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ABSTRACT

Clustering is an effective mechanism for retriev-
ing complex objects. Many object-oriented database
management systems have suggested variant cluster-
ing schemes to improve their performance. Two issues
may compromise the effectiveness of a clustered strue-
ture, i.e., object updates and multiple relationships.
Updates may destroy the initially clustered structure,
and in a multiple relationship environment, clustering
objects based on one relationship may sacrifice others.
This paper investigates the updating effects and sug-
gests a dynamic reclustering scheme to reorganize re-
lated objects on the disk. A cost model is introduced
to estimate the benefit and overhead of reclustering.
Reorganizations are performed only when the overhead
can be justified. For environments in which multiple
relationships among objects exist, the paper proposes
a leveled clustering scheme to order related objects in-
to a clustering sequence. Our simulation results show
that the leveled clustering scheme has a better access
time compared with a single-level clustering scheme.

1. INTRODUCTION

Database management systems (DBMSs) based
on the relational model have dominated the market
through the 1980s. This is mainly due to the sim-
plicity and the strong mathematical foundation upon
which the relational model is based. However, some
of today’s data modeling requirements do not fit well
into the relational framework. Examples are the data-
bases used for Computer Aided Design, Office Infor-
mation System, and Artificial Intelligence, in which
the representation of complex data entity as well as
sophisticated operations are required. Using a rela-
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tional DBMS in such an environment usually leads to
awkward decomposition and hence poor performance.
The object-oriented data model allows a natural map-
ping between conceptual objects and the underlying
data model, and hence better performance.

Two important features of the object-oriented
DBMSs are the notions of complex objects and ob-
ject identifiers. A complex object is an aggregation
of heterogeneous objects, and object identifiers pro-
vide a means for explicit representation of semantic
links among objects. This allows navigation through
semantic links and retrieval of complex objects. Natu-
rally, for an object-oriented system, it is important to
traverse the corresponding graph structure efficiently.
The clustering of objects based on their semantic links
becomes a powerful tool to improve the performance.
This paper investigates problems associated with ex-
isting clustering schemes, and proposes new schemes
which overcome the deficiencies of the existing ones.

One can identify several common characteristics
in existing clustering schemes. Firstly, they are mainly
static, l.e., objects are clustered when they are created
and are not reclustered afterward. Secondly, many ex-
isting clustering schemes use disk pages as the cluster-

ing units; the goal is to minimize the number of pages
accessed for complex object retrieval. These schemes
assumed that each page access takes one disk I/0, and
the total access time was measured by multiplying the
number of accessed pages by the average access time
per page. Hence, they did not consider the actual per-
formance based on the relative dispositions of accessed
pages, which may result in non-uniform access time
for individual pages. Thirdly, existing schemes were
designed for clustering objects based on a single re-
lationship; multiple relationships among objects were
not considered. As a result, two potential problems
can be recognized: (¢) Object updates may destroy the
initially clustered structure. (i) In environments with
multiple relationships among objects, different appli-
cations may require different access patterns. Per-
formance will be compromised if a single-relationship
clustering scheme is adapted.

This paper introduces two schemes to resolve the
aforementioned problems. In our schemes, the cluster-



ing units are chunks (a number of contiguous pages)
instead of individual disk pages. For the update prob-
lem, we propose a dynamic clustering scheme which
reorganizes related objects when the estimated benefit
after reorganization is greater than the reorganization
overhead. For the problem of multiple relationships,
we propose a leveled clustering scheme which clusters
objects based on several different relationships in order
to meet the requirements of different access patterns.
The remainder of this paper is organized as fol-
lows. Section 2 reviews the related issues in object-
oriented DBMSs and points out the problems of ex-
isting clustering schemes. Section 3 describes the up-
dating effects and introduces a cost model to deter-
mine the reorganization points of a dynamic reclus-
tering scheme. Section 4 proposes a leveled clustering
scheme and analyzes the effectiveness of this scheme
using our simulation results. Section 5 concludes the
paper and gives future directions of this research.

2. BACKGROUND

2.1 Relational DBMS

A database management system (DBMS) pro-
vides users with an abstract view of data rather than
the hardware-level details. Through the 1980s, the re-
lational model has become the trend for commercial
DBMSs. This is mainly due to its conceptual sim-
plicity and the strong mathematical foundation it is
based on [Date86]. The simplicity and strong mathe-
matical foundation of the relational model, along with
sophisticated indexing and query optimization tech-
niques developed in the past have provided an envi-
ronment which serves the business-oriented database
applications—containing a large amount of relatively
simple and fixed-formatted data—very well.

Despite these advantages, the relational model
does not satisfy the requirements of applications such
as Computer Aided Design (CAD), Office Information
System (OIS), and Artificial Intelligence (AI). These
applications require the modeling of complex data en-
tities which cannot be mapped easily to the relational
tables. For example, a VLSI design database requires
the support of composite objects as well as different
versions of the same object. A multimedia database
may contain variable-length text, graphics, images, au-
dio and video data. Finally, a knowledge base sys-
tem requires a supporting model capable of represent-
ing data semantics. In addition, these applications
contain data elements of different types and formats.
Representation of these databases in a tabular for-
mat results in a large semantic gap and hence awk-
ward decomposition and poor performance [GuSt82].
As a matter of fact, DBMSs are excluded from cur-
rent CAD systems because of their inadequate perfor-
mance [Maie89]. Many VLSI design tools are built
on top of the raw file systems to gain efficiency. This
puts extra burden on the tool designer as they have to
code for detail I/O operations. In order to meet the
requirements of these database applications, a “next-
generation” DBMS is necessary.
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2.2 Object-oriented DBMS

Object-oriented data models were proposed to in-
crease the modeling power of traditional data mod-
els. Object-oriented databases adapted the concepts
of object-oriented programming languages [Birt84,
GoRo83] and semantic data models [Chen76, KePa76,
HaMc81] with added database features such as per-
sistent storage, query capability, concurrency control,
transaction management, and consistency enforce-
ment. Several research prototypes as well as commer-
cial products have been reported. This includes Cactis
[HuKi89}, ORION [BaCG87], Iris [FiBC87], ENCORE
[HoZd87]), GemStone [MaOP85], VERSANT [VER-
S90], Ontos {Onto90], and Object-Store [Obje89]. Un-
like the relational data model, researchers have not
agreed on the definition of a single object-oriented da-
ta model. Nevertheless, these systems do share sever-
al common features which are essential for an object-
oriented DBMS.

Two features are important to the discussion in
this paper: object identity and complez objects. On
the one hand, each object has its own identity repre-
sented by a unique object identifier (OID). OIDs are
system-generated surrogates which remain invariant
throughout the database’s lifetime. With OIDs, an
object has an existence that is independent of its val-
ue. On the other hand, the notion of complex objects
allows the aggregation of heterogeneous objects as a
single unit. A complex object may have its subobjects
taken from different classes and linked together as a
graph structure. The references to other objects are
made explicitly through OID links. A major advan-
tage of object-oriented DBMS is that many relational
join operations can be prevented when retrieving com-
plex objects; instead of joining tuples from different
relations based on some attribute values, objects are
simply accessed through their OIDs.

In many practical applications, a complex object
structure can be expressed as a hierarchy or a directed
acyclic graph (DAG). Typical operations performed on
such structures are the navigation through links and
the retrieval of the ancestors/descendants of a given
node. A good strategy for clustering objects is to ar-
range nodes in a hierarchy/DAG into a linear cluster-
ing sequence such that these operations can be per-
formed efficiently [BKKG88]. To cluster a hierarchy,
one can store the nodes of a hierarchy in the depth-
first order such that any node p in the hierarchy will
have all of its descendant nodes stored immediately af-
ter p. This is very effective when an object and all of
its descendants need to be retrieved together.

The clustering process for a DAG is more com-
plicated. First a DAG has to be transformed into
an equivalent hierarchy and then the depth-first clus-
tering sequence can be enforced. The DAG is aug-
mented with a virtual root node. For each node with
multiple parents, a particular parent is chosen such
that all descendants of a node in the DAG can be
fetched in a single forward scan of the DAG. The re-
sult is a spanning tree starting from the virtual root
node. It has been shown that the DAG clustering




scheme is an effective strategy in improving perfor-
mance [BKKG88]. Moreover, clustering is more effec-
tive when object sizes are relatively small compared
with the page size. [KiCB8T].

Several characteristics are common to the existing
clustering schemes: (i) They are static, i.e., objects are
initially clustered when they are created; once allocat-
ed, objects are not reclustered at run time. (47) They
use disk pages as the clustering units, i.e., they assume
an average access time for each page and do not take
into consideration the physical adjacency of individual
pages. (#31) Objects are clustered based on a umique
type of relationship among the data elements; other
relationships are ignored for clustering purposes. Al-
though the existing static clustering schemes have been
effective, one can identify two potential problems:

(1) A static clustering scheme initially offers a good
placement policy for complex objects but does not
take into account the dymamic evolution of ob-
Jects. In applications such as design databases,
objects are constantly updated during early parts
of the design cycle. Frequent updates may destroy
the initially clustered structure. To keep the ob-
ject structure optimized, reorganization might be
necessary for efficient future accesses [Deux90].

Objects may be connected by several relation-
ships which form independent hierarchies/DAGs.
For example, in a design database, a design e-
volves through several phases, i.e., initial creation,
design rule checking, correction, extraction, and
simulation. At each phase, the design tool re-
quires its own access pattern which may or may
not be the same as the one supported by initial
static clustering. Any single clustering scheme is
unlikely to suit all such phases. It might be prefer-

(2)

able to use different clustering structures in differ-
ent phases [Maie89]. Furthermore, several users
may access the same set of objects concurrently
through different access patterns. Clustering ob-
jects based on the need of one application may
sacrifice others.

3. OBJECT UPDATES

Our study of clustering schemes starts from a sim-
ple case where there is only one main relationship a-
mong objects: they are connected as a single hierarchy
(a DAG can be reduced to its equivalent spanning tree,
which is also a hierarchy). Using the aforementioned
static clustering scheme, we investigated the follow-
ing problem: how updates can destroy the originally
clustered structure and what the system can do to re-
organize it.

3.1 Updating Effects

For environments such as design databases, ob-
jects are constantly updated. This is especially true
during the early part of the design cycle. Here, we con-
sider the evolution of a hierarchical structure caunsed
by object insertion and deletion. Both insertion and
deletion can destroy the organization of a clustered
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structure. However, deletion is usually not a serious
problem. Deletions can be done by simply marking the
ohjects as deleted. The space can be reclaimed later.
But, for insertions, new free space must be allocated
immediately for new objects. The following discussion
deals mainly with the insertion operations.

Regardless of the clustering strategy, the sequence
in which nodes in a hierarchy are created is unlikely
to be the same as the desired clustering sequence. Us-
ing the object hierarchy in Figure 1 as an example, we
shall see how a clustered structure can be disturbed
due to updates. For the sake of simplicity, we assume
all nodes are of the same size and each disk page can
hold up to three nodes. The insertions and deletions
of nodes would be based on the criteria that maintains
each page to be between 50 and 100 percent full. As
shown in Figure 1, the nodes from the hierarchy are
created in breadth-first order while the desired clus-
tering sequence is depth-first. When a new node is
inserted, its position within the clustering sequence is
first determined according to the depth-first sequence.
If the target page has enough space, the new node
is simply added; if the page is full, a new page is
acquired and objects are distributed evenly between
the two pages. Notice that the final set of pages are
chained together in a way that objects are arranged
in depth-first order to preserve the desired logical se-
quence. However, these pages may not be physically
close to each other since the adjacent pages may have
already been occupied by other unrelated objects.

In previous studies of object clustering schemes
[KiCB87, BKKG88, Chan89], performance was mea-
sured in terms of the number of disk pages to be
accessed. These studies assumed an average access
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time for each page and did not distinguish whether
the pages were stored sequentially or randomly. It is
clear that it takes more time to access a set of scattered
pages than it does to access contiguous ones. This is
due to the mechanical structure of current disk drives.
Reading a data block from a disk involves seek time,
latency time, and transfer time. For a set of sequential
blocks, only one seek and latency time is required. For
randomly distributed blocks, separate seek and laten-
¢y times are required [Salz87].

3.2 Dynamic Reclustering

To solve the problem of object updates, one has
to find a proper scheme to reorganize scattered pages
into a contiguous chunk. This is similar to the file re-
organization problem. Existing studies on file reorga-
nization can be classified into two categories: on-line
reorganization [Sode81, Omie85] and off-line reorga-
nization [SoGo79, Bato82]. Optimal on-line reorgani-
zation is known to be an NP-hard problem [Omie85],
thus the major effort is to find some heuristic rules
to prevent excess overhead. For off-line reorganiza-
tion, the major challenge is to determine the optimal
reorganization points, that is, how often the reorgani-
zation should be performed. Our clustering strategy
is based on the same paradigms used for file reorgani-
zation algorithms.

A static clustering scheme, as discussed before,
does not recluster objects after they are created. A dy-
namic clustering scheme should try to recluster scat-
tered pages when the access cost becomes too high.
However, reclustering will generate overhead such as
extra disk 1/Os, so it is important to determine when
a reorganization should occur. If the overhead is not
justified, reclustering may actually degrade the per-
formance. We propose a cost model to evaluate the
benefit and overhead of reclustering.

Our clustering units are called chunks. A chunk is
a collection of pages stored contiguously on the disk.
Initially, a complex object hierarchy is stored in a sin-
gle chunk. This happens when a complex object is
first created, or right after the reorganization of the
data. In our cost model, we assume a complex object
occupies m + n pages where m pages are clustered in
a chunk and n pages are scattered on the disk (Fig-
ure 2a). Based on this assumption, m clustered pages
need one disk I/O and each of the n scattered pages
needs an additional disk I/O. Let AS be the average
seek time, AL be the average latency time, and AT
be the transfer time for a single page. The cost of ac-
cessing all m + n pages in scattered form is estimated
by Tscat:

(14+n)x AS+(1+n)x AL+ (m+n)x AT.

Tscat =

If all the m + n pages are clustered in a single chunk
(Figure 2b), the accessing cost would be:

Totus =1 X AS +1x AL+ (m+n) x AT.
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Figure 2. Modeling Page-based Reorganization.

Here, T;cqt corresponds to the result of a static cluster-
ing scheme, while T, corresponds to that of a fully
dvnamic clustering scheme in which related pages are
always clustered. Using DEC’s RA81 disk drive as a
guideline [DEC82], we set AS = 28ms, AL = 8.33ms,
and AT = 1.282ms (assume a page size of 2K bytes).
When m = 10 and n = 2, the ratio of Ticqr t0 Tepys is
1.84; when n increases to 10, the ratio becomes 8.04.
It is clear that reclustering can reduce the access time
significantly.

3.8 Cost Estimation

While a fully dynamic clustering scheme reduces
the access time, the overhead of reorganization may
offset the benefit. The reorganization cost is the time
overhead spent for reorganizing scattered pages. We
estimate the reorganization cost based on a copy-aend-
recleim method [Bato82]. First, related pages residing
in the scattered form are retrieved (Tycq:). Then, the
“old” storage space is reclaimed and a “new” contigu-
ous space is located (T;p,). And lastly, all pages are
written to the new space (Tyus). If there is no contigu-
ous space available on the disk, a total recrganization
may be necessary. We assume that it is done off-line,
which does not affect our cost estimation. Using this
method, the cost of reorganization, Treorg, can be ex-
pressed by:

Treorg = Tscar + Tcpu + Tcrus-

As the equation shows, regardless of m and n values,
Treorg is always greater than Tycq:. This means that
the reorganization overhead is not justified if the R/U
ratio (the average number of retrievals after each up-
date) is smaller than or equal to 1. We would like
to determine how many retrieval operations (R) are
needed to justify the reorganization cost, i.e.,



Treorg + R x Tclus < R x Tscat;

or
T.scat + Tcp'u, + Tclus

R >
Tscat - Tclus ’

which can be further expanded to

(n+2)(AS+ AL) + 2(m + n)AT + Tepu .

B> n(AS + AL)

Typically Tep, is much smaller compared to the disk
access time, i.e., Tpp, ~ 0. Using timing parameters
from DEC’s RA81 disk drive [DECS82], a plot of R
against different values of m and n is depicted in Fig-
ure 3. This figure shows that for a smaller n, a larger R
is needed to compensate the reorganization cost. For
example, if m = 50 and-the system performs reorga-
nization whenever 2 scattered pages are found (i.e.,
use 7 = 2 as a threshold value), it would be beneficial
only when the R/U ratio is greater than If the thresh-
old value is chosen to be 8, the minimum R/TU ratio
needed is only 2. Notice that when R/U falls between
the range of 1.2 and 2, the curves are very dense. It
seems to suggest that the choice of threshold values
is very sensitive to small variations of R/U value. To
further exploit this issue, we developed a simulator to
compare the actual access and reorganization cost.

3.4 Simulation

The goal of our simulation is to determine the to-
tal cost of different clustering strategies based on dif-
ferent sets of parameters such as m, n and read/write
ratio. The total cost covers both the access cost and
the reorganization cost. In our simulations, PR/W
{page reads/writes ratio) represents the average num-
ber of pages retrieved after a new scattered page is cre-
ated. Since a complex object is not always retrieved
in its entirety, the introduction of PR/W permits the
modeling of partial retrieval. When PR pages are to
be retrieved from a set of m clustered and n scattered
pages, we assume a uniform distribution for the proba-
bility of whether these PR pages are clustered or scat-
tered.

For a fixed value of m, simulations were run to
calculate the total access and reorganization cost for
different choices of thresholds (n) and PR/W ratio.
Figure 4 shows the results of a typical simulation run
when m = 10. The total cost is accumulated over an
interval until a total of 16 scattered pages are created.
When PR/W < 25, the total cost Ti, decreases as
n increases. This means that infrequent reclustering
yields a lower total cost. When PR/W > 35, Ty,
increases as n increases. The minimum 7}, occurs
when n = 1, which means fully dynamic reclustering
has the lowest total cost. When the PR/W value is

26

around 28, T;, does not change much as n changes.
We call PR/W = 28 a break-even point for m = 10.
Simulations were run for different values of m. The
results show that for each run the curve pattern is the
same as Figure 4 with a different break-even point.

In summary, reclustering should be performed
whenever possible to keep the related objects clus-
tered. OQur simulation results show that for appli-
cations in which the read/write ratio is high, a ful-
ly dynamic reclustering strategy is justifiable. How-
ever, when the read/write ratio is not high enough,
the reorganization overhead degrades the overall per-
formance. In this case, on-line dynamic reclustering
is not recommended. However, one should remember
that the system can still perform off-line reclustering
during off-peak hours to gain the clustering benefit.
Since it is done off-line, the overhead will not affect
the user’s access time.

4. MULTIPLE RELATIONSHIPS

For applications with different relationships a-
mong objects, a clustering scheme based on a single
relationship satisfies only one of the access patterns
and sacrifices others. Based on the observation that
some relationships are referenced more frequently than
others at a certain phase of the objects’ lifetime, we
propose a leveled clustering scheme which takes into
account multiple access patterns.

4.1 Weighted Digraphs

According to Chang and Katz [ChKa89], at least
three types of structural relationships have been found
to be useful for clustering objects: configuration, ver-
sion, and correspondence. The following work is based
on the assumption that for a set of related objects,
one can find multiple relationship links with differ-
ent access frequencies among objects. The access fre-
quencies can be either measured from previous runs
or predicted by the user’s hints. Because of the na-
ture of the algorithms used in application programs
such as CAD tools, some relationship links may be
traversed more frequently than others at a certain pe-
riod of time. That is, different relationship links have
different weights. With the existence of multiple rela-
tionships, the object structure is not limjted to a single
hierarchy or DAG. Related objects may be connected
as a general directed graph (digraph), in which nodes
represent objects and arcs represent relationships a-
mong objects. Arcs are associated with weights. An
arc of weight w pointing from node a to node b (denot-
ed by a—-b) means when a is accessed, the relative
possibility of accessing &is w. Therefore, in a graphical
representation of complex objects, the notation a-—b,
a—2s¢, w; > wy, shows the fact that the relationship
between a and b is more significant than the relation-
ship between a and c.

Our leveled clustering approach is a variation of
the clustering sequence approach as was described in
the last section. Using such a scheme, all nodes in
the digraph are ordered into a clustering sequence in
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which the more tightly connected objects are closer to
each other. If updates occur after the sequence is es-
tablished, the same page allocation and reorganization
schemes described in the last section can be applied.
This approach has two advantages: (i) When a new
object is created, the storage manager can determine
where to insert the newly created object easily accord-
ing to the clustering sequence. No sophisticated cal-
culation is needed. (%i) It offers an easy method to
reorganize related but scattered pages into a contigu-
ous chunk, which takes into account the saving of seek
and latency time.

4.2 Leveled Clustering Algorithm

Given a digraph with weights assigned on arcs, we
now propose a leveled clustering algorithm for ar-
ranging the nodes into a clustering sequence. This al-
gorithm 1is inspired by Krushal’s algorithm which con-
structs a minimum-cost spanning tree from a general
graph [AhHUBT7]. However, the proposed scheme con-
structs a maximum weight spanning tree from a di-
graph. The concept of supernode is introduced which
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has the following properties: (i) A single node is a
supernode. (i) A group of supernodes connected by
arcs of the current maximum weight is a supernode.
(iit) All nodes in a supernode are ordered as a lin-
ear sequence and stored in a bucket. A PriorityQueue
is also introduced which stores all different weights in
the digraph in descending order. Our leveled cluster-
ing algorithm groups smaller buckets into larger ones
recursively until all nodes in a digraph are covered by
a single bucket. Algorithm 1 illustrates the sequence
of operations.

Assume a digraph as depicted in Figure 5, ini-
tially, every node in the digraph is a supernode and
occupies a single bucket. At iteration 1, the current
maximum weight is found to be 4. Nodes connected
by weight-four arcs form two subgraphs: ab and cd.
The nodes in each subgraph are grouped together as a
supernode. The clustering sequence for nodes inside a
supernode is determined by the directions of the arcs.
Therefore, a-b and c-d are the clustering sequences in-
side the two buckets (Figure ba).

At iteration 2, arcs of weight 3 are considered.
Only two supernodes are to be merged, i.e., ab and
cd (Figure 5b). Although there exist multiple arcs
between these two supernodes, the order between ab
and cd is determined solely by weight-three arcs; arcs
with lower weights are not considered. This will keep
our clustering sequence most effective.

Successive iterations are illustrated in Figure 5c
and 5d. Notice that the clustering sequence inside a
supernode 1s not interrupted by later iterations. For
example, Figure 5¢ shows that when nodes e and f are
added to the bucket, the existing sequence, a-b-¢c-d, re-
mains contiguous. This is where the name leveled
comes from. Using this leveled clustering scheme, we
expect the retrieval along the most significant relation-
ship links always has the best response time, while for
other relationships the response time is expected to be
better than that of random storage.

There is another advantage to our leveled clus-
tered scheme. 'Typical object-oriented applications
have only a limited number of relationships that are of
interest to the clustering manager. In such cases, we
can use a template to map relationships to their cor-
respondent weights at current phase. Different phas-
es would have different templates and the weight of
a relationship may change from one phase to anoth-
er. When the access pattern changes, the system can
simply follow the new template to change the weights
assigned to related links. Then, a reclustering pro-
cess can be activated to create a new clustering se-
quence using the leveled clustering scheme. This kind
of reclustering can be performed whenever the access
pattern changes; clients do not have to wait until the
targeted objects are updated, as in the existing clus-
tering schemes.

4.3 Interleaved DAGs

In Algorithm 1, we simply assumed that nodes in-
side a supernode can be ordered into a linear sequence
according to the directions of arcs. The situation is




PROCEDURE LeveledClustering (
V. SET of vertices

E: SET of arcs {u——v | u,v € V,w : weight} );

VAR
@: PriorityQueue (w) > wg > -+ > wi);
BEGIN

Initialize(V'); { put each node in V in a bucket }
WHILE (@ not empty) AND (No. of buckets > 1) DO

BEGIN

c.w = DeleteMaz(Q); { get the current maximum weight }
FOR each subgraph s G connected by arcs with weight c.w DO

BEGIN

s-n = Convert(s_G); { convert a subgraph into a supernode }
Merge(s_n); { merge all buckets in s_n into a single bucket according to the directions
of arcs with weight c_w, arcs with lower weights are not considered }

END
END
END; {LeveledClustering}

Algorithm 1. Leveled Clustering

buckets: g a .
o N o
1

01
(c). Tteratiom 3. )
1
gheabcdfi 1
(d) Iteration 4. O i

Figure 5. The Leveled Clustering Algorithm.
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actually more complicated. If nodes of the same level
are connected as a linear list, the ordering is trivial. If
they form a tree structure, the depth-first traversal se-
quence is appropriate. If they form a DAG, the DAG
should be transformed into a tree as was described
earlier [BKKG88). However, if the digraph contains
cycles, there are no efficient ways to find the best clus-
tering sequence. Fortunately, cycles hardly exist in
typical design-oriented database applications. Consid-
ering the semantics of object links used to represent
composite objects, version objects, and equivalent ob-
jects [ChKa89], cycles do not make sense in connecting
the objects at all.

A close investigation of semantic links shows that
design objects are actually connected by interleaved
DAGs. Figure 6 shows an example of interleaved
DAGs. The version history of an object forms a tree
structure. Configurations are formed by combining
versions of different objects into composites. Version
and configuration relationships are orthogonal; i.e.,
they form semantic planes which are perpendicular to
each other. An equivalence object ties together equiv-
alent objects in alternative representations. As omne
can see from the figure, multiple DAGs are interleaved
but no cycles exist.

If we use a template (version:3, configuration:2, e-
quivalence:1) as the relative weights of the relationship
links, the resulting clustering sequence of Figure 6 is
quite interesting. First, different versions of the same
object are grouped together as a supernode. Then, the
version supernodes are ordered according to the DAG
structure of the configuration links. Finally, those
composite objects which are equivalent are brought
close to each other. Applying the leveled clustering
scheme on the interleaved DAGs generates a cluster-
ing sequence with the following two properties:

[1] Single scan property: All nodes reachable from

a node o through link traversal are placed after
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Figure 6. An Example of Interleaved DAGs.

o in the clustering sequence. This ensures that
when o is accessed, its related objects can be ac-
cessed by a single forward scan of the database.
Multiple level property: If o—5p, 0-~2q, and
w; > wo, then the distance between o and p is less
than the distance between o and g. This ensures
that nodes with heavier links are clustered closer
than nodes with lighter links.

4.4 Simulations

Given a multiple-relationship environment, we
conducted simulations to show the effectiveness of the
leveled clustering scheme. The simulator assumes an
environment that serves one user at a time. While the
system is a multi-user environment, the requests from
users can be queued up and served one by one. The
specification of the simulated disk drive is shown in
Table 1. Different disk drives may show slight vari-
ations but the results should be similar. Notice that
the maximal seek time is 50 ms (moving across 1258
tracks) and the seek time for one track is 7 ms. This
7 ms includes the overhead for accelerating, decelerat-
ing and accurate positioning of the R/W heads. This
overhead has to be paid no matter how far the R/W
arm moves. To switch from one head to another, it
takes up to 6 ms. However, the head switching time
can be overlapped with the seek time if the R/W heads
do move from one cylinder to another.

For the sample database, we assumed a three-level
clustering sequence. The level size (number of nodes
in a supernode) ranges from 10 to 200. A level size of
k means two consecutive level-two objects are actually
separated by k level-one objects, while two level-three
objects are separated by k® objects. The simulated
object sizes range from 256 to 2048 bytes (% page to
one full page). We did not include very large objects
in our simulation because: (i) Large objects do not
benefit from clustering as much as small objects do.
(1) A large object by itself can be stored using a B-
tree structure [CaDR86); only the descriptors of large
objects need to be clustered.

Figure 7 illustrates the average access time per
object for variant object sizes at different clustering
levels. The object size ranges from 256 to 2048 bytes,
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Table 1. Specification of the Simulated Disk Drive.

Total No. of Cylinders 1258
Heads (tracks) / cylinder 14

Block (page) size 2048 bytes
Blecks (pages) / track 13

Total No. of pages 228,956
Max. latency time 16.6667 ms
Average latency time 8.3333 ms
Transfer time / page 1.282 ms
Max. seek time (1258 tracks) 50 ms

One track seek time 7 ms
Average seek time 28 ms

Head switching time 6 ms (max.)

and each complex object retrieval is assumed to involve
10 individual objects. For level-one clustered objects,
the average access time increases from about 4 ms to
5 ms as the object size increases. The access time
for level-two and level-three objects range from 7 to
25 ms compared to 43 ms for non-clustered objects.
This shows the effectiveness of the leveled clustering
scheme. Although related objects may not be stored
within the same disk page, one can still reduce the
access time by putting them within the same track or
the same cylinder.

For level-two objects, average access time increas-
es rapidly as object size increases. To further investi-
gate the behavior of the leveled clustering scheme, we
designed another simulation which increases the lev-
el size to as high as 200. In this simulation, objects
have a fixed size of 512 bytes and each complex object
retrieval is assumed to involve 10 individual objects.
The access time for level-two and level-three objects
are plotted in Figure 8. The access time for level-
one and non-clustered objects were consistent with the
previous simulation. However, we found a sawtoothed
pattern for the access time of level-two objects (Fig-
ure 8a). This is actually compatible with the mechan-
ical movement of disk R/W heads. The peaks where
level sizes are around 50, 100, and 150 show the maxi-
mal latency was paid between two consecutive accesses
of level-two objects. As it passes the points of max-
imum latency, the curve drops when the level size is
around 60, 110, and 160.

For level-three objects (Figure 8b), an irregular
pattern was observed; however, the level-three clus-
tering still offers a better performance than the non-
clustered scheme. The saving in access time is partly
due to the reduced seek time because objects are stored
on adjacent cylinders. Comparing the two curves, we
found that there is no significant difference in access
time between level-two and level-three clustering. The
amounts of saving are comparable in both cases. In
summary:
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(1) Level-one clustering is very effective. .
(2) Level-two and level-three clustering show im-
provement compared with a single-level clustering
scheme. The average access time for level-two and
level-three clustering is around 50% of the random
access time.

Clustering objects on the same cylinder provides
similar performance improvement as clustering
them on the same track. If two related objects
cannot be stored on the same page, one should
attempt to store them on the same track or the
same cylinder.

(3)

5. CONCLUSIONS AND FUTURE DIREC-
TIONS

This paper investigated issues associated with the
clustering of objects in object-oriented databases. Ex-
isting clustering schemes are static because they do
not perform reclustering. In addition, their clustering
strategy is based on a single relationship among ob-
jects. We explored two problems associated with the
existing schemes: object updates and multiple rela-
tionships.

Frequent updates on a complex object struc-
ture may create scattered disk pages which need to
be reclustered to reduce the access time. We pro-
posed a cost model to evaluate the benefit and over-
head of reclustering. Simulation results showed that
the reorganization points depend primarily on the
read/write ratio. When the read /write ratio is high, a
fully dynamic reclustering strategy is affordable; when
the ratio is low, an off-line reclustering strategy is a
better choice.

For environments where objects are linked with
multiple relationships, we proposed a leveled cluster-
ing scheme to order nodes in a weighted digraph into a
clustering sequence. Simulations showed that the ac-
cess time for leveled clustering is around 50% of the
random access time. It was also recognized that clus-
tering objects on the same track and on the same cylin-
der provide similar performance improvement. If re-
lated objects cannot be clustered on the same page,
clustering them on the same track or cylinder will im-
prove the performance as well.

Besides magnetic disks, new technologies have
made high capacity optical disks economically feasible.
Our discussion regarding the leveled clustering scheme
will hold for optical disks as well. In addition, adja-
cent tracks on an optical disk can be accessed without
moving the access head. This is equivalent to the in-
crease of track size on magnetic disks, which should
have a positive effect to our clustering scheme.

Although the leveled clustering scheme is effec-
tive for retrieving objects along level-two and level-
three relationship links, the performance improve-
ment is less than that of level-one clustering. A bet-
ter performance might be made possible by includ-
ing buffering schemes. In addition to the traditional
page-based prefetching and LRU replacement policies,

‘object-based buffering using semantic links is a great



challenge for object-oriented DBMSs. Our future re-
search directions will be in the development of efficient
buffering schemes and the integration of clustering and
buffering schemes in a real object-oriented database
environment.
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