (i.e., free of variables) atomic expression, say
ove, evaluated on an atomic object, say o, returns true if
the comparison occ is true. An atomic expression, ac,
evaluated on an atomic object o returns true, if there
exists a substitution o such that oaco is true.

A tuple object o satisfies a tuple expression
.aqexpy,.ag€xpy,-..,.anexpn if there exists a ground-
ing substitution o such that (Vi<i<n) -ajexp4, o has an
aj-object that satisfies exp; under the substitution o.

A set object s satisfies a set expression (exp) if and only
if there exists a substitution ¢ and an element o € s such
that o satisfies expo.

An object satisfies a negated expression —exp iff the ob-
ject does not satisfy the expression exp.

We define the answer to a query to be the set of grounding
substitutions satisfying the query. One can extrapolate
introducing a structure to the answer. As this is not
directly relevant in this paper, we do not elaborate on
this aspect of the problem. In the limiting case, when
there is no variable in the query, the answer is assumed
to be boolean.

Example: Consider the universe (u) of stock databases
in example presented in the Introduction. Below we show
some query expressions on the euter database.
?.euter.r(.stkCode=hp, .clsPrice>60)

“Did hp ever close above 607"

The universe tuple u must satisfy the above tuple ex-
pression for the query to be true. For this, the suf-
fix after euter in the query (i.e., .xr(...)) must be sat-
isfied by the euter object (i.e., euter tuple) of the
universe tuple. That is, the .r-object (i.e., relation
r) of the euter tuple must satisfy the set expression
(.stkCode=hp, .clsPrice>60), which in turn requires
the existence of a tuple in r that satisfies the tuple ex-
pression .stkCode=hp, .clsPrice>60.

?.euter.r(.stkCode=hp,.clsPrice>60, .date=D),
.euter.r(.stkCode=ibm, .clsPrice>150, .date=D)
“List all dates when hp closed above 60 and ibm closed
above 150.

This is an example of select, join (i.e., self join of r)
and project (i.e., list®). The ordering of the attributes is
immaterial because the attributes are named.

?.euter.r(.stkCode=hp,.clsPrice=P, .date=D),
.euter.r—(.stkCode=hp, .clsPrice>P)

“List the dates/prices when price of hp closed at its all
time high.”

The highest close price is obtained by negating the ex-
istence of a higher price. This is an example of negation
and inequality join.

?.euter.r(.stkCode=5, . clsPrice>200)
“Did any stock ever closed above 200.”

This above seemingly simple example will provide the
motivation for the higher order expression. []

We have showed, in the above examples, that the lan-
guage has the usual relational algebra capabilities such
as join, selection, negation etc. Thus, it has sufficient

6Here ‘List’ is being used informally to refer to the free variable.
We shall revisit the notion of list (i.e., project) in the context of
derived views.

hb

power to construct any relational expression. All the
above queries required the variables to quantify over the
data (i.e., first order quantification) in the relation r in
euter. This is no more true, if the last query in the above
example is to be posed against the other two databases
(i.e., chwab and ource). This is because, the variable S
needs to be quantified over the stocks which are denoted
as attributes and relation names in the two databases.
Traditional query languages such as OSQL[Fi89], QBE
and SQL and as well as logic languages such as Datalog,
LDL do not allow such higher order quantification.

4.3 Higher Order Expressions

The definition of tuple expression above restricted at-
tribute names to be values. We remove this restric-
tion and define a notion of higher-order quantification
over attribute names in order to pose query on meta
information as well. We generalize the tuple expres-
sions by allowing variables and constants for attribute
names as follows: .Ajexpq,Agexps,...,Agexpx, where
eachd;, i=1,... k,is eitlher a varlable for an attribute
name or an attribute name itself. As a result, each eXpj

is an expression on the object associated with the A j at-
tribute of the tuple.

A variable occurring in an attribute position in an ex-
pression will be referred to as a higher-order variable.
We define a higher-order expression as an expression de-
fined as before, using the new definition for tuple expres-
sion. The evaluation algorithm remain unchanged; i.e.,
the grounding substitution provides the binding for all
variables then the satisfaction can be checked as before.
Intuitively, the semantics of the higher order expression
is given by the semantics of the resulting first order ex-
pressions obtained through substitution for higher order
variables. We explain the semantics of such higher-order
queries through the following examples.

Example: Consider the univese of stock databases again.

?.X List the database names 1n the universe.”
?.ource.Y or 7.X.Y, X = ource’ List the relation

names 1n the ource database 1n the universe ”

?.X.Y List the database/relation names in all
the databases in the universe.”
?.X.hp List the names of databases contamning

a relation named hp.”
?.X.Y(.stkCode) List the names of database/relation
containing an attribute named stkcode.”
.chwab.r(.date=D,.S=P),
.ource.S(.date=D, .clePrice=P)

List the stocks in ource and chwab

-y

that have the same closing price.”
?.euter.Y, .chwab.Y, .ource.Y
of relations that occur in all the databases ”

The higher order variables (e.g., X, Y) can be used like

List the names

7Strictly, this is not an expression allowed by the grammar, This
is a construct that is used very similar to the use in Datalog, LDC,
Prolog and other Horn clause based languages. The reader can
extrapolate its meaning in the obvious manner.

any other variables in the expression, in the sense that
they can be used to conjunct further selection, join or
even projection as we shall see later. It is interesting
to note that many of the above queries are very useful
in a heterogeneous database environment where all the
databases are autonomously administered.

Finally we revisit the last query expression of the pre-
vious example in the context of chwab and ource.
?.chwab.r(.S$>200)

?.ource.S(.clsPrice > 200)

“Did any stock ever closed above 200.”

The variable S is quantified over names of attributes and
relations, respectively in the two databases.]

5 Update Expressions

We have so far been concerned with query expressions
whose satisfaction can be evaluated for a given object.
For example, the query expression

?.chwab.r(.date=3/3/85, .hp = B0). can be read as
“Is it true that hp closed at $50 on 3/3/867” In general, a
query expression evaluates the truth, 4 la the expression.

In contrast, an update expression is a decree that pro-
claims the truth hence forth. For example, if a tuple for
hp for 3/3/86 is inserted with a closing price of $50 then
such an update can be viewed as a decree that the above
query expression will be true hence forth. Similarly, if a
tuple is deleted then the decree is the falsehood of the
query expression hence forth. These insert and delete
expressions are syntactically stated as +expi and -exp2
respectively. These expressions are to be read as make
expl true hence forth and make exp2 false hence forth.

As with the query expressions, we present the syntax of
the update expressions and then describe the semantics
by specifying the evaluation algorithm.

5.1 Update Expression on Objects

Recall that a simple atomic expression is of the form
=constant or =Variable; and a simple expression is
one that does not use any atomic expression that is not
simple. A simple ground expression is defined to be a sim-
ple expression that does not have any variable and that
does not have any negated expression (i.e., —exp).

The syntax of an update expression is either + (for in-
sert) or - (for delete) followed by atomic, tuple or set
expression that is simple and ground. The grammar is

UEzp — +SGezp|—SGezp
SGexp — a simple ground expression.

Some examples of update expressions are as follows:

e atomic update ezpressions: +=5, —=9
o tuple update erpressions: +.a; exp;, —.a; exp;

o set update expressions: +(expy), —(exp;)

45

where exp;, exp;, expi, exp; are all simple ground
(query) expressions.

We refer to expressions of the form +exp / -exp as a
plus/minus ezpression respectively. These may be fur-
ther qualified as atomic, tuple or set to be specific. In
keeping with the left to right precedence of operations,
the following two expressions are not equivalent:

+ .ayexpy,.agexpsy,...,.agexg and
+.ajexpq, +.agexps, ... ,+.akexpk.

Therefore, in the following discussion when we refer to
making exp true (or false), and if exp is a conjuncted
tuple expression, we mean the second expression, even
though for brevity we refer to it syntactically as +exp (or
-exp).

An update request is of the form ?expy,exps, ..., expy,
where exp; is either an update or query expression.

5.2 Update Expression Evaluation

As before, an atomic (similarly, tuple or set) update ex-
pression is defined only on an atomic (similarly tuple or
set) object. For all other cases, the expression is in error
and the results are undefined. For the purpose of describ-
ing the evaluation semantics of the update expression, we
define two special objects: null atomic object and empty
object. Null atomic object is the null value. For ease of
exposition, we make a simplifying assumption that such
a null value evaluates to false for all atomic expressions.
An empty object behaves as an empty set, empty tuple
or a null atomic object depending on the context. Thus,
all update expressions are valid on an empty object.

The atomic plus expression, +=c is evaluated on an atomic
object by replacing the object with the value ¢ and thus
making the atomic expression (i.e., =¢) true hence forth.

The atomic minus expression, ~=c, is evaluated on an
atomic object by replacing the value with null, if the
atomic object satisfies the expression =c, making the
atomic expression false hence forth; otherwise unchanged.

A tuple plus expression, +.a; exp;, is evaluated on a
tuple object as follows: First, if the attribute a; doesn’t
already exists, then create the attribute a, in that tuple.
Second, associate with that attribute an empty object
and thereby implicitly deleting any existing object asso-
ciated with that attribute. Last, recursively evaluate the
update expression +exp; on the a; object (i.e., the empty
object). A tuple minus expression, —.ajexpj, is evalu-
ated on a tuple object by deleting the attribute .a; as
well as the associated object from the tuple if the object
satisfies the expression exp;j. Thus, any query expression
of the form .a; exp will evaluate to false hence forth for
that tuple.

A set plus expression, +(exp) is evaluated on a set, s ob-
ject by first creating a new empty object and recursively
evaluating +exp on that empty object. Then adding the
resulting object to the set, s. A set minus expression,
~-(exp) 1s evaluated on a set object by deleting all ele-
ments of the set that satisfies the (query) expression exp.

We exemplify the above evaluation semantics. Consider
the following two set update expressions.

?.euter.r+(.date=3/3/85, .stkCode=hp, .clsPrice=50).

?7.euter.r-(.date=3/3/85, .stkCode=hp).

The first expression inserts the tuple in the set r and
the second expression deletes all tuples in r for hp with
3/3/85 date. Both these expression can be made query
dependent as seen in the following equivalent expression
to the above delete request.

?.euter.r(.date=3/3/85, .stkCode=hp, .clsPrice=C),

.euter.r~(. date—3/3/85, stkCode=hp, . clsPrJ.ce-C)
The above use of variables in the set minus expression is
not a contradiction to the requirement that the expres-
sion be simple and ground. This delete can be viewed as
a series of delete expression, one for each value of clos-
ing price in the set r. This approach was also taken in
QBE[Z77] and LDL[NK88] and the formal semantics can
be given in a similar manner.

Another use of variables in the expression can be seen in

the following delete request in the chwab database, exem-
plifying the use of atomic minus expression.
?.chwab.r(.date=3/3/85, .hp=C),

.chwab.r.(.date=3/3/85, .hp-=C).
?.chwab.r(.date=3/3/85, .hp=C),
.chwab.r.(.date=3/3/85, ~.hp=C).

The both the expressions deletes the closmg price for hp
on 3/3/85 from the chwab database but the second ex-
pression also deletes the attribute. Based on the null
value semantics assumed, all query expression on the h
attribute for that tuple will not be satisfied after both the
updates. In this sense, they behave identically.

Note that the deletion, of the attribute hp from the tu-
ple, has the effect only in the tuple for the date 3/3/85.
This is allowed in this language because a set can contain
heterogeneous elements, which is a marked contrast to
most relational database systems. Such an update would
obviously pose implementation problems.

As a short hand notation, we can use the following gram-
matically illegal delete expression to mean the same as
the delete above.

?.chwab.r.(.date = 3/3/85, .hp— = C).

The updates in this language can be viewed as the com-
position of delete followed by insert.
7.chwab.r-(.date=3/3/85, .hp=C),
.chwab.r+(,date=3/3/85, .hp=C+10).

This updates the closing price of hp on 3/3/85 to be $10
more than the previous value®. Note that the ordering of
these two update requests is relevant as the reverse or-
dering would not result in the same semantics. This was
not the case in the case of query expressions.

In summary, we have provided the capability to update
any set, tuple or atomic object such that both the meta-
data and the data can be updated in the same expression.
Such an update capability is considered essential to pose
nontrivial updates to heterogeneous databases.

8We have assumed the use of arithmetic here even though it
was not included in the grammar. The reader can extrapolate the
possible uses,

46

6 Higher Order Views

Derived views are synonymous to derived predicates in
Horn clause language. We use the calculus to define views
over all the databases in the enterprise. Traditionally, a
rule in Horn clause language defines a single derived view
or predicate which is named. In this section we extend
this notion to allow the definition of many views using a
single rule. Such views are termed as higher order views.
We show the use of higher order views to provide both
database and integration transparency.

We define a rule as an implication head «— body, in which
head is a simple tuple expression, expH and body is any
general tuple expression, expB, both on the universe tu-
ple, such that all variables in the head occur in the body.
Intuitively, view the body as an expression on the universe
tuple using the variables Xy,...,Xx that occur in both
the head and the body expressions. For each grounding
substitution, o satisfying expB, the object expHo is made
true in the universe denoted as +expHo. This notion of
making expH true is recursively defined as follows.

In other words, the derived fact is made true in the uni-
verse tuple. Such a rule provides the mechanism to define
derived views. A derived database view for db1 is defined
by all the rules with the head .dbl exp. Similarly, A
derived relation view r in a database db1 is defined by all
the rules with the head .dbl.r exp. A derived database
Ssnmla.rly relation) view is called derived database (sim-
arly, relatlon) higher order view if the head (i.e., the
expression exp) contains a higher order variable.

We first show the use of the derived views to unify
schemata below and then describe the semantics in de-
tail.

Example:
again.

Consider the universe of stock databases

.dbI.p(.stkCd=X, .dat=D,.clsPr=P, .db=euter)

«— .euter.r(.date=D, .stkCode=X,.clsPrice=P)
.dbI.p(.stkCd=X, .dat=D,.clsPr=P, .db=chwab)

«— .chwab.r(.date=D, .X=P), X#date
.dbI.p(.stkCd=X, .dat=D,.clsPr=P,.db=ource)

— .ource.X(.date=D,.clsPrice=P)

The relation p is placed in a unified database called dbI.
This exemplifies the projection of higher order variables
and the use of derived views to unify schemata.

.dbE.r(.stkCode=X, .clsPrice=P,

«— .dbI.p(.stkCd=X, .dat=D,
.dbC.r(.X=P, .date=D)

- .dbI.p(.stkCd=X, .dat=D,clsPr=P)
.db0.X(.clsPrice=P, .date=D)

~ .4bI.p(.stkCd=X, .dat=D,

.date=D)
.¢clsPr=P)

.clsPxr=P)

The dbE, dbC and db0 databases provide a database
with a compatible schema for euter, chwab and ource
users respectively; i.e., provide the users integration
transparency. Note, the db0 database has a view defi-
nition that defines as many relations as there are stocks

in all three databases. This requires the definition of the
view to be stratified. The formal semantics of a program
in this language is given in [KLK90].

If there is any value discrepancy amongst the prices for
the same stock for any given day, then both prices are in
the user’s view, as defined above.

.dbI.pnew(.stkCd=X, .clsPr=P, .dat=D)
«~ .dbI.p(.stkCd=X, .dat=D, .clsPr=P, .db=euter)
.dbI.pnew(.stkCd=X,.clsPr=P,.dat=D)
- .dbI.p—(.stkCd=X, .dat=D,.db=euter),
.dbI.p(.stkCd=X,.dat=D, .clsPr=P, .db=chwab)
.dbI.pnew(.stkCd=X,.clsPr=P, .dat=D)
~ .dbI.p~(.stkCd=X, .dat=D,.db=euter),
.dbI.p~(.stkCd=X, .dat=D,.db=chwab),
.dbI.p(.stkCd=X,.dat=D, .clsPr=P, .db=ource)

Using pnew the individual views can be redefined so that
each stock is associated with a unique price. Note that
the choice of any such reconciliation is up to the schema
administrator. Here, we only provide the language to
specify the reconciliation.

As a last example, let us relax the assumption that the
stock codes in euter database and the names of at-
tributes/relations in chwab/ource database respectively
are from the same domain and have no name conflict. If
there is such a discrepancy, then we can define name map-
pings ﬁi.e., binary relations) mapCE and mapOE from
chwab/ource to euter respectively. Using these two
name mappings, we can define the unified view as fol-
lows:

.dbI.p(.stkCd=X,.dat=D,.clsPr=P, .db=eunter)
~.euter.r(.date=D, .stkCode=X, .clsPrice=P)
.dbI.p(.stkCd=X, .dat=D,.clsPr=P, .db=chwab)
~—.chwab.r(.date=D, .Xi=P), X1#date,
.mapCE(. ¢Stk=X1, .eStk=X)
.dbI.p(.stkCd=X,.dat=D,.clsPr=P, .db=ource)
«.ource.X1(.date=D,.clsPrice=P),
.mapOE(.oStk=X1, .eStk=X)

Obviously, these two name mapping relations need to be
maintained and any updates to the database have to have
an appropriate tuple added to the mapping relations. In
general, using the power of the Horn clause language, any
such reconciliation can be devised. Thus, exemplifying
the power of the language.]

In summary, p is a unified view of the three databases and
by using p the user achieves database transparency. This
required the use of higher order variables in the body of
the rule. The individual views (e.g., .dbE and .dbG for
euter and chwab users) provide the integration trans-
parency by providing a view that is consistent with the
ones the users are used to, prior to integration. In order
to do this, we used higher order variable in the head of a
rule (i.e., defining a higher order view). The definition of
pnew showed the use of the powerful language to reconcile
any value differences.

47

7 Update Capabilities

The update capability, in a nutshell, is the user’s ability
to update via their customized view and the appropriate
databases updated correctly. In order to provide this view
updatability, we present a notion of update programs.

Traditionally, the concept of views is the notion of ag-
gregating a collection of query expressions and giving it
a name for subsequent use. This can be extrapolated
in the context of updates wherein the collection of selec-
tion and update expressions, called update programs can
be aggregated for subsequent use. Such aggregations are
syntactically quite similar (if not identical, in most cases)
to the view definition. This concept of update programs
is used to provide the view updatability feature.

7.1 Update Programs

Even though the syntax of update programs and view
definitions are quite similar we refer to them as update
programs, to emphasize the update nature and the restric-
tions in the use and definitions. Further, the definition
of these update programs differ from view definition {i.e.,
a rule) by the use of a right arrow (i.e., —) instead of a
left arrow (i.e., +) and the body of the definition is any
update expression.

Semantically, the arguments in the head are to be viewed
as parameters instead of values deduced from the body
of the definition. These parameters are passed top—down
and therefore a top-down semantics is given for these pro-
grams. Further, execution of these programs does not
return values except success or failure. As is the case
in LDL updates [NK88], we disallow any recursive call
to update program. This enables the use of top-down
semantics for update programs without any loss of gener-
ality. We present this top down evaluation of the update
programs informally through examples.

Consider the following example that aggregates the set
of updates to the three databases in one program called
delStk.

.dbU.delStk(.stk=S, .date=D) —
euter.r—(.stkCode=S, .date=D)
.dbU.delStk(.stk=S, .date=D) —

.chwab.r(.S-=X, .date=D)
.date=D) —

.ource.S—(.date=D)

.dbU.delStk(.stk=S,

delStk deletes the closing price of a given stock code on
a particular date. This program describes the translation
of the update to the respective databases. Note that this
program has the property that if the stock code is not
passed as input then the closing price of all stocks for that
date is deleted. If the date is not given as input then the
closing price of all the days for that stock are deleted. If
both stock code and date are not given then all values
are deleted. But the structure of the database is not
changed; i.e., chwab database will still contain attribute
names called hp, ibm etc.

The following program removes a given stock from all the
databases exemplifying the need to construct update pro-
grams that not only updates data but also the metadata.

.dbU.rmStk(.stk=S) — .euter.r—(.stkCode=S)
.dbU.rmStk(.stk=S) - .chwab.r(—.S)
.dbU.rmStk(.stk=S) — .ource—.S

The process of removing stocks from the euter database
is to remove the tuples from the relation. On the other
hand, the removal of a stocks from chwab and ource
database requires the deletion of attributes and relations
respectively. The reader should note that the execution of
some of these updates might pose nontrivial performance
problems, if it can be done at all within the restrictions
of the underlying DBMS.

The above two programs were valid even if some gor all)
of the arguments were not given as input. This feature
is quite useful for increasing the capability to reuse the
same update program in different context and still pro-
vide a consistent semantics among similar updates (e.g.,
deleting for a given stock/date and for a given stock).
This useful feature cannot be always provided as seen in
the following program that inserts the closing price of a
given stock on a particular day.

.dbU.insStk(.stk=S, .date=D, .cls=P) —
.euter.r+(.stkCode=S, .date=D, .clsPrice=P)

.dbU.insStk(.stk=S, .date=D, .cls=P) —
.chwab.r(.S+=P, .date=D)

.dbU.insStk(.stk=S, .date=D, .cls=P) —
.ource.S+(.date=D, .clsPrice=P)

Note that if any of the argument is not given then the plus
expressions are not defined. This can be used to define
the necessary bindings for which a given update program
is defined. Such compile time analysis can be used to
check the validity of the ‘call’ to the insStk program.

The reader may have already observed that the opera-
tions such as delStk or ymStk may not be expressible
in the customized user view using relational language ca-
pability. The point that is being made here is that the
schema administrator can define such update programs
which are then used to provide the updates to the cus-
tomized views.

In summary, we have allowed for named, parameterized
update programs that can be used to construct other up-
date programs in a nonrecursive fashion. Note that the
update operations (i.e., + and —) have been allowed only
on extensional objects in the universe. In other words,
any view defined using a rule cannot be updated using +
and —. This requires the view updatability extension of
the next subsection.

7.2 View Updatability

The ability to update a given view is similar to the base
updates defined earlier in the sense that the update is a
decree about the truth regarding the view, hence forth.
For example, if p in dbX is a view defined over the three
databases, then .dbX.p+(exp) is a decree that the set p

48

in dbX will satisfy the expression exp hence forth. For
base objects, such updates can be performed by changing
the state of the database (e.g., inserting or deleting tu-
ples from relations). In the case of the derived views, the
updates have to be to the base objects, such that sub-
sequent computation based on the updated base objects
guarantees the decree.

This is traditionally called the view update problem— the
correct translation of updates to the view to the updates
on the base relation such that the resulting views based
on the updated relation is faithful to the view update
semantics. Traditionally, [BS81, DB82, K85] automatic
translation of the view updates has met with limited suc-
cess, even In the context of a single relational database.
In this paper, we relax the requirement to translate the
view update automatically.

In keeping with our language oriented approach to pro-
viding interoperability of databases, we seek to provide
the language capability to allow the schema administra-
tor to state these translation. In particular as update
programs. Thus, for each derived view dbX.p in the
database, the schema administrator can provide named
update programs such as

dbX.p + (exp) —
dbX.p — (exp) — .

These update programs can be used to construct other
programs and in particular the view updates of other
views that are dependent on the the derived predicate
dbX.p. Note that if more than one (say) plus update to
the view is defined, due to different set of parameters to
the update program, then some appropriate naming con-
vention needs to be adopted by the administrator so that
they can be unambiguously used. In general, a binding
signature can be associated to each view update program
as well as with the use of these update programs. These
signatures can be used to determine the correct definition
that corresponds to the use.

In short, the capability of named aggregation of update
and query expressions can be used to define the view up-
date and these update programs can be reused to define
other view update programs. The update capability that
18 being provided to the user is limited to the relational
language capability. The only departure is that the se-
mantics of such an (relational) update to the the cus-
tomized views may be stated by update programs that is
beyond the capabilities of a relational language.

8 Conclusion

We have presented some language features that are
needed to deal with SD’s and transparencies. We argued
that the metadata and data need to be explicitly repre-
sented as complex objects so that both types of data can
be used to reason in reconciling the heterogeneity among
databases. Extrapolating this observation, it may also be
necessary to include other schematic information such as
types, keys, referential integrity etc. Such extensions are
also possible in such a language.

We argued that higher order expressions wherein vari-
ables ranging over data and metadata are needed not only
to support the queries but also to define a unified view
of all the databases. This unified database provides the
database transparency so that the users can formulate
queries spanning multiple databases.

We also demonstrated the need for higher order view defi-
nition capable of defining varying number of relations de-
pending on the state of the database. This is in contrast
to the traditional approach where the view definition fa-
cility allows a fixed set of relations for all states of the
database.

The necessity to provide view updatability was directly
evident from the two-level mapping. The approach of
providing this updatability is a marked departure from
the traditional approach, in the sense that we provided
the language capability to specify the update uniquely.
The responsibility of stating the required update in the
language is relegated to the schema administrator.

Based on the understanding of these features in the above
cryptic Horn clause based language, the next step is to
incorporate these features in a language with enough syn-
tactic sugar. In particular, our goal is to incorporate them
into OSQL the functional query language for Iris [Fi89)]
which is the basis for the Pegasus multidatabase system
under development in H.P. Labs. An interesting alter-
native is to view the incorporation of these features in a
language that provides extensibility. Such a language has
been proposed in [A90], using which many of the features
in this paper can be supported.

Acknowledgements: We sincerely thank J. Ann-
evelink, W.Hasan, M. Ketabchi, A. Rafi and J.D. Ullman
for their comments and suggestions.

References

{AG88] Abiteboul S., and Grumback S., COL: A Logic
based Language for Complex Objects. Advances
in Database Technology—EDBT88, Venice, ltaly,
pp271-293 1988.

{A90) Annevelink, J., Database Programming Languages:
A Functional Approach, Submitted for Publication,
HP Labs Technical Memoe HPL-DTD-90-12, Palo
Alto, 1990.

[BK86) Bancilhon, F., and Khoshafian, S.: A Calculus for
Complex Objects, ACM PODS Conf., 1986.
[BS81] Bancilhon, F., and Spyratos, N.: Update Semantics
and Relational Views, ACM TODS, Vol. 6, No. 4,
1981,

[CKW89] Chen, Weidong, M. Kifer, and D.S.Warren: Hilog:
A first-order Semantics for Higher Order Logic Pro-
gramming Constructs, Proc. of 2nd Int. Workshop
on Database Programming Languages, Salishan,
OR, 1989

[DB82]

[DHs4]

[Fi89]

[K85)

[K86]

[K89]

[KLK90]

[KN8s]

[Lig9)

[MB81]

[NKss]

[NT89)

[NSF]

[R*90]

[277)

49

Dayal, U., and Bernstein, P. A.: On the Correct
Translation of Update Operations on Relational
Views, ACM TODS, Vo. 7, No. 3, Sept. 1982

Dayal, U., and Hwang, H.: View Definition and
Generalization for Database Integration in a Multi-
database System, IEEE Tras. on Soft. Engg., SE-10,
6, (Nov.), 1984, pp628-644

Fishman, D. H,, et al.: “Overview of Iris DBMS”,
Object-Oriented Concepts, Lang., and Appl., Edited
by W. Kim and F.H. Lochovsky, Addison Wesley
Publ. Co., 1989.

Keller, A. M.: Algorithms for Translating View
Updates to Database Updates for Views Involving
Selections, Projections and Joins, ACM Sym. on
PODS, 1985.

Kent, W.:
Memo, 1986.

Future Work in Iris, HPL Internal

Kent, W.: The Many Forms of a Single Fact, Com-
pcon 89, San Francisco, 1989.

Krishnamurthy, R. Litwin, W., Kent, W.: Lan-
guage Features for Interoperability of Databases

with Schematic Discrepancies, Technical Memo
HPL-DTD-90-14, 1990.

Krishnamurthy, R. and Nagqvi, S.: Towards a Real
Horn Clause Language, Proc. of VLDB, Los Ange-
les, 1988.

Litwin, W.: MSQL: A Multidatabase Language, El-
sevier Science Publishing, 1989

Motro, A., and Buneman, P.: Constructing Super-
views, Proc. of SIGMOD, Ann Arbor, 1981.

Nagvi, S., and Krishnamurthy, R.: Database Up-
dates in Logic Programming, ACM Sym. on PODS,
1988.

Nagvi, S. A. and S. Tsur. A Language for Data and
Knowledge Bases, W.H. Freeman, 1989.

Brodie, M.L., et. al: Database Systems: Achieve-
ments and Opportunities, NSF Report.

Rafii, A.,, Ahmed, R., DeSmedt, P., Kent, W,
Ketabchi, M., Litwin, W., and Shan, M.: Overview
of Multidatabase Management in Pegasus, Submit-
ted for publication.

Zloof, M.M.: Query-By-Example: a database lan-
guage, IBM Systems Journal, Vol. 16:4.

