
Chenggang	Wu	Speaks	Out	on	his	
ACM	SIGMOD	Jim	Gray	Dissertation	
Award,	Rejection,	Believing	in	Your	

Work,	and	More

	
Marianne	Winslett	and	Vanessa	Braganholo

Chenggang Wu

https://cgwu.io/

Welcome to this installment of ACM SIGMOD Record’s series of interviews with distinguished members of the
database community. I’m Marianne Winslett, and today we are on Zoom with Chenggang Wu, co-founder and CTO
of Aqueduct. Chenggang received the 2022 ACM SIGMOD Jim Gray Dissertation Award for his thesis entitled The
Design of Any-scale Serverless Infrastructure with Rich Consistency Guarantees. His PhD is from UC Berkeley. So,
Chenggang, welcome!

56 SIGMOD Record, December 2022 (Vol. 51, No. 4)

Thank you for hosting me. It was a great honor to
receive this award.

Our runners-up for the award this year were PingCheng
Ruan (National University of Singapore) and Kexin
Rong (Stanford University).

So, Chenggang, what is the thesis of your thesis?

My dissertation was primarily centered around the topic
of serverless. I actually can’t believe it’s already been
two years since I submitted my dissertation. Although
these days serverless computing has become a widely
used technique, back then, in 2016, it was still a fairly
newish concept and became a hot topic in the research
community around 2018. So, just to give a little bit of
background, serverless is a software design pattern
whose main advantage is to offer a higher level of
abstraction to program the cloud.

Basically, in the pre-serverless world, to run an
application in the cloud, we first need to provision a
virtual machine, specify some resource requirements,
like how many CPUs, GPUS, RAM, and disc you need
and the operating system you want to use, launch that
VM, and copy your code into the VM and run it. For
seasoned backend engineers, this might be fine, but for
folks without deep systems expertise, this is actually a
tall order. But, with serverless computing, programmers
can now just simply upload the code to the cloud, issue
a request to run the code and get the results back,
without having to worry about any of these that I
mentioned beforehand, which is very convenient.

The interesting thing is this all sounds very promising,
but the challenge, of course, is that raising the
abstraction also means hiding a lot of the knobs that the
users can otherwise tune. So, we, the system builders,
now need to do a good job of delivering high
performance, scalability, fault tolerance, and
consistency on behalf of our users. My dissertation was
all about how to tackle these challenges.

Can you tell me more about the challenges that you had
to tackle?

My first project, called Anna, was centered around
exploring the tradeoff between scalability and
consistency. The main motivation behind Anna is that
these days there are a bunch of highly scalable
distributed computing infrastructures being built. But
the interesting thing is that even within a single
machine, we actually have access to very rich, very
beefy compute resources, like lots of CPU cores and a
bunch of RAM. And we noticed that people actually
aren’t making the most use out of these, even for a single
instance of compute node.

So, the research question becomes how do we design a
unified architecture that scales well in the distributed
setting, of course, but also takes the maximum benefit
out of a single core. This architecture can then make full
use of every CPU core and available RAM to deliver the
best performance, even within a single-node system.
The solution that we landed on is something called a
“Coordination Free Execution Model.” Because we
noticed the bottleneck that inhibits the scalability
usually lies in the coordination between different
compute threads when they access shared state.

So, the coordination free model basically means every
thread has access to its own local memory without
communicating and just does its own work. So, in that
way, everybody can proceed in parallel so that it
minimizes the coordination between threads. But of
course, this is the ideal world, because if everybody just
keeps doing their own thing, then eventually, they have
to communicate and exchange information to offer a
consistent view of the world.

The corollary challenge that emerges from that is how
do we design a suitable consistency mechanism such
that although different threads are accessing its local
copy, eventually, they will find some way to reach an
agreement to offer the application a consistent view of
the world. So, we introduced a technology called
“Lattice-based Conflict Resolution Strategy.” We found
that carefully composing these different lattices allows
us to guarantee that, although everybody may be doing
their own things, and although these messages may
arrive at different threads in different orders, eventually
they will reach a consensus. So, it’s a decent design that
offers maximum scalability, both within a single node
and across multiple nodes while achieving different
levels of consistency such that an application can safely
run.

[…]	how	do	we	design	a	
unified	architecture	that	

scales	well	in	the	distributed	
setting	[…],	but	also	takes	
the	maximum	benefit	out	of	

a	single	core	[?]	

SIGMOD Record, December 2022 (Vol. 51, No. 4) 57

That sounds like a great start to your thesis. What was
the topic of the rest of it?

So, basically, in the first chapter of my thesis, Anna, we
designed a system architecture that performed well at
each scale point, be it the single node context or the geo-
distributed deployment. But the key promise that
serverless computing wanted to deliver is “pay as you
go”, which means that it must be elastic. As your
workload requirement goes up, the system needs to be
able to detect your workload shift and then dynamically
add nodes to satisfy your compute demand. And also, if
your workload is going to shrink, it should be able to
reduce the resource allocation to save costs for you.

The second chapter of Anna is to take this architecture
that’s performing well at each scale and then implement
our own scaling mechanism so that we can dynamically
adapt to these workload shifts and adjust the resource
allocation accordingly. So, fundamentally, it’s exploring
the design of the underneath autoscaling mechanism,
and exploring the tradeoff between performance and
cost efficiency.

The first two chapters focus on the storage side of
things, which actually lays out a very good foundation
for the compute side of things because you can imagine,
during the compute, inevitably, each compute agent is
going to access all the shared state that’s maintained in
the underlying storage system. So, the third chapter is
basically bringing in all of these core design principles:
coordination free execution model, lattice-based
conflict resolution scheme, and autoscaling, and
applying these principles to the compute layer.

So, now, there are two layers, there’s this compute layer,
and there’s a storage layer, and we may have workloads
that exert different amount of tension to each layer:
Maybe there’s a workload that requires a tremendous
amount of compute but only little storage. In this case,
the compute layer can be very beefy, and the storage
layer could be pretty lean. And you can imagine a
workflow that’s the other way around. So, this
advocates for the design of resource disaggregation –
allowing the two layers to scale independently, which is
very economical.

But then the challenge is that as we progress through the
compute, at some point, it needs to access the storage; it
needs to issue a network request to the storage tier to
request the data, which is then sent back to the compute
layer. This process can introduce high network latency,
which is a significant performance challenge. So, the
third chapter is more on exploring this concept of logical
disaggregation with physical colocation (LDPC).
Logical disaggregation allows the compute tier and the
storage tier to scale independently. Physical colocation
means that in our implementation, we can carefully

cache some of the data from the storage tier up one level
to the compute layer.

In most of the cases, because we are accessing the cache
from the compute layer, it minimizes the latency
drastically, and inside each cache, we extend Anna’s
design principle, so it still offers a suitable level of
consistency while eliminating the network latency. This
way, the LDPC design allows us to achieve the best of
both worlds (performance and consistency). This
summarizes the three chapters of my thesis.

That sounds very appropriate for a startup.

Yeah. Exactly. So, that’s why after my PhD research,
both my colleague (Vikram Sreekanti) and I, and both
of our advisors, Joe Hellerstein and Joseph Gonzalez,
were very interested in packaging our research into
something that the industry can use. The company we
founded, Aqueduct, is doing exactly this. I mentioned
before that serverless computing is very suitable for
folks without deep systems expertise, and that’s why our
current target audience is more on the data teams,
especially data science folks.

These groups of people are domain experts in various
fields, like biology, some scientific computing fields,
and the financial industry. They have deep domain
knowledge but only have some basic programming
knowledge in Python and SQL, and they don’t have
deep expertise on how Kubernetes or Docker
containerization works, so they’re the perfect audience.
So, on the API level, we want to offer them a way to
easily program their workflows (which involves some
machine learning to predict churns, the weather, or
financial trends), and they can construct the workflow
inside their familiar Python or Jupyter notebook
environment. Then, underneath the hood, when they
submit this Python workflow definition, we package
that into Docker containers and do all of these
performance optimizations outlined in the thesis. So,
from our user’s perspective, they get both ease of use
and peace of mind in the sense that all of the scalability,
consistency, and fault tolerance aspects are automated
and abstracted away from them. That’s the ultimate
promise that we wanted to deliver to industry folks.

Do you have any words of advice for today’s graduate
students? Things that you wish you had known when you
were a new PhD student?

I think the most important one is to be a believer of your

[…]	you	need	to	be	the	No.1	
fan	of	your	own	research.	

58 SIGMOD Record, December 2022 (Vol. 51, No. 4)

own research and stick with your belief. There are two
parts to this. The first part is that you have to believe in
your own research, which means you need to know that
what you’re working on is important and you need to be
the No.1 fan of your own research. Actually, I’ve been
through this during my first year. When I was an
undergrad, I was working on something that was
unrelated to my dissertation field; I was working on
interactive data visualization, and I continued this line
of research during the first year of my graduate study.

But then, along the way, I realized that’s just not really
where my core passion was, and I was interested in more
“hardcore” systems-oriented topics. So that’s why I
made a switch from interactive visualization to
distributed storage and distributed systems area, and I
found myself to be very much enjoying that. I feel this
is the prerequisite of me being a believer of my own
research.

The second part is to stick with your belief because I
found that, along the way, not everybody is going to be
believing in your research. Especially when you submit
papers, you’re probably going to encounter some
rejections. In my case, I think my first paper on Anna
only got published when I was a third-year PhD student.
That paper actually got rejected three times
consecutively. So, that was a “dark age” for me. It was
definitely a frustrating experience, but I don’t actually
think I was depressed by that mainly because I was
confident that I was doing good work, and there’s an old
saying, “good work eventually gets published.” So, the
fundamental belief that I am doing great work, that it
will get publicized and recognized by people, is
ultimately the source of power that’s driving me through
these dark ages.

The second lesson is that I found collaborating with
your peers is usually a little bit more enjoyable than
working alone. When I first joined Berkeley, it just
happened that all of my advisors’ grad students either
already graduated or were about to graduate, so I had to
explore the research on my own. That was fine, but later
on, I found my peer collaborator, Vikram Sreekanti
(actually, now we’re running the company together).
Once the two of us started working together, there were
a few things that I discovered. I think, first of all, it’s just
more fun to work with people. You have other folks you
can talk to, either research-wise or just complaining
about things together is always better than dealing with
everything by yourself. Also, although I was
communicating very frequently with zero issues with
my advisors, they tend to give advice at a higher level:
the idea generation level or the design level. But
regarding the implementation details, it’s still very nice
to get some feedback from your peers, who are working
together with you and know the details of your
codebase.

Also, I think collaborating with folks, in the end, leads
to a net gain on productivity. Usually, I was leading a
project that my collaborator was co-leading, and I was
also participating in the project that he was leading, and
I was the co-lead of that project. So, in the end, it was a
net gain for both our individual growth and the team’s
growth.

Great advice. Thank you very much for talking to me
today.

No problem. It was my great pleasure, Marianne.

SIGMOD Record, December 2022 (Vol. 51, No. 4) 59

