Technical Perspective:
Sortledton: a Universal Graph Data Structure

Angela Bonifati
Liris CNRS Research Laboratory
Lyon 1 University, France
angela.bonifati@univ-lyon1.fr

Graph processing is becoming ubiquitous due to the prolif-
eration of interconnected data in several domains, including
life sciences, social networks, cybersecurity, finance and lo-
gistics, to name a few. In parallel with the growth of the
underlying graph data sources, a plethora of graph work-
loads have appeared, ranging from graph analytics to graph
traversals and graph pattern matching. Graph systems ex-
ecuting both complex and simple graph workloads need to
leverage adequate data structures for efficiently processing
heterogeneous graph data. While the underlying graph data
structures have been extensively studied for the static case,
they are less understood for the dynamic case, with the data
undergoing several updates per second. Moreover, the exist-
ing solutions suffer lack of generality, as they focus on one
specific requirement and workload type at a time. Design-
ing a universal data structure that adapts to several kinds
of graph workloads in a dynamic setting and achieves signif-
icant efficiency on all of them is far from being trivial.

The basic operations necessary to execute diverse graph
workloads in dynamic cases belong to the three categories:
scans, insertions and intersections. While scans have linear
complexity in the size of the input data, and inserts have
logarithmic complexity, intersections between participating
neighbors in a graph might be quadratic. Intersections are
needed for graph pattern matching operations (GPM), thus
being critical for supporting dynamic workloads. Scans and
insertions on the other side are relevant for all dynamic work-
loads, encompassing graph traversals, graph analytics and
GPM.

Graph workloads are typically memory-bound. When con-
ceiving a new data structure, it is important to optimize for
memory access patterns. These include sequential access to
all vertices, sequential access to edges in a neighborhood,
and random access to algorithm-specific properties, such as
PageRank scores or distances for graph traversals. Exist-
ing data structures, such as Column Sparse Row (CSR), a
fast read-only data structure improving adjacency matrices,
optimize for both sequential vertex access and sequential
neighborhood access, while Adjacency Lists (AL) optimize
only for the latter. Striking a balance between these two
designs in a dynamic case is a real challenge and the data
structure design needs to consider the pros and cons of each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

16

design for all the patterns in a dynamic scenario. An empir-
ical evaluation on representative dynamic datasets can ac-
tually guide this choice. The highlighted paper starts with
this empirical analysis before proposing an adjacency list-
like data structure that optimizes for all the above patterns
(random vertex access, sequential neighborhood access and
intersections) but the sequential vertex access. The latter
is indeed less critical for optimization purposes compared to
the other access patterns. It also discusses the choice of ad-
jacency lists compared to adjacency matrices (e.g. CSR-like)
in terms of opportunities for parallelization, as required by
vertex-centric graph computations, as well as the less expen-
sive maintenance of the index. The design of the Sortledton
data structure is elegant and effective at the same time and
relies on reusing existing data structures. It combines an ad-
jacency index and adjacency sets, containing an adjacency
list for each neighborhood. The index allows to map ver-
tex identifiers to vertex records, containing a pointer to the
neighborhood, its size and a read-write latch for paralleliza-
tion. The adjacency sets store the neighborhood of each
vertex, accommodating intersections and sequential neigh-
borhood access. Sorted sets are used here and they are im-
plemented as unrolled skip lists and organized as blocks. The
rebalancing is much easier to handle compared to classical
database indexes, such as B+- trees. Unrolled skipped lists
are used for nodes with higher degrees, whereas for smaller
degrees vectors are used.

The experimental assessment conducted in the paper is
impressive and offers a comprehensive comparison with rel-
evant baselines, both CSR-like and AL-like. The obtained
results clearly show the utility and efficiency of the new
graph data structure to handle diverse graph workloads un-
der millions of transactional updates per second. It achieves
good performances that are only slightly higher than those
of static CSR-like data structures while using only doubled
space.

Most state-of-the-art systems do not support a variety of
workloads (including graph traversals, analytics and GPM)
with dynamic graphs. The new data structure proposed in
the highlighted paper unifies sequential access to all vertices,
sequential access to edges in a neighborhood and random ac-
cess to algorithm-specific properties under frequent updates.
It paves the way to future adoption within commercial and
open-source graph processing systems. For instance, it will
certainly benefit existing graph databases especially with
transactions and concurrent updates and is extensible to
other graph workloads and benchmarks, with hybrid OLTP
and OLAP operations.

SIGMOD Record, March 2023 (Vol. 52, No. 1)

