Reminiscences on Influential Papers

This issue’s contributors chose influential works
that create bridges from other research communi-
ties (human-computer interaction, computer archi-
tecture, and programming models) to the data man-
agement community. Their write-ups highlight the
importance of reaching across fields without forget-
ting the core. Enjoy reading]!

While I will keep inviting members of the data
management community, and neighboring commu-
nities, to contribute to this column, I also welcome
unsolicited contributions. Please contact me if you
are interested.

Pmar T6ziin, editor
IT University of Copenhagen, Denmark
pito@itu.dk

Sourav S Bhowmick
Nanyang Technological University, Singapore
assourav@ntu.edu.sg

Don Chamberlin in his recent keynote talk at
SIGMOD 2023 recalled that one of the goals behind
the design of SQL was to make it “easier to swal-
low by ordinary people” and “easy to understand |[..]
without any special training™. Since then 50 years
have gone by and SQL has become wildly successful
in the corporate world. However, during this time it
has also morphed into a query language with many
complex query semantics and features. While pow-
erful, research by the Computer Education commu-
nity has shown that SQL is difficult to understand,
learn, and use, diverging from its original goal w.r.t.
ease of use. Indeed, one needs specialized training
to use SQL and, in fact, this holds true for any
declarative query language in the market.

Two decades ago, fresh out from graduate school,
I observed that research in data management pri-

1https://dl.acm.org/doi/10.1 145/3555041.3589336

SIGMOD Record, December 2023 (Vol. 52, No. 4)

marily focused on data structures, algorithms, and
performance. Although database usability research
started 40 years ago, scant attention was paid to it
in practice. Hence, in addition to these traditional
issues, I started working on the usability aspects of
querying databases as envisioned by Don Chamber-
lin.

Given that the topic of usability has a strong
nexus with human-computer interaction (HCI), I
will select two work that influenced my career in
a fundamental way - one from the HCI community
and another from our Data Management commu-
nity. Furthermore, I am influenced more by novel,
visionary ideas than some specific techniques. So 1
will diverge from the past authors of this column
and select work that are not considered as tradi-
tional technical papers - one is a visionary book that
influenced me to work on problems that are centered
around users and another is a keynote paper that
not only influenced my thinking on usability in the
context of database systems but also motivated me
to persist on my effort on this topic despite initial
setbacks and a lack of sufficient attention from the
Data Management community.

Ben Shneiderman.

Leonardo’s Laptop: Human Needs and the
New Computing Technologies.

MIT Press, pages 1-269, 2003.

I bought a signed copy of this visionary, intel-
lectually stimulating, and inspirational book from
Ben in CIKM 2005 (Figure 1). It was early days
when I was exploring usability and databases. In
this book, he asserted that “the old computing was
about what computers could do; the new comput-
ing is about what users can do” and used Leonardo
Da Vinci as the inspirational muse to lay down the
vision of new computing. Leonardo integrated art
with science to serve a practical purpose and pro-
duce something that also pleased his patrons. For

31

LAPTOP

THE NEW COMPUTING

Figure 1: A signed copy of Leonardo’s Laptop.

example, he painted Mona Lisa, to please her hus-
band, Francesco del Giocondo, while demonstrating
his visual insights and knowledge of geology, plants,
and river ecology. So Ben posits that “technical ex-
cellence must be in harmony with user needs”. We
should build products that are usable, useful, and
enjoyable.

The book articulated two key steps for realizing
the new computing paradigm. First, the promo-
tion of good design w.r.t. the quality of user in-
terfaces and the underlying infrastructure. Second,
the promotion of inclusiveness by enabling diverse
variety of users, young and old, novice and expert,
able and disabled, which Ben referred to as “univer-
sal usability”. The book also proposed applications
of new computing in education, medicine, business,
and government.

Back then data management research was pri-
marily about old computing - devising novel data
structures and algorithms to demonstrate efficiency
and scalability of a software or a technique. Ben’s
book inspired me to explore about the new com-
puting paradigm in the context of databases. How
do we design quality query interfaces and infras-
tructure to support diverse database user needs?
My research on blending visual query formulation
and query processing, plug-and-play visual inter-
faces, user-friendly query visualization abstraction,

32

and understanding and quantifying aesthetics of vi-
sual query interfaces are all inspired by the vision
of new computing. The vision of universal usabil-
ity has recently inspired me to explore technologies
that can enable learners, young and old, able and
disabled, to learn about the topic of relational query
processing. This group of users has received scant
attention from the Data Management community
as research and products primarily target corpo-
rate users and developers. It is worth noting that
the push for universal usability of data management
tools “makes good business sense because it creates
larger audiences for commerce, entertainment, and
education”.

H. V. Jagadish, Adriane Chapman, Aaron Elkiss,
Magesh Jayapandian, Yunyao Li, Arnab Nandi, and
Cong Yu.

Making Database Systems Usable.

In Proceedings of ACM SIGMOD, pages 13-24,
2007.

This paper is an excerpt from the excellent keynote
talk by Jag in SIGMOD 2007, which I attended. As
remarked earlier, at that time, the Data Manage-
ment community primarily focused their attention
on data structures, algorithms, and performance is-
sues but not on user-level database usability. This
paper brought our attention to the fact that databases
are “hard to design, hard to modify, and hard to
query”. Tt systematically identifies the pain points
encountered by end users and posit that the usabil-
ity challenges in databases are much more than skin
deep. Simply slapping a user-friendly visual query
interface on top of a database system does not alle-
viate these challenges and called for rethinking the
underlying architecture of the database system to
address them. In particular, it presents the notion
of a presentation data model as a distinct layer on
top of the logical data model. It is envisioned to en-
able effective personalization and interaction with
the database through direct manipulation.

I have used this paper as a mental template for
addressing problems related to visual querying. For
instance, several of my work focused on blending
visual query formulation and processing by exploit-
ing the latency offered by visual query interfaces,
which demands rethinking of the underlying query
processing component in a visual querying environ-
ment. Similarly, our notion of plug-and-play visual
query interfaces is inspired by the need of different
presentation data model for different users for dif-
ferent data sources to facilitate more effective and

SIGMOD Record, December 2023 (Vol. 52, No. 4)

efficient visual querying.

Last but not the least, I believe this paper also
played a pivotal role in putting the attention of our
community back to database usability that was lost
for decades. Prior to 2007, I had a hard time pub-
lishing papers on usability and data management
in the Data Management venues. In fact, I barely
squeezed in a short paper in ICDE 2006. In several
major venues all the three reviewers would suggest
that I should submit these work to HCI venues - as
if usability of data systems is not our business! This
bleak landscape changed since 2010. Since then, I
observed more reviewers in our major venues were
open to such work and as a result I was able to pub-
lish regularly on this topic. Prior to 2007, often 3
out of 3 reviewers mentioned that usability is not
relevant to data management. Nowadays, some-
times it is 1 out of 3 - I believe that is progress!
Looking back, I strongly believe that this keynote
played a significant role in changing perception and
emphasizing “usability of a database as important
as its capability”.

Carsten Binnig
TU Darmstadt & DFKI, Germany
carsten.binnig@tu-darmstadt.de

Jun Rao and Kenneth A. Ross.
Cache Conscious Indexing for Decision-
Support in Main Memory.

In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 78-89, 1999.

First of all, I would like to thank Pinar for run-
ning this column over the last few years. The fact
why I like this column is that I am not only learn-
ing a lot about past papers of our community but
even more [like the fact that the column often tells
a very personal story of why a paper was influen-
tial to the career of an individual. Moreover, the
request of Piar started my own thought process of
which paper I should choose which is an interesting
exercise on its own.

To answer this question, I was sitting down and
my mind was playing ping-pong with many different
ideas. I was happy to discover that there was a way
too long list of papers that I had read over my career
which inspired me. The bad point was, I had to pick
ONE. In the end, I decided to choose the paper
”Cache Conscious Indexing for Decision-Support in
Main Memory” which appeared in VLDB’99 from
Jun Rao and Kenneth A. Ross. I chose the paper

SIGMOD Record, December 2023 (Vol. 52, No. 4)

due to two reasons.

The first reason is maybe the more obvious one
since it was a pick that influenced my career. When
I was a PhD, I started to work with Donald Koss-
mann on database testing which was a highly im-
portant topic but at that time not at the core of
the database community. After my PhD, I really
wanted to shift towards a topic that was more at
the core of our community. Around 2008, I started
to work on ideas related to leveraging modern hard-
ware for in-memory databases in the context of my
(industrial) work on SAP HANA. In this realm, I
was reading many papers that contributed to this
line of work.

In this body of work, the paper from Ken was
starring out. For me personally, it is a “seminal”
paper since it early on explored modern CPU ar-
chitectures with multi-level caches for designing op-
timal memory-based index structures. The paper
looked into the question of how to redesign tree-like
in-memory index structures and make them cache-
conscious for read-mainly scenarios. In the years
after, we saw many papers along similar lines. The
paper itself combines a set of simple yet elegant
ideas to make an in-memory index cache conscious
such as avoiding pointers and using offset compu-
tation for the index traversal. As a consequence,
data can be kept more densely in the index nodes
without “wasting” space for large pointers to child
nodes thus making the index cache-friendly.

The result of the paper is an index structure called
CSSTree (Cache Sensitive Search Tree) which had
later on been followed by the CSB+-tree [1] (Cache
Sensitive BT-Tree) that supports also more write-
heavy workloads without giving up the cache-optimal
properties. Beyond these topics, Ken has also con-
tributed significantly to a broad range of other im-
portant topics regarding databases on modern hard-
ware (e.g., SIMD and GPUs). Today, the whole line
of databases on modern hardware is still highly ac-
tive, and new debates are needed in the context of
the cloud given the challenges that hardware is scal-
ing slower than data.

A second reason why I chose the paper is actu-
ally because I highly value Ken as a researcher. 1
only had a few times where I could personally in-
teract with him. One occasion to meet and discuss
with him was his visit to Brown University when I
was there from 2014 to 2017. These few moments
were sufficient to impress me deeply. Firstly, Ken
is a very modest and quiet, but extremely knowl-
edgeable person. Secondly, while Ken is known for
his solid work on developing database algorithms
and data structures for modern hardware, I learned

33

that he also has a second, completely different area
of work, which is not even in computer science, but
in medicine. Personally, I find this strong ability to
research in-depth and breadth extremely fascinat-
ing.

[1] Jun Rao and Kenneth A. Ross. “Making B™-
Trees Cache Conscious in Main Memory.” In Pro-
ceedings of ACM SIGMOD, pages 475-486, 2000.

Peter Alvaro
University of California, Santa Cruz, CA, USA

palvaro@ucsc.edu

Eddie Kohler, Robert Morris, Benjie Chen, John
Jannotti, and M. Frans Kaashoek.

The Click Modular Router.

In ACM Transactions on Computer Systems, Vol-
ume 18, Issue 3, pages 263-297, 2000.2

I first read the Click paper in 2009 in Randy
Katz’s networking seminar at UC Berkeley. At that
time, I was a second-year graduate student in Joe
Hellerstein’s lab, studying data management sys-
tems but interested in distributed systems and lan-
guages. Riding the tailwind of Boon Loo’s disserta-
tion work on “Declarative Networking,” I was think-
ing a lot about transplanting other database ideas
(in particular, query languages and dataflow-based
execution) into new domains. I was (perhaps nar-
rowly) focused on the idea of “declarative” program-
ming, but I struggled to reconcile the ideology of
“what not how” with concerns such as modularity,
reuse, and performance. For example, small queries
can be quite beautiful, but they become unwieldy as
their complexity increases - and programmers tend
avoid them because they prevent low-level control
of execution.

During my first reading, the Click paper reaf-
firmed the view of the world I share with a small
number of colleagues: that query processing is a
rich way to model general computation. As Click
shows, routing is a special case of query execution.
With the right set of tweaks and extensions, the
zoo of routing and switching protocols that we had
been studying in class decompose into a set of sim-
ple operators (called “elements”) that process tuples
(i.e., packets) one-at-a-time, alongside a collection
of rules about how operators may be composed. An
instantiation of a router is hence a dataflow graph
that reacts to the insertion of tuples (e.g., those

2Extends the SOSP 1999 paper from the same authors
with the same title.

34

arriving via an external network interface) by out-
putting tuples (e.g., via an outgoing interface).
Reading more deeply, the paper began to upset
my understanding of the role of abstraction in sys-
tems programming and its relationship with reuse
and performance, teaching me a number of lasting
technical lessons. Critical to both the generality
and degree of reuse in Click is its ability to combine
operators whose interfaces are “pull” (as operators
in traditional query processing are, exposing iter-
ators) and those that are “push” (as operators in
streaming databases are, fronted by queues). This
generality was required to model interfacing with
the boundaries of systems where, for example, pack-
ets arrive at times outside of our control, and send-
ing packets requires waiting for a device to be ready.
Rather than being simply a workaround to handle
the edges of the system, however, it makes the pro-
gramming model surprisingly powerful. The “trick”
that makes permits programmers to intermix push
and pull operators (but only in ways that are “type-
safe,” since it does not make sense to directly com-
pose an operator that wants to push to its outputs
with an operator that wants to pull from its inputs)
is the explicit representation of queues. Rather than
hiding them inside streaming-style operators, pro-
grammers choose where queues are placed, which
influences when scheduling decisions are made. By
doing so, Click permits the implementation of oper-
ators that (like Eddies [1]) perform scheduling itself.

The Click programming model is not declarative
in the sense typically meant by our community. There
is no calculus or algebra that gives rise to a space
of plans to automatically cost and search: program-
mers of Click perform query planning by hand. In-
stead it offers what Kohler? called “picture-frame
declarativity,” allowing implementers to operate freely
on both sides of the abstraction. Implementing a
new routing protocol is a matter of creating a new
query, and can be performed visually, at the level
of logical dataflow. Allowing programmers to ex-
plicitly place queues gives them control over when
scheduling decisions are made, without requiring
them to worry about how. Implementing completely
new functionality or scheduling policy requires peel-
ing back the abstraction and implementing a new
operator in low-level code. Hence Click elements
“frame” imperative processing, allowing program-
mers to enjoy the benefits of high-level program-
ming while maintaining control of the system. Click
is fast - faster than I knew a high-level programming
model could ever be.

3in a separate talk

SIGMOD Record, December 2023 (Vol. 52, No. 4)

It is hard to measure the impact of Click on my
own thinking and research. The explicit represen-
tation of queues as programmatic constructs rather
than hidden plumbing became a key feature of the
Dedalus language [2], which became the foundation
of my thesis work, some of which departed from
pure query languages to target streaming dataflow
systems. I have also lost count of how many times
I have read the paper. Each time, I find something

SIGMOD Record, December 2023 (Vol. 52, No. 4)

new. Every database researcher should read it of-

ten.

[1] Ron Avnur Joseph M. Hellerstein. “Eddies:
Continuously Adaptive Query Processing.” In Pro-
ceedings of ACM SIGMOD, pages 261-272, 2000.

[2] Peter Alvaro, William R. Marczak, Neil Con-
way, Joseph M. Hellerstein, David Maier, and Rus-
sell Sears. “Dedalus: Datalog in Time and Space.”

In Datalog Workshop, pages 262-281, 2010.

35

