TECHNICAL PERSPECTIVE:
Ad Hoc Transactions: What They Are and Why We Should Care

Kenneth Salem
ken.salem@uwaterloo.ca
University of Waterloo
Waterloo, ON, Canada

Most database research papers are prescriptive. They identify a
technical problem and show us how to solve it. They present new
algorithms, theorems, and evaluations of prototypes. Other papers
follow a different path: descriptive rather than prescriptive. They
tell us how data systems behave in practice, and how they are
actually used. They employ a different set of tools, such as surveys,
software analyses or user studies. These papers are much rarer at
database research conferences, and they’re all the more valuable
for that.

The paper I'm introducing here, Ad Hoc Transactions: What They
Are and Why We Should Care, by Tang et al., is of this descriptive
type. It presents an analysis of open-source database applications,
focusing on how these applications synchronize concurrent oper-
ations. According to the authors, this analysis is the result of five
person-years (!) of effort. (I suspect that this is one of the reasons
that work like this is not more common.) This paper originally ap-
peared at SIGMOD’22 [2], and it extends a (short) research thread
that first came to my attention through earlier work by Warszawski,
Bailis and others [1, 3].

“Wait”, I hear you say. “Database systems provide transactions,
and applications use transactions to synchronize their database
accesses. What’s to study here?” If this is your immediate reaction,
T urge you to read this paper. Transactions are, of course, widely
used, but database applications also have other tools at their disposal
for coordinating concurrent actions. These include synchronization
primitives provided by database systems, such as explicit locks,
as well as synchronization mechanisms in the application itself.
Tang et al refer to applications’ use of these mechanisms as “ad hoc
transactions”, to distinguish them from transactions implemented
in the database system.

As it turns out, ad hoc transactions are quite common. Tang
et al analyzed eight popular database applications, and found ad
hoc transactions in all of them - more than 90 examples of ad hoc
transactions in all. This ad hoc transaction corpus is the focus of
the paper.

Let’s consider one example from the corpus, as an illustration. It
is an ad hoc transaction used in the Discourse forum application to
update the content of a forum post. It spans two application-level
HTTP requests. In the first, a client requests the current content of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06.

https://doi.org/XXXXXXX.XXXXXXX

forum post for editing. In response, the server-side application uses
a read-only database transaction to retrieve the post content and
version number, and returns them to the client. The client edits the
content, and then issues a second HTTP request to install the new
post content, providing the original version number. In response,
the server-side application first uses a read-only database transac-
tion to verify that the version number has not changed since the
content was originally retrieved. If it has, the update fails. Other-
wise, the application uses another database transaction to install the
new content and update the version number. The application also
uses an explicit lock on the post identifier to prevent concurrent
updates to the post between the version check transaction and the
update transaction.

Logically, this whole process is a single long-lived transaction
spanning two HTTP requests. In practice, the application uses an ad
hoc synchronization strategy involving three database transactions,
an explicit lock, and an explicit optimistic concurrency control (via
the version number check) to coordinate the activity.

The paper does a great job addressing the important questions
about these kinds of ad hoc transactions. First, what kinds of ad
hoc transactions are found in practice? Here the paper identifies a
number of common patterns that were found in the corpus. Second,
how are these ad hoc transactions being implemented, i.e., what
synchronization primitives are the applications using? Third, why
are applications using ad hoc synchronization, rather than simply
relying on database transactions.

Synchronization is tricky, and so the paper also examines what
can go wrong when applications rely on ad hoc transactions. You
may be unsurprised to hear that authors found dozens of correctness
issues related to ad hoc transactions in these applications. They
nicely summarize and classify these issues.

This a super informative paper, representing a whole lot of work.
It should be valuable for engineers who build database applica-
tions. For researchers interested in designing useful synchroniza-
tion mechanisms and abstractions for data systems, it should be
considered a must-read.

REFERENCES

[1] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and
Ton Stoica. 2015. Feral Concurrency Control: An Empirical Investigation of Modern
Application Integrity. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data. 1327-1342. https://doi.org/10.1145/2723372.2737784
Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang, Haib-
ing Guan, and Haibo Chen. 2022. Ad Hoc Transactions in Web Applications: The
Good, the Bad, and the Ugly. In Proceedings of the 2022 ACM SIGMOD International
Conference on Management of Data. 4-18. https://doi.org/10.1145/3514221.3526120
[3] Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-Related Attacks
on Database-Backed Web Applications. In Proceedings of the 2017 ACM SIGMOD
International Conference on Management of Data. 5-20. https://doi.org/10.1145/
3035918.3064037

&2

SIGMOD Record, March 2023 (Vol. 52, No. 1)



