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ABSTRACT

Clustering is an effective mechanism for retriev-

ing complex objects. Many object-oriented database

management systems have suggested variant cluster-

ing schemes to improve their performance. Two issues

may compromise the effectiveness of a clustered struc-

ture, i.e., object updates and multiple relationships.

Updates may destroy the initially cIustered structure,

and in a multiple relationship environment, clustering

objects based on one relationship may sacrifice others.

This paper investigates the updating effects and sug-

gests a dynamic reclustering scheme to reorganize re-

lated objects on the disk. A cost model is introduced

to estimate the benefit and overhead of reclustering.

Reorganizations are performed only when the overhead

can be justified. For environments in which multiple

relationships among objects exist, the paper proposes

a leveled clustering scheme to order related objects in-

to a clustering sequence. Our simulation results show

that the leveled clustering scheme has a better access

time compared with a single-level clustering scheme.

1. INTRODUCTION

Database management systems (DBMSS) based

on the relational model have dominated the market

through the 1980s. This is mainly due to the sim-

plicity and the strong mathematical foundation upon

which the relational model is based. However, some

of today’s data modeling requirements do not fit well

into the relational framework. Examples are the data-

bases used for Computer Aided Design, Office Infor-

mation System, and Artificial Intelligence, in which

the representation of complex data entity as well as

sophisticated operations are required. Using a rela-
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tional DBMS in such an environment usually leads to

awkward decomposition and hence poor performance.

The object-oriented data model allows a natural map-

ping between conceptual objects and the underlying

data model, and hence better performance.

Two important features of the object-oriented

DBMSS are the notions of complex objects and ob-

ject identifiers. A complex object is an aggregation

of heterogeneous objects, and object identifiers pro-

vide a means for explicit representation of semantic

links among objects. This allows navigation through

semantic links and retrieval of complex objects. Natu-

rally, for an object-oriented system, it is important to

traverse the corresponding graph structure efficiently.

The clustering of objects based on their semantic links

becomes a powerful tool to improve the performance.

This paper investigates problems associated with ex-

isting clustering schemes, and proposes new schemes

which overcome the deficiencies of the existing ones.

One can identify several common characteristics

in existing clustering schemes. Firstly, they are mainly

static, i.e., objects are clustered when they are created

and are not reclustered afterward. Secondly, many ex-

isting clustering schemes use disk pages as the cluster-

ingunits;thegoal is to minimize the number of pages

accessed for complex object retrieval. These schemes

assumed that each page access takes one disk 1/0, and

the total access time was measured by multiplying the

number of accessed pages by the average access time

per page. Hence, they did not consider the actual per-

formance based on the relative dispositions of accessed

pages, which may result in non-uniform access time

for individual pages. Thirdly, existing schemes were

designed for clustering objects based on a single re-

lationship; multiple relationships among objects were

not considered. As a result, two potential problems

can be recognized: (i) Object updates may destroy the

initially clustered structure. (ii) In environments with

multiple relationships among objects, different appli-

cations may require different access patterns. Per-

formance will be compromised if a single-relationship

clustering scheme is adapted.

This paper introduces two schemes to resolve the

aforementioned problems. In our schemes, the cluster-
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ing units are chunks (a number of contiguous pages)

instead of individual disk pages. For the update prob-

lem, we propose a dynamic clustering scheme which

reorganizes related objects when the estimated benefit

after reorganization is greater than the reorganization

overhead. For the problem of multiple relationships,

we propose a leveled clustering scheme which clusters

objects based on several different relationships in order

to meet the requirements of different access patterns.

The remainder of this paper is organized as fol-

lows. Section 2 reviews the related issues in object-

oriented DBMSS and points out the problems of ex-

isting clustering schemes. Section 3 describes the up-

dating effects and introduces a cost model to deter-

mine the reorganization points of a dynamic reclus-

tering scheme. Section 4 proposes a leveled clustering

scheme and analyzes the effectiveness of this scheme

using our simulation results. Section 5 concludes the

paper and gives future directions of this research.

2. BACKGROUND

2.1 Relational DBMS

A database management system (DBMS) pro-

vides users with an abstract view of data rather than

the hardware-level details. Through the 1980s, the re-

lational model has become the trend for commercial

DBMSS. This is mainly due to its conceptual sim-

plicity and the strong mathematical foundation it is

based on [Date86]. The simplicity and strong mathe-

matical foundation of the relational model, along with

sophisticated indexing and query optimization tech-

niques developed in the past have provided an envi-

ronment which serves the business-oriented database

applications-containing a large amount of relatively
simple and fixed-formatted data—very well.

Despite these advantages, the relational model

does not satisfy the requirements of applications such

as Computer Aided Design (CAD), Office Information

System (01 S), and Artificial Intelligence (AI). These

amiications recluire the modelirm of comDlex data en-

ti’t~es which ca&ot be mapped e&ily to ~he relational

tables. For example, a VLSI design database requires

the sunuort of comDosite obiects- as well as different. .
versions of the same object. ” A multimedia database

may contain variable-length text, graphics, images, au-

dio and video data. Finally, a knowledge base sys-

tem requires a supporting model capable of represent-

ing data semantics. In addition, these applications

contain data elements of different types and formats.

Rermesentation of these databases in a tabular for-.
mat results in a large semantic gap and hence awk-

ward decomposition and poor performance [GuSt82].

As a matter of fact, DBMSS are excluded from cur-

rent CAD systems because of their inadequate perfor-

mance [Maie89]. Many VLSI design tools are built
on top of the raw file systems to gain efficiency. This

puts extra burden on the tool designer as they have to

code for detail 1/0 operations. In order to meet the

requirements of these database applications, a “next-

generation” DBMS is necessary.

2.2 Ob.iect-oriented DBMS

Object-oriented data models were proposed to in-

crease the modeling power of traditional data mod-

els. Object-oriented databases adapted the concepts

of object-oriented programming languages [Birt84,

GoR083] and semantic data models [C!hen76, KePa76,

HaMc811 with added database features such as per-

sistent s~orage, query capability, concurrency control,

transaction management, and consistency enforce-

ment. Several research prototypes as well as commer-

cial products have been reported. This includes Cactis

[HuKi89], ORION [BaCG87], Iris [FiBC87], ENCORE

[HoZd87], GemStone [MaOP85], VERSANT [VER-

S90], Ontos [Onto90], and Object-Store [Obje89]. Un-

like the relational data model, researchers have not

agreed on the definition of a single object-oriented da-

ta model. Nevertheless, these systems do share sever-

al common features which are essential for an object-

oriented DBMS.

Two features are important to the discussion in

this paper: object identity and complez objects. On

the one hand, each object has its own identity repre-

sented by a unique object identifier (OID). OIDS are

system-generated surrogates which remain invariant

throughout the database’s lifetime. With OIDS, an

object has an existence that is independent of its val-

ue. On the other hand, the notion of complex objects

allows the aggregation of heterogeneous objects as a

single unit. A complex object may have its subobjects

taken from different classes and linked together as a

graph structure. The references to other objects are

made explicitly through OID links. A major advan-

tage of object-oriented DBMS is that many relational

join operations can be prevented when retrieving com-

plex objects; instead of joining tuples from different

relations based on some attribute values, objects are

simply accessed through their OIDS.

In many practical applications, a complex object

structure can be expressed as a hierarchy or a directed

acyclic graph (DAG). Typical operations performed on

such structures are the navigation through links and

the retrieval of the ancestors jdescendants of a given

node. A good strategy for clustering objects is to ar-

range nodes in a hierarchy/DAG into a linear cluster-

ing sequence such that these operations can be per-

formed efficiently [BKKG88]. To cluster a hierarchy,

one can store the nodes of a hierarchy in the depth-

jirst order such that any node pin the hierarchy will

have all of its descendant nodes stored immediately af-

ter p. This is very effective when an object and all of

its descendants need to be retrieved together.

The clustering process for a DAG is more com-

dicated. First a DAG has to be transformed into.
an equivalent hierarchy and then the depth-first clus-

tering sequence can be enforced. The DAG is aug-

mented with a virtual root node. For each node with

multiple parents, a particular parent is chosen such

that all descendants of a node in the DAG can be

fetched in a single forward scan of the DAG. The re-

sult is a spanning tree starting from the virtual root

node. It has been shown that the DAG clustering
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scheme is an effective strategy in improving perfor-

mance [BKKG88]. Moreover, clustering is more effec-

tive when object sizes are relatively small compared

with the page size. [KiCB87].

Several characteristics are common to the existing

clustering schemes: (i) They are static, i.e., objects are

initially clustered when they are created; once allocat-

ed, objects are not reclustered at run time. (ii) They

use disk pages as the clustering units, i.e. ~ they assume

an average access time for each page and do not take

into consideration the physical adjacency of individual

pages. (iii) Objects are clustered based on a unique

type of relationship among the data elements; other

relationships are ignored for clustering purposes. Al-

though the existing static clustering schemes have been

effective, one can identify two potential problems:

(1)

(2)

ple

A static clustering scheme initially offers a good

placement policy for complex objects but does not

take into account the dynamic evolution of ob-

jects. In applications such as design databases,

objects are constantly updated during early parts

of the design cycle. Frequent updates may destroy

the initially clustered structure. To keep the ob-

ject structure optimized, reorganization might be

necessary for efficient future accesses [Deux90].

Objects may be connected by several relation-

ships which form independent hierarchies fDAGs.

For example, in a design database, a design e-

volves through several phases, i.e., initial creation,

design rule checking, correction, extraction, and

simulation. At each phase, the design tool re-

quires its own access pattern which may or may

not be the same as the one supported by initial

static clustering. Any single clustering scheme is

unlikely to suit all such phases. It might be prefer-

able to use different clustering structures in differ-

ent phases [Maie89]. Furthermore, several users

may access the same set of objects concurrently

through different access patterns. Clustering ob-

jects based on the need of one application may

sacrifice others.

3. OBJECT UPDATES

Our study of clustering schemes starts from a sim-

case where there is only one main relationship a-

mong objects: they are connected as a single hierarchy

(a DAG can be reduced to its equivalent spanning tree,

which is also a hierarchy). Using the aforementioned

static clustering scheme, we investigated the follow-

ing problem: how updates can destroy the originally

clustered structure and what the system can do to re-

organize it.

3.1 Updathw Effects

For environments such as design databases, ob-

jects are constantly updated. This is especially true

during the early part of the design cycle. Here, we con-

sider the evolution of a hierarchical structure caused

by object insertion and deletion. Both insertion and

deletion can destroy the organization of a clustered

structure. However, deletion is usually not a serious

problem. Deletions can be done by simply marking the

objects as deleted. The space can be reclaimed later.

But, for insertions, new free space must be allocated

immediately for new objects. The following discussion

deals mainly with the insertion operations.

Regardless of the clustering strategy, the sequence

in which nodes in a hierarchy are created is unlikely

to be the same as the desired “clustering sequence. U~-

ing the object hierarchy in Figure 1 as an example, we

shall see how a clustered structure can be disturbed

due to updates. For the sake of simplicity, we assume

all nodes are of the same size and each disk page can

hold UD to three nodes. The insertions and deletions.
of nodes would be based on the criteria that maintains

each page to be between 50 and 100 percent full. As

shown in Figure 1, the nodes from the hierarchy are

created in breadth-first order while the desired clus-

tering sequence is depth-first. When a new node is

inserted, its position within the clustering sequence is

first determined according to the depth-first sequence.

If the target page has enough space, the new node

is simply added; if the page is full, a new page is

acquired and objects are distributed evenly between

the two pages. Notice that the final set of pages are

chained together in a way that objects are arranged

in depth-first order to preserve the desired logical se-

quence. However, these pages may not be physically

close to each other since the adjacent pages may have

already been occupied by other unrelated objects.

In previous studies of ob.iect clustering schemes

[KiCB8~, BKKG88, Chan89],-performance”was mea-

sured in terms of the number of disk Da~es to be

accessed. These studies assumed an av&~ge access

initial

nallocation abc
,///\

object

d-m:’

insertion

. .

‘Q__!% H
‘w”
9

h

k

The depth-first

clustering sequence: a b f g c h j i k d e

Figure 1. Object Updates.
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time for each page and did not distinguish whether

the pages were stored sequentially or randomly. It is

clear that it takes more time to access a set of scattered

pages than it does to access contiguous ones. This is

due to the mechanical structure of current disk drives.

Reading a data block from a disk involves seek time,

latency time, and transfer time. For a set of sequential

blocks, only one seek and latency time is required. For

randomly distributed blocks, separate seek and laten-

cy times are required [Salz87].

3.2 Dynamic Reclusterin~

To solve the problem of object updates, one has

to find a proper scheme to reorganize scattered pages

into a contiguous chunk. This is similar to the file re-

organization problem. Existing studies on file reorga-

nization can be classified into two categories: on-line

reorganization [Sode81, 0mie85] and ofi- line reorga-

nization [SOG079, Bato82]. Optimal on-line reorgani-

zation is known to be an NP-hard problem [Omie85],

thus the major effort is to find some heuristic rules

to prevent excess overhead. For off-line reorganiza-

tion, the major challenge is to determine the optimal

reorganization points, that is, how often the reorgani-

zation should be performed. Our clustering strategy

is based on the same paradigms used for file reorgani-

zation algorithms.

A static clustering scheme, as discussed before,

does not recluster objects after they are created. A dy-

namic clustering scheme should try to recluster scat-

tered pages when the access cost becomes too high.

However, reclustering will generate overhead such as

extra disk 1/0s, so it is important to determine when

a reorganization should occur. If the overhead is not

justified, reclustering may actually degrade the per-

formance. We propose a cost model to evaluate the

benefit and overhead of reclustering.

Our clustering units are called chunks. A chunk is

a collection of pages stored contiguously on the disk.

Initially, a complex object hierarchy is stored in a sin-

gle chunk. This happens when a complex object is

first created, or right after the reorganization of the

data. In our cost model, we assume a complex object

occupies m + n pages where m pages are clustered in

a chunk and n pages are scattered on the disk (Fig-

ure 2a). Based on this assumption, m clustered pages

need one disk 1/0 and each of the n scattered pages

needs an additional disk 1/0. Let AS be the average

seek time, AL be the average latency time, and AT

be the transfer time for a single page. The cost of ac-

cessing all m + n pages in scattered form is estimated

by T,,C~~:

Z’8Cat= (l+n)x AS+(l+n)x AL+(m+n) xAT.

If all the m + n. pages are clustered in a single chunk

(Figure 2b), the accessing cost would be:

TCIU, =lXAS+l XAL+(Tn+n)X AT.

mun-o
m contiguous pages n scattered pages

(a) Before Reorganization.

DDIEIIl
m+n contiguous pages

(b) After Reorganization.

Figure 2. Modeling Page-based Reorganization.

Here, T..at corresponds to the result of a static cluster-

ing scheme, while T,,lti, corresponds to that of a fully

dynamic clustering scheme in which related pages are

always clustered. Using DEC’S RA81 disk drive as a

guideline [DEC82], we set 4S = 28ms, AL = 8.33ms,

and AT = 1.282ms (assume a page size of 2K bytes).

When m = 10 and n = 2, the ratio of T.cat to Tclu, is

1.84;when n increases to 10, the ratio becomes 8.04.

It is clear that reclustering can reduce the access time

significantly.

3.3 Cost Estimation

While a fully dynamic clustering scheme reduces

the access time, the overhead of reorganization may

offset the benefit. The reorganization cost is the time

overhead spent for reorganizing scattered pages. We

estimate the reorganization cost based on a copy-and-

reclaim method [Bato82]. First, related pages residing

in the scattered form are retrieved (T~Cat ). Then, the

“old” storage space is reclaimed and a “new” contigu-

ous space is located (TCPU). And lastly, all pages are

written to the new space (TCIU$ ). If there is no contigu-

ous space available on the disk, a total reorganization

ma? be necessary. We assume that it is done off-line,

which does not affect our cost estimation. Using this

method, the cost of reorganization, T7~~,g,can be ex-
pressed by:

,..,9 = T,..t + Tcpu + T.(.. .T

As the equation shows, regardless of m and n values,

TT~Org is always greater than TsCat. This means that

the reorganization overhead is not justified if the R/U

ratio (the average number of retrievals after each up-

date) is smaller than or equal to 1. We would like

to determine how many retrieval operations (R) are

needed to justify the reorganization cost, i.e.,
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or

R>

which can be further

T.cat + T.Pu + Tc[,ia

T,.at – T.lU. ‘

expanded to

~ > (n+ 2)(AS + AL) + 2(m+ n)AT + TCPU

n(AS + AL)

Typically TCPU is much smaller compared to the disk

access time, i.e., TCPU = O. Using timing parameters

from DEC’S RA81 disk drive [DEC82], a plot of R

against different values of m and n is depicted in Fig-

ure 3. This figure shows that for a smaller n, a larger R

is needed to compensate the reorganization cost. For

example, if m = 50 and, the system performs reorga-

nization whenever 2 scattered pages are found (i.e.,

use n = 2 as a threshold value), it would be beneficial

only when the R/U ratio is greater than If the thresh-

old value is chosen to be 8, the minimum R/U ratio

needed is only 2. Notice that when R/U falls between

the range of 1.2 and 2, the curves are very dense. It

seems to suggest that the choice of threshold values

is very sensitive to small variations of R/U value. To

further exploit this issue, we developed a simulator to

compare the actual access and reorganization cost.

$.4 Simulation

The goal of our simulation is to determine the to-

tal cost of different clustering strategies based on dif-

ferent sets of parameters such as m, n and read/write

ratio. The total cost covers both the access cost and

the reorganization cost. In our simulations, PR/W

(page reads/writes ratio) represents the average num-

ber of pages retrieved after a new scattered page is cre-

ated. Since a complex object is not always retrieved

in its entirety, the introduction of PR/W permits the

modeling of partial retrieval. When PR pages are to

be retrieved from a set of m clustered and n scattered

pages, we assume a uniform distribution for the proba-

bility of whether these PR pages are clustered or scat-

tered.

For a fixed value of m, simulations were run to

calculate the total access and reorganization cost for

different choices of thresholds (n) and PR/W ratio.

Figure 4 shows the results of a typical simulation run

when m = 10. The total cost is accumulated over an

interval until a total of 16 scattered pages are created.

When PR/W ~. 25, the total cost TtOt decreases as

n increases. This means that infrequent reclustering

yields a lower total cost. When PR/W > 35, Ttot

increases as n increases. The minimum ~tot occurs

when n T 1, which means

has the lowest total cost.

fully dynamic reclustering

When the PR/W value is

around 28, TtOt does not change much as n changes.

We call PR/W = 28 a break-even point for m = 10.

Simulations were run for different values of m. The

results show that for each run the curve pattern is the

same as Figure 4 with a different break-even point.

In summary, reclustering should be performed

whenever possible to keep the related objects clus-

tered. Our simulation results show that for appli-

cations in which the read/write ratio is high, a ful-

ly dynamic reclustering strategy is justifiable. How-

ever, when the read/write ratio is not high enough,

the reorganization overhead degrades the overall per-

formance. In this case, on-line dynamic reclustering

is not recommended. However, one should remember

that the system can still perform off-line reclustering

during off-peak hours to gain the clustering benefit.

Since it is done off-line, the overhead will not affect

the user’s access time.

4. MULTIPLE RELATIONSHIPS

For applications with different relationships a-

mong objects, a clustering scheme based on a single

relationship satisfies only one of the access patterns

and sacrifices others. Based on the observation that

some relationships are referenced more frequently than

others at a certain phase of the objects’ lifetime, we

propose a leveled clustering scheme which takes into

account multiple access patterns.

4.1 Weighted Digraphs

According to Chang and Katz [ChKa89], at least

three types of structural relationships have been found

to be useful for clustering objects: configuration, ver-

sion, and correspondence. The following work is based

on the assumption that for a set of related objects,

one can find multiple relationship links with differ-

ent access frequencies among objects. The access fre-

quencies can be either measured from previous runs

or predicted by the user’s hints. Because of the na-

ture of the algorithms used in application programs

such as CAD tools, some relationship links may be

traversed more frequently than others at a certain pe-

riod of time. That is, different relationship links have

different weights. With the existence of multiple rela-

tionships, the object structure is not limited to a single

hierarchy or DAG. Related objects may be connected

as a general directed graph (digraph), in which nodes

represent objects and arcs represent relationships a-

mong objects. Arcs are associated with weights. An

arc of weight w pointing from node a to node b (denot-

ed by a>b) means when a is accessed, the relative

possibility y of accessing b is w. Therefore, in a graphical

representation of complex objects, the notation a~b,

a~c, Wl > W2, shows the fact that the relationship

between a and b is more significant than the relation-

ship between a and c.

Our leveled clustering approach is a variation of

the clustering sequence approach as was described in

the last section. Using such a scheme, all nodes in

the digraph are ordered into a clustering sequence in
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has the following properties: (z) A single node is a
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which the more tightly connected objects are closer to

each other. If updates occur after the sequence is es-

tablished, the same page allocation and reorganization

schemes described in the last section can be applied.

This approach has two advantages: (i) When a new

object is created, the storage manager can determine

where to insert the newly created object easily accord-

ing to the clustering sequence. No sophisticated cal-

culation is needed. (ii) It offers an easy method to

reorganize related but scattered pages into a contigu-

ous chunk, which takes into account the saving of seek

and latency time.

4.2 Leveled Clustering Algorithm

Given a digraph with weights assigned on arcs, we

now propose a leveled clustering algorithm for ar-

ranging the nodes into a clustering sequence. This al-
gorithm is inspired by Krushal’s algorithm which con-

structs a minimum-cost spanning tree from a general

graph [AhHU87]. However, the proposed scheme con-

structs a maximum weight spanning tree from a di-

graph. The concept of supernode is introduced which

supernode. (ii) A group of supernodes connected by

arcs of the current maximum weight is a supernode.

(iii) All nodes in a supernode are ordered as a lin-

ear sequence and stored in a bucket. A Priority Queue

is also introduced which stores all different weights in

the digraph in descending order. Our leveled cluster-

ing algorithm groups smaller buckets into larger ones

recursively until all nodes in a digraph are covered by

a single bucket. Algorithm 1 illustrates the sequence

of operations.

Assume a digraph as depicted in Figure 5, ini-

tially, every node in the digraph is a supernode and

occupies a single bucket. At iteration 1, the current

maximum weight is found to be 4. Nodes connected

by weight-four arcs form two subgraphs: ab and cd.

The nodes in each subgraph are grouped together as a

supernode. The clustering sequence for nodes inside a

supernode is determined by the directions of the arcs.

Therefore, a-b and c-d are the clustering sequences in-

side the two buckets (Figure 5a).

At iteration 2, arcs of weight 3 are considered.

Only two supernodes are to be merged, i.e., ab and

cd (Figure 5b). Although there exist multiple arcs

between these two supernodes, the order between ab

and cd is determined solely by weight-three arcs; arcs

with lower weights are not considered. This will keep

our clustering sequence most effective.

Successive iterations are illustrated in Figure 5C

and 5d. Notice that the clustering sequence inside a

supernode is not interrupted by later iterations. For

example, Figure 5C shows that when nodes e and f are

added to the bucket, the existing sequence, a-b-c-d, re-

mains contiguous. This is where the name leveled

comes from. Using this leveled clustering scheme, we

expect the retrieval along the most significant relation-

ship links always has the best response time, while for

other relationships the response time is expected to be

better than that of random storage.

There is another advantage to our leveled clus-

tered scheme. Typical object-orient ed applications

have only a limited number of relationships that are of

interest to the clustering manager. In such cases, we

can use a template to map relationships to their cor-

respondent weights at current phase. Different phas-

es would have different templates and the weight of

a relationship may change from one phase to anoth-

er. When the access pattern changes, the system can

simply follow the new template to change the weights

assigned to related links. Then, a reclustering pro-

cess can be activated to create a new clustering se-

quence using the leveled clustering scheme. This kind

of reclustering can be performed whenever the access

pattern changes; clients do not have to wait until the

targeted objects are updated, as in the existing clus-

tering schemes.

4.3 Interleaved DAGs

In Algorithm 1, we simply assumed that nodes in-

side a supernode can be ordered into

according to the directions of arcs.

a linear sequence

The situation is



PROCEDURE LeveZedCZusteTing (

V: SET of vertices

E: SET of arcs {u&v I u, v E V, w : weight} );

VAR

Q: Priority Queue (W1 > Wz >... > Wk);

BEGIN

Initialize(V); { put each node in V in a bucket )

WHILE (Q not empty) AND [JVo. of buckets > 1) DO

BEGIN

C.W = .DeleteMaz(Q); { get the current maximum weight }

FOR each subgraph s.G connected by arcs with weight c_w DO

BEGIN

s.n = conve?’t(s-G); { convert a subgraph into a supernode }

.Me~ge(s-n); { merge all buckets in s-n into a single bucket according to the directions

of arcs with weight c-w, arcs with lower weights are not considered }

END

END

END; {LeveledClustering}

Algorithm 1. Leveled Clustering

(a) Iteration L

(b) Iteration 2.

(c). Iteration 3.

(d) Iteration 4. ‘O i

Figure 5. The Leveled Clustering Algorithm.

actually more complicated. If nodes of the same level

are connected as a linear list, the ordering is trivial. If

they form a tree structure, the depth-first traversal se-

quence is appropriate. If they form a DAG, the DAG

should be transformed into a tree as was described

earlier [B KKG88]. However, if the digraph contains

cycles, there are no efficient ways to find the best clus-

tering sequence. Fortunately, cycles hardly exist in

typical design-oriented database applications. Consid-

ering the semantics of object links used to represent

composite objects, version objects, and equivalent ob-

jects [ChKa89], cycles do not make sense in connecting

the objects at all,

A close investigation of semantic links shows that

design objects are actually connected by interleaved

DAGs. Figure 6 shows an example of interleaved

DAGs. The version history of an object forms a tree

structure. Configurations are formed by combining

versions of different objects into composites. Version

and configuration relationships are orthogonal; i.e.,

they form semantic planes which are perpendicular to

each other. An equivalence object ties together equiv-

alent objects in alternative representations. As one

can see from the figure, multiple DAGs are interleaved

but no cycles exist.

If we use a template (version:3, configuration:2, e-

quivalence: 1) as the relative weights of the relationship

links, the resulting clustering sequence of Figure 6 is

quite interesting. First, different versions of the same

object are grouped together as a supernode. Then, the

version supernodes are ordered according to the DAG

structure of the configuration links. Finally, those

composite objects which are equivalent are brought

close to each other. Applying the leveled clustering

scheme on the interleaved DAGs generates a cluster-

ing sequence with the following two properties:

[I] Single scan property: All nodes reachable from

a node o through link traversal are placed after
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Table 1. Specification of the Simulated Disk Drive.

I Total No. of Cylinders I 1258 I

I Wads (tracks) / cvlinder I 14 I

ver: version links

con: configuration links

eq: e~ivalence constraint

Figure 6. An Example of Interleaved DAGs.

o in the clustering sequence, This ensures that

when o is accessed, its related objects can be ac-

cessed by a single forward scan of the database.

Multiple level property: If o~p, ofiq, and

WI > W2, then the distance between o and p is less

than the distance between o and q. This ensures

that nodes with heavier links are clustered closer

than nodes with lighter links.

Simulations

Given a multiple-relationship environment, we

conducted simulations to show the effectiveness of the

leveled clustering scheme. The simulator assumes an

environment that serves one user at a time. Yt’bile the

system is a multi-user environment, the requests from

users can be queued up and served one by one. The

specification of the simulated disk drive is shown in

Table 1. Different disk drives may show slight vari-

ations but the results should be similar. Notice that

the maximal seek time is 50 ms (moving across 1258

tracks) and the seek time for one track is 7 rrz.s, This

7 ms includes the overhead for accelerating, decelerat-

ing and accurate positioning of the R/W heads. This

overhead has to be paid no matter how far the R/W

arm moves. To switch from one head to another, it

takes up to 6 ms. However, the head switching time

can be overlapped with the seek time if the R/W heads

do move from one cylinder to another.

For the sample database, we assumed a three-level

clustering sequence. The level size (number of nodes

in a supernode) ranges from 10 to 200. A level size of

k means two consecutive level-two objects are actually

separated by k level-one objects, while two level-three

objects are separated by Icz objects. The simulated

object sizes range from 256 to 2048 bytes ( ~ page to

one full page). We did not include very large objects

in our simulation because: (i) Large objects do not

benefit from clustering as much as small objects do.

(ii) A large object by itself can be stored using a B-
tree structure [CaDR86]; only the descriptors of large

objects need to be clustered.

Figure 7 illustrates the average access time per

object for variant object sizes at different clustering

levels. The object size ranges from 256 to 2048 bytes,

Block (page) size
I

2049 bytes

Blocks (pages) / track 13

I one track seek t,me

I Average seek time

[ Head switching t,me

--3-J

1.282 ms I

50 ms I

=4
7 Ins

28 MS

6 ms (max . )

and each complex object retrieval is assumed to involve

10 individual objects. For level-one clustered objects,

the average access time increases from about 4 ms to

5 ms as the object size increases. The access time

for level-two and level-three objects range from 7 to

25 ms compared to 43 ms for non-clustered objects.

This shows the effectiveness of the leveled clustering

scheme. Although related objects may not be stored

within the same disk page, one can still reduce the

access time by putting them within the same track or

the same cylinder.

For level-two objects, average access time increas-

es rapidly as object size increases. To further investi-

gate the behavior of the leveled clustering scheme, we

designed another simulation which increases the lev-

el size to as high as 200. In this simulation, objects

have a fixed size of512 bytes and each complex object

retrieval is assumed to involve 10 individual objects.

The access time for level-two and level-three objects

are plotted in Figure 8. The access time for level-

one and non-clustered objects were consistent with the

previous simulation. However, we found a sawtoothed

pattern for the access time of level-two objects (Fig-

ure 8a). This is actually compatible with the mechan-

ical movement of disk R/W heads. The peaks where

level sizes are around 50, 100, and 150 show the maxi-

mal latency was paid between two consecutive accesses

of level-two objects. As it passes the points of max-

imum latency, the curve drops when the level size is

around 60, 110, and 160.

For level-three objects (Figure 8b), an irregular

pattern was observed; however, the level-three clus-

tering still offers a better performance than the non-

clustered scheme. The saving in access time is partly

due to the reduced seek time because objects are stored
on adjacent cylinders. Comparing the two curves, we

found that there is no significant difference in access

time between level-two and level-three clustering. The

amounts of saving are comparable in both cases. In

summary:
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(1) Level-one clustering is very effective.

(2) Level-two and level-three clustering show im-

provement compared with a single-level clustering

scheme. The average access time for level-two and

level-three clustering is around 5070 of the random

‘“T “m-clustered

0
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9
e

0
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c
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,
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access time.

(3) Clustering objects on the same cylinder provides
similar performance improvement as clustering

them on the same track. If two related objects

cannot be stored on the same page, one should

attempt to store them on the same track or the

30
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5. CONCLUSIONS AND FUTURE DIREC-

TIONS

This paper investigated issues associated with the

clustering of objects in object-oriented databases. Ex-

isting clustering schemes are static because they do

not perform reclustering. In addition, their clustering

o 500 1000 15’00 2000

ObJec( Size

*level s... = 10

Figure 7. Access Tbae of Leveled Clustering Scheme.
strategy is based on a single relationship among ob-

jects. We explored two problems associated with the

existing schemes: object updates and multiple rela-

tionships.
50

}

non-clustered

40

Fr~quent updates on a complex object struc-

ture may create scattered disk pages which need to

be reclustered to reduce the access time. We pro-

Dosed a cost model to evaluate the benefit and over-
30

t level-two Lead of reclusterin~. Simulation results showed that

the reorganization- points depend primarily on the

read/write ratio. When the read/write ratio is high, a1
,4

,’ ‘\
,’\ /’\, /’

20 /“
/

‘\ /’ \ ,/’

<’ \ “
./’ ‘\,/. ” ‘\, ”

J“

fully d~namic reclustering strategy is affordable; when

the ratio is low, an off-line reclustering strategy is a

better choice.T.....-10 ,
J’ level one

For environments where objects are linked with

multiple relationships, we proposed a leveled cluster-o~
0 50 100 750 200 ing scheme to order nodes in a weighted digraph into a

clustering sequence. Simulations showed that the ac-

cess time for leveled clustering is around 5070 of the

random access time. It was also recognized that clus-

tering objects on the same track and on the same cylin-

der provide similar performance improvement. If re-

lated objects cannot be clustered on the same page,

clustering them on the same track or cylinder will im-

prove the ~erformance as well.

(a) Level-two.

50

40

{

non-clustered

Besid& magnetic disks, new technologies have

made high caDacitv oDtical disks economically feasible.

Our disc-ussio~ reg-ar~ing the leveled clusteri~g scheme

will hold for oDtical disks as well. In addition. adia-. “

cent tracks on an optical disk can be accessed w’ithout

moving the access head. This is equivalent to the in-

crease of track size on magnetic disks, which should

have a positive effect to our clustering scheme..~
o 50 100 150 200

Al~hough the leveled clustering “scheme is effec-

tive for retrieving objects along level-two and level-LEVEL S I ZE

*object size = 512
three relationship links, the performance improve-

ment is less than that of level-one clusterin~. A bet-

ter performance might be made possible ~y includ-

ing buffering schemes. In addition to the traditional

page-based prefetching and LRU replacement policies,

‘object-based buffering using semantic links is a great

(b) Level-three.

Figure 8. Access Time of Level-two/-tiree
Ciustered Objects.
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challenge for object-oriented DBMSS. Our future re-

search directions will be in the development of efficient

buffering schemes and the integration of clustering and

buffering schemes in a real object-oriented database

environment.
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