Technical Perspective for Sherman: A Write-Optimized
Distributed B+Tree Index on Disaggregated Memory

Tim Kraska
MIT
kraska@mit.edu

Separation of compute and storage has become the de-
facto standard for cloud database systems. First proposed
in 2007 for database systems [2], it is now widely adopted by
all major cloud providers such as Amazon Redshift, Google
BigQuery, and Snowflake. Separation of compute and stor-
age adds enormous value for the customer. Users can scale
storage independently of compute, which enables them to
only pay for what they really uses. Consider a scenario
in which data grows linearly over time, but most queries
only access the last month of data, which remains rela-
tively stable. Without the separation of compute and stor-
age, the user would gradually be forced to significantly in-
crease the database cluster capacity. In contrast, modern
cloud database systems allow scaling the storage separately
from compute; the compute cluster stays the same over time,
whereas the data is stored on cheap cloud storage services,
like Amazon S3.

However, current cloud database systems still tightly cou-
ple compute and memory. While it might feel unnatural
to disaggregate compute and memory as the CPU needs
access to data, a disaggregation would certainly have ad-
vantages. Servers used for database workloads tend to have
large amounts of memory, so they can cache as much data
as possible, to avoid the relatively slow access to storage
services and keep all intermediate results in memory. The
latter is of the utmost importance as queries, which spill to
disk, often fall off the performance cliff and are orders of
magnitude slower than their in-memory counterparts. Yet,
keeping the most relevant data, intermediate results, and
meta-data in memory is a non-trivial and often costly prob-
lem. Memory is expensive and the right machine type, which
offers enough memory and compute, is hard to determine up-
front. Moreover, workloads are rarely static. For example,
a database system that mainly serves dashboarding queries
might not require a lot of memory, except when it has to
process ad-hoc data exploration queries.

If it were possible to scale memory independently from
compute, it would be feasible to dynamically adjust the
amount of memory based on the workload. It would further
enable better resource utilization. Consider a dynamic work-
load regarding the number of queries but with very strict
response time requirements, which can only be met, if data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

44

is kept in-memory. In this case, the separation of compute
and memory would enable to scale the compute with the
number of queries while keeping all the data constantly in-
memory. This design principle is already used by services
such as Google, which keeps the entire web-index in-memory.

In some ways, the disaggregation of compute, storage, and
memory is the natural evolution of the currently prevalent
separation of compute and storage. However, only recently,
with the advancement of RDMA and low-latency network
standards, this evolution actually becomes possible. In 2016
[1], we proposed the Network-Attached-Memory Database
(NAM-DB) as a first prototype to explore the design of a
system with separation of compute, storage, and memory.
As part of the same project, we also explored the design of
the first RDMA-based B-Tree index [3], which only uses one-
sided RDMA messages and no RPC calls. Compute nodes
do not require any CPU cycles to access the memory on the
memory nodes, which is an important design-principle to
avoid additional overheadh with the dissaggregation of com-
pute and memory. However, while achieving good read per-
formance, our design required several message round-trips
for writes.

The Sherman paper addresses this limitation in a very el-
egant and novel way. It uses a lock-free search with versions
to resolve read-write conflicts and exclusive locks to resolve
write-write conflicts. It further cleverly uses the in-order
delivery property of modern RDMA NICs to issue simulta-
neous commands and reduce round-trips further. I found it
most interesting how the authors use the on-chip memory of
modern RDMA NICs, which allows the elimination of PCle
transactions at the receiver-side and provides extremely high
throughput.

Overall, I am convinced that this paper is an important
stepping stone to achieving the full vision of the separation
of compute, storage, and memory for the next generation of
cloud database systems.

1. REFERENCES

[1] C. Binnig et al. The end of slow networks: It’s time for
a redesign. Proc. VLDB Endow., 2016.

[2] M. Brantner et al. Building a database on S3. In
SIGMOD, 2008.

[3] T. Ziegler et al. Designing distributed tree-based index

structures for fast rdma-capable networks. In SIGMOD,
2019.

SIGMOD Record, March 2023 (Vol. 52, No. 1)



