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Data is the driving force behind machine learning (ML)
algorithms. The way we ingest, store, and serve data
can impact the performance of end-to-end training and
inference significantly [11]. However, efficient storage
and pre-processing of training data has received far less
focus in ML compared to efforts in building specialized
software frameworks and hardware accelerators. The
amount of data that we produce is growing exponen-
tially, making it expensive and difficult to keep entire
training datasets in main memory. Increasingly, ML al-
gorithms will need to access data from persistent storage
in an efficient way.

To address this challenge, this work sets out to char-
acterize 1/O patterns in ML, with a focus on data pre-
processing and training. Our goal is to create the first
open-access storage-focused benchmark for ML.

Why a new benchmark? An extensive body of
work proposes benchmarks for ML algorithms (e.g.,
MLPerf [8], OpenAl Gym [6], Deepmind Lab [5],
DawnBench [7]). While these benchmarks provide a
valuable end-to-end test of an ML environment, they
make it difficult to isolate the value of each compo-
nent. Moreover, existing benchmarks tend to focus
on the compute required for training and inference.
As a consequence, the storage setup is simplified and
the cost of data pre-processing is largely ignored. Fi-
nally, prior benchmarks have a high barrier to entry for
non-ML practitioners, requiring expensive accelerators
(e.g., GPUs, TPUs, AWS Inferentia) and extensive ML-
specific knowledge to run. All these reasons justify the
need for a storage-focused benchmark for ML that is
easy to deploy and is accelerator-agnostic.

Approach. We are exploring trace collection to un-
derstand storage impact in ML, similar to the SPEC-
storage benchmark [2]. Key factors we are investigat-
ing include the workload type, software framework used
(e.g., PyTorch [10], Tensorflow [3, 9]), accelerator type,
dataset size to memory ratio, and degree of parallelism.
The trace collection is done through eBPF [1] and sys-
tem monitoring tools such as mpstat, and NVIDIA
Nsight. Our traces include VFS-layer calls such as
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read, write, open, as well as mmap calls, block I/O
accesses, CPU, memory, and accelerator use. We are
collecting traces for workloads with different I/O pro-
files, based on the MLPerf Training [8] benchmark ref-
erence implementations and datasets. Specifically, we
are focusing on computer vision, natural language pro-
cessing, and recommender systems workloads, collect-
ing traces during the training phase. The current system
is single-node, with the data residing in local storage. In
the second stage of the work, we intend to switch the fo-
cus to data cleaning and pre-processing for these three
workload types. Finally, we intend to expand the work
to a multi-node setup.

To account for different memory to dataset size ratios
we will scale up the datasets (e.g., through data replica-
tion and adding noise), and we will limit the main mem-
ory size (e.g., through cgroups). Note that, while still
required as the base criteria to generate faithful traces,
the data quality and accuracy of the trained models are
less relevant to our work, as we only focus on under-
standing I/O patterns at different stages of the workload.

Based on the trace analysis, we will build a synthetic
I/O workload generator. The workload generator will
accurately reproduce I/O patterns for representative ML
workloads. We make it a central design point for the
workload generator to be user-friendly to non-ML re-
searchers and practitioners. In particular, we take in-
spiration from the f£io [4] interface, which is familiar
to storage researchers. Finally, one of our design goals
is to enable users to run the workload generator with-
out having to use ML accelerators. One possible way
to achieve this is artificially introducing delays between
the I/O calls, to simulate the accelerator compute time.

Impact. A key question this work will help answer is
how to provision a balanced training cluster that is not
bottlenecked on storage or compute for a complex mix
of workloads. Furthermore, a storage-focused bench-
mark will accelerate the research and development of
specialized storage systems for ML. Finally, the detailed
trace analysis will uncover compelling research direc-
tions at the intersection of storage and ML.
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