Technical Perspective:
Accurate Summary-based Cardinality Estimation Through
the Lens of Cardinality Estimation Graphs

Dan Suciu
Universtity of Washington
suciu@cs.washington.edu

Query engines are really good at choosing an efficient
query plan. Users don’t need to worry about how they write
their query, since the optimizer makes all the right choices
for executing the query, while taking into account all aspects
of data, such as its size, the characteristics of the storage de-
vice, the distribution pattern, the availability of indexes, and
so on. The query optimizer always makes the best choice,
no matter how complex the query is, or how contrived it was
written. Or, this is what we expect today from a modern
query optimizer. Unfortunately, reality is not as nice.

The problem is that query optimizers have an Achilles’
heel: cardinality estimation. In order to choose an optimal
query execution plan, they need to search over many alter-
native plans and evaluate their cost, and in order to evaluate
their cost the optimizer needs to estimate the number of tu-
ples that will result for each subexpression of the query. If
they estimate incorrectly the number of tuples, then their
cost estimate is wrong, and they end up choosing an ineffi-
cient query plan. When query optimizers fail to choose the
best execution plan, it is almost always because they were
informed incorrectly by the cardinality estimator.

The cardinality estimation problem is easy to state. Given
a query, estimate the cardinality of its answer without eval-
uating the query. Typically, the query is restricted to se-
lection and join operators, since other relational operators
(group by, duplicate elimination, union, etc) are usually
pushed to the top of the query plan. In order to perform
cardinality estimation, the system computes offline some
statistics on each base table, then uses them at optimization
time to estimate the cardinality of various query expressions.
There are two major challenges. First, there is a very lim-
ited space budget for what statistics we can precompute and
store, because all statistics must be kept in main memory
during query optimization. Production databases often have
hundreds of tables, some with hundreds of attributes, hence
we can afford to store only very little information about
each table and each attribute. Second, cardinality estima-
tion must be very fast, because it is in the inner loop of
the query optimizer, which needs to invoke the estimator
thousands of times during optimization. Disk accesses, or
solving complex optimization problems are ruled out: car-
dinality estimation must be simple and efficient.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

SIGMOD Record, March 2023 (Vol. 52, No. 1)

The following paper (Accurate Summary-based Cardinal-
ity Estimation) by Chen et al. presents a unified framework
that captures the most common approaches to cardinality
estimation: those that are based on summary statistics (as
opposed to samples) and those that are based on average
or mazimum degree (which includes all estimators that I'm
aware of). There are two separate tasks in cardinality esti-
mation, which are often studied separately: selectivity esti-
mation of predicates on the base tables, and the cardinality
estimation of a multi-join query. The paper studies exclu-
sively the second task.

A cardinality estimate of a multi-join query relies on aver-
age degrees. Consider estimating the size of a join, R(A, B) X
S(B,C). A reasonable estimate is the cardinality of R times
the average degree of the attribute S.B; for example, if each
value of B occurs 5 times in S, then our estimate is 5 times
|R|. But we can also switch the roles of R and S and use
as estimate |S| times the average degree of R.B. This is a
problem, which estimate should we use? Database systems
choose the smallest of these two, and this leads to the clas-
sic textbook formula, that we like to teach in undergraduate
classes: |R X S| = |R| - |S|/ max(dom(R.B),dom(S.B)). It
becomes clear that, for an n-way join query, the number of
choices becomes very large, and it is unclear which one to
use as estimate. The paper introduces a simple abstraction,
called the cardinality estimation graph, or CEG, where each
path represents one possible choice for the cardinality esti-
mator. Using a CEG, the paper can explain and compare
the various cardinality estimators described in the literature,
opening up the possibility for designing new estimators.

A recently proposed alternative to computing a cardinal-
ity estimate is to compute an upper bound. This approach is
called a pessimistic cardinality estimate (with some abuse,
since it is not an estimate, but a guaranteed upper bound).
The definitive mathematical formula for the upper bound of
a multi-join query is known, but impractical, and the few
implementations of pessimistic estimates use relaxations of
this formula. The paper shows that the same CEG abstrac-
tion can also be used to explain these pessimistic cardinal-
ity estimates, by simply replacing the average degree with a
maximum degree.

Readers with little knowledge of cardinality estimation
will hopefully find the CEGs a convenient, quick introduc-
tion to various cardinality estimation methods. Experts will
find the CEG a convenient abstraction for comparing various
estimators. And systems builders may find the experimen-
tal section a useful guide in making choices for their own
cardinality estimator.

93

