
Technical Perspective: When is it safe to run a
transactional workload under Read Committed?

Alan D. Fekete
University of Sydney

alan.fekete@sydney.edu.au

A data management platform provides many capabilities
to assist the data owner, application coder, or end-user. For
example, it should support an expressive query language,
schema definition, and sophisticated access control. An-
other way many platforms add value is through a transaction
mechanism, which allows the application programmer to in-
dicate that a stretch of code, including multiple accesses to
data, represents a single real-world activity and so all these
steps should happen as if a single step, despite really being
interleaved with other programs, or perhaps cancelled after
partial execution. If the platform perfectly hides interleav-
ing of di↵erent activities, the execution is called serializable,
and this is a great aid to protecting data quality. Any in-
tegrity constraint over the data (whether explicitly declared
in schema or not) which is preserved by each transaction
running alone, is also valid at the end of any serializable
execution of several transactions.

A traditional mechanism to ensure serializable executions
is for the platform to isolate transactions, preventing one
from interfering with another’s accesses, by taking (and en-
forcing) transaction-duration locks on behalf of the user code.
Some platforms maintain multiple versions of each item, and
use these to get better performance for reading, because they
can sometimes allow read access (to an older version) even
when the item is locked by a writer transaction. But ev-
ery mechanism we have for guaranteed serializability, leads
to substantial reduction in throughput when there is too
much contention by writers. From early days of relational
DBMSs, platforms have allowed the application coder to
chose a lower level of isolation [1], for example by releas-
ing some locks early; the execution may then not appear
perfectly like a transaction being a single step, but better
performance is possible. “Read Committed” isolation level
is indeed the default in most commercial and open-source
platforms, and therefore many applications use it, without
the programmer necessarily understanding the implications
for correct (or otherwise) behaviour of their code.

In general, a lower isolation level can allow non-serializable
execution and violation of data integrity; however, some-
times, one can have an application and an isolation mecha-
nism, such that properties of the code or data imply that all
executions will be serialiable, even though other applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

at this isolation level can be non-serializable. One says that
the application is robust for the given isolation level. The
article by Vandevoort et al., presents important results of
this kind, for the widely-used Read Committed mechanism.
These could have substantial practical impacts. When an
application is shown to be robust, the programmer can get
the improved performance of lower isolation, without risk-
ing data corruption. Knowing these results can also inspire
programmers to design their code in ways that are robust.
Maybe, in future tools might be built that automatically
apply the theory to check robustness of application code.

Proving results about systems requires a way to model
concepts from the world (such as the protocol, the code, etc)
with mathematical structures such as sets and sequences.
The theory of transaction management [2] has used a vari-
ety of models. Each model has simplifications (where things
that are not identical in the world are treated the same) and
restrictive assumptions (which simply refuse to model some
situations that can really occur). For example, the model
used in many of Jim Gray’s early papers, treats the execu-
tion as a sequence of read and write operations, each coming
from a transaction. This does not deal with the possibility of
a predicate read such as SELECT-WHERE retrieving those
items that meet some condition of their contents (rather
than accessing on an unchanging primary identifier). Van-
devoort et al. also have restrictions, but their work goes
beyond the previous approaches in at least one important
way: they include in their model, the possibility to have
some constraints between items which can be accessed in
the application (for example, constraints can arise from some
foreign key properties in the schema). The paper elegantly
shows how di↵erent features of the constraint set, can lead to
di↵erent computational di�culty in deciding whether or not
a set of programs is robust for Read Committed isolation.

1. REFERENCES
[1] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.

Granularity of locks and degrees of consistency in a
shared data base. In Modelling in Data Base
Management Systems, Proceeding of the IFIP Working
Conference on Modelling in Data Base Management
Systems, Freudenstadt, Germany, January 5-8, 1976,
pages 365–394, 1976. available at
http://jimgray.azurewebsites.net/JimGrayPublications.htm.

[2] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann,
2002.

SIGMOD Record, March 2023 (Vol. 52, No. 1) 35

