Management of Implicit Requirements Data in
Large SRS Documents: Taxonomy and Techniques

Dev Dave', Angelica Celestino?, Aparna S. Varde'?, Vaibhav Anu’
1. Department of Computer Science, Montclair State University, NJ, USA
2. Visiting Researcher, Max Planck Institute for Informatics, Saarbriicken, Germany

(daved2 | celestinoal | vardea | anuv)@montclair.edu

ABSTRACT

Implicit Requirements (IMR) identification is part of the
Requirements Engineering (RE) phase in Software
Engineering during which data is gathered to create SRS
(Software Requirements Specifications) documents. As
opposed to explicit requirements clearly stated, IMRs
constitute subtle data and need to be inferred. Research
has shown that IMRs are crucial to the success of
software development. Many software systems can
encounter failures due to lack of IMR data management.
SRS documents are large, often hundreds of pages, due
to which manually identifying IMRs by human software
engineers is not feasible. Moreover, such data is ever-
growing due to the expansion of software systems. It is
thus important to address the crucial issue of IMR data
management. This article presents a survey on IMRs in
SRS documents with the definition and overview of
IMR data, detailed taxonomy of IMRs with explanation
and examples, practices in managing IMR data, and
tools for IMR identification. In addition to reviewing
classical and state-of-the-art approaches, we highlight
trends and challenges and point out open issues for
future research. This survey article is interesting based
on data quality, hidden information retrieval, veracity
and salience, and knowledge discovery from large
textual documents with complex heterogeneous data.

1. INTRODUCTION

The importance of high data quality in requirements
engineering (RE) has long been recognized and well
documented. Requirements elicitation is a critical RE
activity that entails gathering data on system
requirements from a multitude of sources including
stakeholders, the existing system and its documentation,
and various problem owners. Requirements explicitly
expressed by the sources get recorded in requirements
artifacts that are typically large Software Requirements
Specifications (SRS) documents that could range to
hundreds of pages with thousands of requirements. It is
widely accepted that the industry is still striving to
establish and apply practices to help identify crucial
data on requirements that are often hidden or
incomplete. Such requirements, also referred to as
“Implicit requirements (IMRs)”, are a known root cause
of software project failure [1], [2], [3], [4].

18

Since SRS documents often run into 100s of pages, it is
not feasible for human software engineers to detect IMR
data manually. In the world of big data, SRS documents
are growing as per the Vs of volume, velocity, variety,
etc. For example, the volume of SRS documents can
range to Terabytes, their velocity can be of the order of
a huge SRS document generated per week, and their
variety entails heterogeneous data including plain text,
structured text, images, tables and other infographics.
This makes it even more significant to dwell upon the
issue of IMR management, clearly a non-trivial issue.
IMR data deserves attention with respect to its
classification as well as techniques, practices, and tools.

Hidden requirements data with detrimental impacts on
data quality and software development was recently
highlighted in seminal research, NaPiRE (Naming the
Pain in Requirements Engineering) [1]. This is a family
of surveys conducted by leading RE researchers to
understand the state of the practice in RE data and the
most critical RE problems. The NaPiRe survey, which
obtained data from RE practitioners from across 10
countries and 228 companies, highlighted hidden
requirements data, i.e., IMR-based data, as the most
frequently cited RE problem (48% of survey
respondents cited IMR data as a problem frequently
affecting their project results). The NaPiRE survey also
provided a probabilistic cause-effect model with major
reasons on requirements data being hidden or implicit
during RE. Practitioners noted that hidden requirements
are caused by team members' lack of experience and
knowledge about elicitation practices, inadequate use of
data management techniques such as completeness
checking, and not using available RE tools. Given that
hidden requirements data (aka IMRs) are recognized as
an important RE problem, this area calls for further
study. Classical work by Spanoudakis [5] focuses on
analogical reuse of SRS data, propounding a paradigm
to compute similarities between SRS documents.
Though modeling such analogies is a useful aspect of
SRS documents, this study does not focus on the actual
identification or management of IMRs.

Research on practices, tools, and techniques available
for IMR data identification and management has been
sporadic, being performed by a select few, e.g., [6], [7].
A tool SRElicitor [6] has been developed as a prototype

SIGMOD Record, June 2022 (Vol. 51, No. 2)

in the form of an Eclipse plugin, usable in RE to convert
SRS data to plain text and then to the required format
via adaptation of a Semantic of Business Vocabulary
and Rules (SBVR). Other tools, NAI and ARUgen,
surveyed in [7] have been developed for ambiguity
resolution, helpful in addressing IMR data. A tool
COTIR has been proposed in [8] and enhanced in [9] to
integrate commonsense knowledge with textual data
mining and ontology for early detection of IMR. While
fundamental COTIR deals with plain textual data in
SRS documents, its enhanced version aims to address
finding IMR from images and tables via approaches
such as CNN (convolutional neural networks).
Likewise, there are interesting advancements that
deserve attention in IMR identification.

The data science community on a broad scale has
addressed the importance of data on implicit
requirements and related terms such as hidden /
ambiguous/vague requirements through works such as
[10], [9], [11], [12]. These works bridge various
perspectives, e.g., data quality, business management,
machine learning, commonsense knowledge, ontology,
fuzzy logic, etc. Such research has often been published
in multidisciplinary venues. However, data scientists
have not dwelt substantially on IMR data management.
Yet, this is a significant paradigm in the world of big
data today where huge complex SRS documents are
generated regularly and need to be effectively harnessed
for high-quality information. Big data on IMRs is ever-
growing and mandates considerable attention.
Moreover, IMR data management relates broadly to
topics such as data cleaning [13] due to connection with
missing information; data veracity [14] due to emphasis
on authenticity and salience of information [15]; hidden
data discovery [16], [17] due to focus on hidden
requirements, complex text data analytics [18] due to
heterogeneous textual data involved, and machine
learning for data science [19] due to automation of
knowledge discovery from large documents, all of

Functional: Describes Non-Functional:
what a product must Describes a goal that a
do product must meet

t]
|

Types Of

which are of much interest to the data science
community. Hence, this inspires a detailed study in the
area and motivates our survey article.

To that end, this article is our attempt at presenting the
state-of-the-research and state-of-the-practice in IMR
identification and management through a review and
analysis of the relevant literature. We focus on
delineating a taxonomy of IMR in several categories
accompanied by suitable examples to clarify the
concepts. Additionally, we aim to inform the RE
community of the techniques, practices, and tools used
in IMR identification and management while also
discussing the open issues in the area with pointers to
future research directions.

2. IMR OVERVIEW & TAXONOMY
This section provides a brief introduction to software
requirements engineering and IMRs followed by an
IMR classification system that we have proposed.

2.1 Background on SRS and IMR Data
The software development life cycle (SDLC) typically
begins with gathering data on requirements, followed by
the requirements analysis phase that involves a detailed
study of the needs the software is supposed to address.
Often, some requirements related data is not well
documented, and the burden of visualizing such data is
left on the developer. Such vague requirements often
result in software solutions not addressing the clients’
needs completely. Most requirements not captured
initially are discovered inadvertently in user acceptance
stages [2]. Clients think that such requirements would
be captured by software automatically. It is difficult to
identify who is at fault for not capturing IMRs. To avoid
such incidents, resulting in dissatisfied customers, it is
important to focus on identifying IMR data.

Figure 1 adapted and redrawn from [21], gives a generic
depiction of Requirements Engineering as a whole.

Requirements Elicitation

v

Requirements

|
' '

v

Requirements
Documentation

v

Requirements
Engineering

Implicit: such as
goverened by
organizational policy or
government regulation

Explicit: such as
requested by the
customer

Requirements Review

[l
[l
[]

Figure 1. The requirements engineering (RE) process

SIGMOD Record, June 2022 (Vol. 51, No. 2)

19

Once the client presents the software problem to the
developers, requirements data is collected before
embarking on analysis. Many requirements are indeed
explicitly captured. However, customers have other
expectations: system security, availability, usability,
performance, hardly defined in SRS documents. By
default, and without writing, users expect that the
system will always be available, be essentially secure,
and perform its intended tasks well, without necessarily
stating that. IMRs often look too simple due to which
the customer views them as obvious, or too complicated
such that the customer cannot visualize them.

Software requirements fall into 2 broad categories:
functional and non-functional. Functional requirements
define the functions of a system or its components,
while non-functional requirements specify criteria that
can be used to judge its operation, rather than specific
behavior. Non-functional requirements are introduced
during development [22]. Functional requirements are
specified before the development begins. Functional
development constitutes the earliest stage in the SDLC.
The distinction between functional and non-functional
requirements informs how each is handled during
elicitation, documentation, and validation [22]. Often,
developers ignore the assessment of non-functional
requirements, which if identified can aid early detection
and mitigation of risks. Speech tag parts constitute
highly informative parts of the non-functional
requirements. Based on this general background, we
proceed with a thorough classification of IMR data.

2.2 Classification of IMR Data

In Table 1, we present a taxonomy of implicit
requirements (IMR) data. This taxonomy is the main
contribution of our survey and was developed based on
this literature study and our expertise in the area. We are
proposing that there are 5 categories of requirement data
that are frequently missed (i.e., remain implicit). As
shown in Table 1, our main IMR categories are:
Security, Accessibility, Maintainability, Sustainability,
and Usability. We describe the five categories below.

Data on security requirements can be explicitly stated
but can also imply additional requirements (which are
not overtly stated by the clients). Riaz et al. propose to
identify security requirements data. Security categories
in their study are: identification and authentication,
availability, accountability, and privacy [23].

Accessibility requirements constitute another category
of data often missed. This is due to a lack of proper
development methods and authoring tools [24]. Web
Content Accessibility Guidelines (WCAG) 2.0 and ISO
9241-171:2008 guidance on software accessibility
provides a wide range of recommendations to make the
web more accessible for individuals with disabilities.

20

Fundamental categories in accessibility guidelines are:
perceivable, operable, understandable and, robust [24].

Data on maintainability requirements is important
during software design and implementation. Improving
software processes can therefore enhance software
maintainability [25]. Problems during development can
lead to lower standards of maintainability. The ISO/IEC
(International Organization for Standardization and
International Electrotechnical Commission) 9126-1
2001 standard defines maintainability as the capability
of a software to be modified. Software maintainability
has 4 main categories: analyzability, changeability,
stability, and traceability [25].

Sustainability requirements data is generally not
supported by traditional software engineering methods.
Yet it is very important, especially today with much
focus on developing sustainable and environment-
friendly systems. Sustainable development is defined as
meeting the needs of the present without compromising
the ability of future generations to meet their own needs
[26]. Sustainability is mentioned as per 3 variables:
time, function, and system. Time refers to the actual
amount of time required to maintain or develop
software; function refers to satisfying the task-based
requirements, and system refers to humanity in its
ecosystem. Note that the system usage aspect can be
further divided into 5 sustainability dimensions,
namely: economic, technical, social, individual, and
environmental. The 5 dimensions serve to highlight the
various potential impacts of the system.

Usability data affects the design of software and should
be considered during the requirements phase. Usability
is an important requirement as it improves productivity
and customer satisfaction while reducing training and
documentation costs as mentioned in an interesting
piece of research. This research aims to embody HCI
(Human Computer Interaction) principles. The author
defines Functional Usability Features (FUF) based on
HCT to make recommendations that the software should
provide to the user. Usability requirements are related to
the software’s user interface and often remain hidden
during RE. We found eight (8) sub-categories of
usability requirements / features, namely: feedback
features, undo features, cancel features, form or field
validation, Wizard requirements, user expertise
features, different languages and alert features.

Table 1 provides descriptions of the various categories
in IMR taxonomy with their sub-categories, definitions
and examples of software requirements. Hence, we have
presented a detailed taxonomy of IMR data as widely
accepted in the literature. We now proceed with tools
and techniques used in the literature to address IMRs.

SIGMOD Record, June 2022 (Vol. 51, No. 2)

Table 1. Taxonomy of IMR Data: Categories, Definitions, and Examples

Category | Sub-category | Definition Example of Software Requirement

Identification Claimed identity of user must be valid | The system shall authenticate the user before any access to

and for the user, process, or device Protected Resources (e.g., PHI) is allowed, including when

Authentication not connected to a network e.g., mobile devices.

Availability The system or component must be | The system shall provide business continuity in the situation
available to a certain degree where the Electronic Health Record (EHR) system is not

.*E’ available by providing access to the last available clinically

2 relevant patient data in the EHR.

A Accountability | Any action taken that affects the system | System shall keep track of every entry in the health record.
can be traced back to the user responsible | Each entry will be identified with the author and should not
for the action be made/signed by someone other than the author.

Privacy The user can understand and control how | The system shall allow nurses to provide legitimate care in
their information is used in the system crisis situations that may go against prior patient consent

directives ("break the glass" situations).

Perceivable Information and UI components must be | The system shall provide text alternatives for any non-text
presentable to users in ways they can | content so it can be transformed into other forms people need,
easily discern the information such as large print, speech, symbols, or simpler language.

. Operable User interface components All functionality that is available by mouse is also available

E navigation must be usable by keyboard.

2 Understandable | Information and the operation of the user | Significant changes on a web page do not happen without the

§ interface must be comprehensible consent of the user.

9

“ Robust Content must be adaptable enough that it | The system shall reliably interpret markup by ensuring it is
can be interpreted reliably by a wide | valid.
variety of user agents, including assistive
technologies

Analyzability The software system is easy to diagnose | All states, including fault conditions, are known.

2 or examine

= Changeability The software system is easy to change or | The system shall be easily modifiable so it can be compatible

= modify with new hardware.

-E Stability The software system performs During a ‘sale/festival’ season many people purchase

E expected and does commodities from web portals. The performance of a website

2“ unexpected effects must satisfy user expectations.

Traceability The ability to describe and follow the life | The system shall have a functional audit trail by ensuring that
of a requirement a record is kept of all the changes made to the system.

Software Sustainability of a software during its | The system shall be able to show what equipment is available,

Evolution upkeep period by continuous monitoring | where it is located and in which state. This will avoid buying

Aspect of quality and knowledge management | superfluous equipment and maximize the expected lifetime of
until it is replaced by a new system equipment by doing maintenance when needed.

z System Sustainability of a software system as | The system shall enable the Event Manager to select Event

% Production product with respect to its use of | Parts that require low energy and emit low CO2 amounts.

s Aspect resources for production is achieved.

= This can be achieved by using green IT

g principles.

@n System Usage Sustainability of a software system in the | The system shall support the quality manager in efficiently

Aspect usage process takes assessing the sustainability of an event, in order to enhance
responsibility for the environmental | firm’s practices.
impact and designing green business
processes.

Feedback The software informs the user about | The system should always keep users informed about what is
what is happening to the system going on through appropriate feedback within reasonable

time

Undo The software allows the user to Undo an | If'the user cancels, the system will go back to the first window
action at several levels listing what theatres there are.

Cancel The software allows the user to Cancel | The user will be given the chance to cancel the operation, and
the execution of a command or an | the system will again display the selected theatre show times.

. application

= Form/Field Improve data input Form validation should be consistent and non-obtrusive in

:§ Validation software correction as soon as possible styling, location, and tone relevant to its

= Wizard Assist users with tasks that require | An installer will be used to unpack the required libraries for
various steps and user input the program via an install wizard.

User Expertise Allows adapting system functionality to | The application enables users to select tutorials based on their
users’ expertise level of expertise.

Different Allows users to work with The system requires an Internet connection and uses Google

Languages language, currency, ZIP code etc. Translate to perform the text translation

Alert Warns users of actions with important | At the end of the booking process, the system will display a
consequences window reporting whether the operation was a success or

failure

SIGMOD Record, June 2022 (Vol. 51, No. 2)

21

3. IMR TECHNIQUES AND TOOLS

This section provides a comprehensive overview of
existing IMR identification techniques and tools. Our
literature selection criteria was: “tools and techniques
used for IMR detection and classification”.

3.1 Ontology, Semantics, and Pragmatics
Technological performances on management of IMR
data are evaluated by various metrics and approaches.
Various frameworks are used in detecting and managing
IMR data, including case-based reasoning, ontology-
based reasoning, and analogy-based reasoning, [2].
Some of these are illustrated in Figure 2 pertaining to
ontology (redrawn based on [27]), and in Figure 3 about
analogy (reconstructed from [28]). A reuse-based
implicit requirements model (RM) is vital in facilitating
the reuse of IMR data across projects when substantial
similarities can be established between existing
documented requirements and new ones [2].

Semantic matching is used to check for the similarity
between requirements [2]. This deploys ontology to
improve syntactic matches by exploring the relationship
between semantics. Detecting IMR data is a collective
responsibility of various team members. Analyzing
risks of defects can save time and resources. Things that
seem common sense can hurt system functionality, e.g.,
ignoring the fact that users can delete their accounts.
Giving users control to delete their accounts can hurt an
organization, especially by users parting with the
company acrimoniously. Various tests require different

Top-level Ontology |«

Domain Ontology Task Ontology
A
Application Ontology

Figure 2. Types of ontology in IMR data
management

Encode (memorize the source)

Cogpnitively *
difficult step Retreive an appropriate source

!

Find mapping between the target
Relatively problem and the source

straightforward ‘
steps

Inferences based on mapping are
found (solution)

Figure 3. Data analogies map for IMR data
management

22

tools and methods. Among the IMR data tested, an
interesting method is the Implicit Priming Test (IPT)
designed to determine connections between attributes
and objects. The IPT further attempts to detect the
strength of such connections. The speed of a response to
an external stimulus is determined while factoring in the
effects of priming [2]. By design, the IPT ignores
explicit responses but returns values for implicit
connections, e.g., emotional connection of a product
itself and customers’ thoughts about the given product.

The pragmatism of quality assurance (QA) teams should
span beyond the benefits of the team to the entire
company [29]. Challenging defects, regardless of their
priorities, results in a decrease of unresolved issues.
Technical knowledge is a critical requirement in
analyzing and detecting IMRs, especially in complex
systems. Various aspects of software system data might
not be documented, mandating deep technical
knowledge for testing. This includes testing for data
integrity, application properties, flooding and draining
queues, circuit breakers, and deadlocks. The deeper is
the QA knowledge in a given domain, the more effective
is the IMR data management. Automating and
incorporating functional testing in the SDLC brings QA
and development teams together, freeing more time for
exploratory tests [22]. QA teams working closely with
developers help in fault-finding and fixing issues early.

3.2 IMR Architectural Framework

Researchers address IMR data identification in different
ways. While some prefer an unorthodox means of
obtaining real-life views from the user perspective,

Software Requirements
i j

y s I A\
' NI
Processor/
REE

/Jntology lerarh
' Domain)
| \?% Ontolog|es 6(/
I
y- B . N
‘I/ ABR Module Domain Knowle@ \"\,

[Cases and Models]
\Genelll(f Spe:m:

Storing the Case
_ and Model

____________ Case |)

Case- based' Instantation _ | Absractonin Multi-strategy

Applu:anonI in Target ':'S_n_"_'ff?_"_'?f'_"_‘ Generalization & ...

Domain - Refinement
+) a’m

Evaluationof the | .=

l--*

Retrieval of Analog
(Case/Model)

Completion of the
olution olution

4 " Solution ™ /

\\\ I_\\Knﬂge/l /‘v
Figure 4. Excerpt of IMR architectural framework

SIGMOD Record, June 2022 (Vol. 51, No. 2)

ABR Module

Retrieval of
Analog
(Case/Model)

Domain
Knoweldge
(Cases and

Models)

Storing the
Case and
Model

{Case-Base
: Adaptation

nstantiationé
in Target :
Domain

Abstraction
in Source

Multi-Strategy
Generelization |«s------ 5

Completion of
the Solution

Solution
Knowledge

and Refinement
Goal
Knowledge

Figure 5. The PROMIRAR Tool

others opt for utilizing theoretical and conceptual
frameworks [30]. An IMR architectural framework is
shown in Figure 4 [31]. This provides support for
managing IMR data as follows: (1) IMRs already
documented, can be reused in new projects; (2) New
IMRs previously overlooked can be discovered and
stored thereby mitigating additional costs; (3) IMR data
can be ranked based on established organizational
standards, assigning the right priority level and scope to
specific requirements.

This framework uses analogy-based reasoning for the
reuse of previous requirements specifications, ontology
to represent relevant domain knowledge crucial for
managing IMRs, and natural language processing
(NLP) to facilitate the analysis of textual data. This
research aims to evolve a process framework for
managing IMR within an organization. However, the
system lacks human reasoning. Likewise, the ranking
deployed also presents the scope for further research,
interesting in data science. Ranking is a problem that is
of interest to data scientists. Conducting ranking in this
context would help to prioritize the requirements, so as
to guide the software development. Including human
reasoning in this process (potentially through machine
learning), would help simulate the manner in which
human software engineers can identify IMRs. This can
be beneficial in software development processes.

3.3 The PROMIRAR Tool

PROMIRAR is a tool that facilitates the reuse of
previously documented specifications to establish new
requirements via analogy-based reasoning [27]. To
identify the basis for analogy, understand similarities,

SIGMOD Record, June 2022 (Vol. 51, No. 2)

and discover IMRs, NLP is used to analyze and extract
important information, as shown in Figure 5 [27].

PROMIRAR takes preprocessed SRS documents as
input data, uses NLP that empowers its feature
extractor, and has an ontology library for knowledge
representation of domain ontologies (specific purposes
/ general business rules). The Java Protege 4.1 ontology
API is used to build the ontology library. Its feature
extractor provides essential rules for -classifying
possible sources of IMR data in SRS documents. It has
a heuristic classifier responsible for classifying the
actual requirements based on intermediate outputs. Its
analogy-based reasoner comprises 3 types of
knowledge: domain, solution, and goal. Steps to use the
PROMIRAR tool based on its architecture are:
preprocess, import, analyze, identify and manage.

This tool addresses IMR data management by adapting
analogy-based reasoning and provides good results.
Yet, there is the potential for augmentation via research
on advanced data management techniques in areas
combining NLP, image mining, and data extraction
from infographics, embodying domain knowledge and
software engineering concepts. Such research can help
improve IMR data management because many SRS
documents contain complex data such as images, tables
and other infographics. Extracting valuable information
from these is a non-trivial process. While human
software engineers can do this on a small scale, it is hard
to achieve for huge volumes of complex data in SRS
documents. Hence, discovering knowledge on IMRs
from these documents in a seamless manner using data
science approaches mentioned here would contribute to
the RE phase, thus enhancing software development.

23

3.4 Using Templates for IMR Data

Detection

An interesting practice used for detecting IMR data is
the concept of “templates” to elicit implied security
requirements [23]. The goal of this work is to determine
whether automatically suggested security requirements
templates help in efficient and effective requirements
elicitation compared to a manual approach based on
personal expertise. This tool aids the visualization of
IMR data by providing a template as a checklist for
developers to reference.

Dealing specifically with security, the process takes
requirements-related artifacts as inputs. These include
requirement specifications, feature requests, use case
scenarios, etc. Based on these, it generates security
requirements. This tool is a good visual aid and can be
useful in conjunction with other IMR-related research,
especially dealing with data security and privacy issues.
It can propel further research in these areas and can be
subjected to enhancement based on research outcomes.

3.5 InfoVis: IMR Data Visualization

A tool-supported approach is proposed to identify IMR
data based on ambiguity and incompleteness [4]. This
uses NLP techniques combined with visualization
techniques to extract and interpret IMR data. It involves
taking in user story requirements processed by a novel
algorithm that deploys the Semantic Folding Theory
(SFT) to calculate the semantic distance between 2
words to produce a similarity score. The algorithm also
calculates the ambiguity score computed as a linear
combination of term and context similarity. In this
research, a visualization approach called InfoVis is
developed that enables analysts to explore multiple
viewpoints and extract IMR data. It harnesses Venn
diagrams to simplify highlighting IMR data.

In their evaluation, term pairs in each category (low
ambiguity, medium ambiguity, high ambiguity scores)
are used from the WebCompany dataset with 98 user
story requirements [4]. Students are presented with
selected term pairs and asked to rate ambiguity. Results
indicate a strong correlation between the score
calculated by the algorithm and that given by students,
the latter being the source of ground truth. Hence, this
tool serves as an effective means for managing IMR
data. This can serve as a benchmark for comparison
further studies on IMR data management.

3.6 Machine Learning for IMR data
Binkhonain and Zhao [32] present a review of various
machine learning approaches to identify and classify
non-functional requirements. They present an overview
of 16 machine learning approaches that utilize 5
Supervised, 5 Semi-Supervised, and 4 Unsupervised
machine learning algorithms as shown in Table 2.

24

Table 2. List of Machine Learning Algorithms for
Identification and Classification of NFRs

Supervised Semi-Supervised Unsupervised
eSupport Vector | eExpectation- el atent

Machines Maximization Dirichlet

(SVMs) (EM) Allocation
eNaive Bayes oSelf-training (LDA)

(NB) e Active learning eK-means
eDecision Tree | eRandom Subspace | eHierarchical

(DT) Method for Co- Agglomerative
eK-Nearest training(RAS-CO) | eBiterm Topic

Neighbors eRelevant Random Modelling

(K-NN) Subspace Method (BTM)
eMultinomial for Co-training

Naive Bayes (Rel-RASCO)

(MNB)

All the machine learning approaches followed the same
general process consisting of text preparation, learning,
and evaluation. The text preparation phase consisted of
text preparation and feature selection [32]. Text
preparation involved NLP techniques such as
Stemming, Stop word removal, tokenization, etc. For
feature selection, the text document is converted into a
numeric matrix using methods such as Bag of Words
(BoW) and Term Frequency-Inverse Document
Frequency (TF-IDF). The important features are
selected from the matrix using methods such as
information gain and Chi-square [32]. The learning
phase consists of training and testing the machine
learning algorithms on the preprocessed text dataset.
The evaluation phase consisted of measuring the
performance of the machine learning algorithms by
using various metrics such as precision, recall, F-Score
[32]. The key findings of this research were that ML-
approaches generally perform well and achieve an
accuracy of more than 70% when identifying and
classifying NFRS, Supervised algorithms perform
better than Semi-Supervised and Unsupervised
algorithms with SVM and NB having the best overall
performance, ML algorithms produce better results
when individual words are used rather than phrases and
without text preprocessing such as stemming and
lemmatization [32]. Some of the challenges in this
research area highlighted by Binkhonain and Zhao are
the lack of shared datasets to train machine learning
algorithms, lack of a standard definition of NFRs, and
feature identification and selection [32].

3.7 Other Approaches in IMR Research

An interesting approach in IMR data management is
COTIR, i.e., Common Sense Knowledge, Ontology,
and Text Mining for Implicit Requirements. It consists
of 6 steps: (1) Preprocess source documents to get
requirements into text file format devoid of graphics,

SIGMOD Record, June 2022 (Vol. 51, No. 2)

images, and tables; (2) Select existing CSKB (Common
Sense Knowledge Base) to be used for identification of
IMR data; (3) Import SRS documents and domain
ontology into the COTIR environment; (4) Click on the
“analyze" function to allow the feature extractor to
identify potential sources of IMR data in SRS; (5) See
the potential IMRs identified and their recommended
possible explicit requirements; (6) Seek expert opinion
on IMR data, experts could approve/disapprove
recommendations by adding/removing using the tool.

Emebo et al. envisage an enhancement of COTIR where
a convolutional autoencoder can be used. This enables
detecting IMRs in complex data (as opposed to plain
text only in fundamental COTIR), e.g., deciphering text
within images [9]. Facets of the enhancement are as
follows: (1) SRS documents supply requirements data
from which IMRs need to be identified. Data cleaning
removes noise in the RE data. This step is performed in
its NLP component. (2) The requirements author selects
relevant knowledge from the CSKB and relevant
domain ontology from the ontology library. Previously
cleaned RE data with the selected knowledge and
domain ontology are transferred to the CNN-based
autoencoder component. (3) The autoencoder's input
construction transforms the data into vectors for deep
learning models. In an autoencoder, parameters are
trained by minimizing differences between input and
output layers in an unsupervised manner. (4) The trained
model is applied to solve new IMR problems. This
model is capable of encoding the word frequency vector

of a new IMR feature into the hidden states. In this
enhanced version, COTIR has fewer steps than its
predecessor and takes in more input, while catering to
more complex data.

Further, Emebo et al. revisit COTIR via a demo paper.
They focus on explaining how commonsense concepts,
ontological aspects, and mining of textual data help
identify areas of explicit requirements where relevant
IMRs may be hiding [33] therefore, making it an IMR-
source localization tool. As per their claims, this is the
first tool embodying commonsense knowledge for the
detection of IMR data by aiming to simulate human
reasoning. In the demo, the researchers use a course
management system (CMS) example where the SRS
document is based on explicit requirements available for
the CMS. Possible IMR sources are analyzed by the
feature extractor, with suitable recommendations being
prompted for the CMS. The demo concludes that the
COTIR tool reduces software defects by around 10%
and enhances overall software quality by around 20%
on an average [33].

Other approaches exist in the overall paradigm of IMR
data management [34] that could refer to IMRs by
different names such as hidden, vague, missing,
ambiguous, incomplete, derived, or assumed
requirements instead of the specific term\implicit
requirements used herewith. Regardless of terminology
and nomenclature, the detection and management of
IMR data is of the utmost importance for good software

Table 3. Comparison of IMR Tools and Techniques

Techniques/Tools | Taxonomy Data Model Strengths Weaknesses
Implicit Priming General Ontology, Semantics e Analyzing risks of defects o Relies heavily on retrieving
Test (IPT) [2] and Pragmatics e Determining connections previous IMR classifications
between attributes and objects results to classify future IMRs
IMR Architectural | General Analogy-based e Reuse of previous requirements, | o The system lacks human
Framework [31] reasoning ontology and domain knowledge reasoning, new IMRs may be
and NLP for textual analysis overlooked
The PROMIRAR General Analogy-based o Feature extractor using NLP e Can be improved by
Tool [27] reasoning o Heuristic classifier to classify augmentation using
IMRs techniques in NLP, image
mining and data extraction
Using Templates Security Templates o Aids visualization of IMR by e Good visual aid but works
for IMR Data providing a template as a better when used with other
Detection [23] checklist for developers IMR tools
InfoVis: IMR Data | Maintainability | NLP combined with o Enables analysts to explore o Effectiveness of tool needs to
Visualization & — Defect semantic similarity multiple viewpoints and extract be tested at a larger scale
NLP [4] Detection techniques IMR Data e Algorithm for detecting
e Uses Venn diagrams to simplify ambiguity can be improved
highlighting IMR Data and tuned while avoiding
over-fitting
Machine Learning | General e Supervised ML e Average accuracy of above 70% | e Lack of shared datasets to
Classification e Semi-Supervised ML when identifying and classifying train ML algorithms
techniques [32] e Unsupervised ML NFRs e Lack of standard definition
e Supervised ML algorithms, for NFRs
specifically, SVM and NB e Feature identification and
perform the best on average selection

SIGMOD Record, June 2022 (Vol. 51, No. 2)

25

development with user satisfaction and is a good
practice that should be emphasized in data science,
software engineering, and related areas.

3.8 Comparison of IMR Tools, Techniques
Table 3 above presents a comparison of the various IMR
tools and techniques discussed in the previous sections.
The table highlights the data model used for each tool
and technique along with advantages and disadvantages.

4. TRENDS IN IMR MANAGEMENT
Existing gaps in IMR data management are likely to
propel further research trends in this area. Some works
such as [12] observe gaps in the literature regarding the
specification of data-flow requirements. IMR data can
be represented as either structured, semi-structured, or
unstructured data as requirements can be encoded
without a standard format having text, figures, and
infographics [35]. Future research in IMR management
can focus on developing intelligent, interactive, user-
friendly tools to identify, analyze, and specify IMRs. It
can also focus on more automation in the RE phase, and
on improving data verification to ensure identification
of vital system features.

Trends in IMR management include several research
issues, among which we can potentially address the
following avenues that would be of interest to data
scientists:

e Relationships between data on defects in the RE
phase and actual sources errors causing those defects
are often ignored. Tracing precise causes of defects
can result in SRS documents with enhanced data
quality which would lead to better IMR data
management. This can possibly be explored with data
science techniques such as association rule mining. It
would help to find relationships of the type “X implies
Y”, where X can be the actual source error causing
defect Y in the RE phase, hence rules of the type
“Error implies Defect” can be discovered. Such
knowledge discovery can help fix the root cause of
problems leading to IMR related issues in SRS
documents. Hence, this is a justifiable piece of
research since it would augment the RE phase in
software engineering, leading to better outcomes in
software development as a whole.

e Thorough studies can be conducted with tools such as
COTIR, NAI, SR-Elicitor, and ARUgen, used in
contexts related to IMRs [33] addressing efficiency,
accuracy, complexity etc. with respect to usefulness
in facets such as ontology, knowledge bases, and
other relevant data science concepts. This can be
justified as follows. Considering ontology, it would
be interesting to explore whether standards such as
RDF (Resource Description Format) and OWL (Web

26

Ontology Language) can be wuseful in IMR
specification tasks, since that would create a
streamlined manner of data exchange usable globally
by software engineers and data scientists across
industry and academia. Currently, there are no such
ontological standards. Nor are there such existing
studies relating IMR with data science paradigms.
Likewise, creating knowledge bases, e.g. domain-
specific KBs (finance, law, healthcare) with respect to
IMR data can guide the RE phase of software
development processes. Such research would help to
use data science concepts within software
development to resolve issues on IMRs.

e IMR practices should be integrated into education and
training for students and working professionals, e.g.,
in courses such as Human-Computer Interaction,
Database Management Systems, Machine Learning,
and special topics courses in areas such as Data
Quality, and Requirements Engineering. We should
strive towards making this commonplace in academia
and industry, as potentially paradigm-shifting best
practices [36], [37]. The justification for this entails
the constant growth of education and training to keep
abreast with the latest technology. This is required by
academic boards such as ABET (Accreditation Board
for Engineering and Technology) and CAC
(Computing Accreditation Commission). Such
growth and advancement is also preferred by the
corporate world when they hire fresh graduates, e.g.
as software engineers, data scientists, full-stack
developers. Hence, embedding IMR research within
relevant courses in the realms of data science and
software engineering is beneficial to education.

Some further research in the avenues mentioned here
could be orthogonal to efforts of interest to the data
science community. A few appealing works in line with
such insights include: [38] that deals with data quality
monitoring for constantly evolving big data focusing
particularly on data veracity (in addition to volume,
variety, etc.); [39] that addresses ontology compliance
for query processing with enrichment; [16], [17] that
entail hidden information discovery; [40] that intends to
conduct query optimization with robustness and
reduced complexity with emphasis on real-life
workloads; [13] that encompass various perspectives of
data cleaning; [14], [15] that address topics such as
veracity and salience of information; [19] that addresses
machine learning within database management, and
[41] that propels database education in conjunction with
natural language aiming to make this widespread.

Other interesting works include those in commonsense
knowledge (CSK), e.g. [42] that presents a short survey
on the usefulness of CSK, incorporating its derivation,
knowledge base construction, as well as benefits in data

SIGMOD Record, June 2022 (Vol. 51, No. 2)

management and machine learning; and [43] that
presents a tutorial on CSK extraction, compilation, and
evaluation, explaining where CSK is significant and
how it can be supplementary/complementary to deep
learning. Since we aim to incorporate both deep learning
and CSK in some of our future work on IMR data
management, many studies surveyed in these articles
[42], [43] provide useful references.

There is the potential for future research in IMR data
management and related avenues that have heretofore
remained areas of less substantial focus. We have
outlined trends as envisaged by us upon a survey of
related topics. Our work on enhanced automation in
early IMR detection with usage in suitable applications
[33], as well as further investigation with active practice
in studies and training [36], [37] would contribute the
two cents to the paradigm of IMR data management.
This would help augment R&D and education in data
science and software engineering.

5. CONCLUSION

Summary: Missed user requirements, also known as
implicit requirements (IMRs), are a major contributor to
software project failures. These can have other
nomenclature such as hidden / vague / ambiguous /
derived requirements. In this survey article, we have
presented a background of IMR data along with a
detailed taxonomy of terms, definitions, and examples
associated with this paradigm, mainly encompassing the
categories of security, accessibility, maintainability,
sustainability, and usability.

IMR data is primarily available for software
development projects that use the Waterfall model as
SRS documents are not created for projects using the
Agile model. Existing research has not focused on Agile
requirements engineering and more specifically, on
identifying hidden requirements from user stories. Even
though many software development projects use the
Agile model, not much research has been done on
identifying hidden requirements. While this can be an
issue of concern and calls for further research, we have
not focused on that in this study. Our survey in this
paper caters much more to the Waterfall model, and the
IMR data management there.

We have provided an insight into classical as well as
state-of-the-art tools, techniques, and practices in the
overall context of IMR data management. We have
outlined projects such as PROMIRAR, InfoVis, and
COTIR. Suitable explanations with illustrations and
discussions have been provided. The works surveyed in
this article indicate that there is much emphasis on IMR
data with its importance being realized in successful
software development from user standpoints, yet there
is scope for further research. We have listed open issues

SIGMOD Record, June 2022 (Vol. 51, No. 2)

for future work, in our survey of the respective tools as
well as in our section on trends in IMR management.
These would contribute further to enhancing IMR
detection and improving software development.

In short, this survey article provides novel insights for
the data science community with respect to the
challenging and non-trivial issue of IMR data
management from huge SRS documents. It is interesting
from the angles of data quality, hidden information
retrieval, knowledge discovery, textual heterogeneous
data, ontology, and semantics, all of which are avenues
of interest to data scientists.

Roadmap: In our own future work, we aim to overcome
a few limitations of the current survey and address some
further challenges. First, we intend to extend this study
by performing a more systematic literature review to
help address more research studies (possibly not
outlined in the current survey) that focus on various
facets of IMR data.

Second, we intend to investigate in detail specific works
of the literature in areas such as data quality, veracity,
and hidden information retrieval for IMR management
to outline specific research sub-problems that would be
of joint interest to the data science and software
engineering communities. These would provide the
potential for MS Theses and Ph.D. Dissertations in the
common areas, along with the scope for implementing
useful software tools that cater to the interests of both
communities, as well as publications in both venues.

Third, we aim to further automate the early detection of
IMR data by leveraging deep learning techniques with
the potential use of commonsense knowledge to localize
the source of IMRs and assist their management. An
important goal of our work here is to develop a large-
scale tool for the automation of early IMR
identification. We envisage that such a tool will be
useful to software developers and will also help to train
students and practitioners on adequate IMR detection in
the requirements engineering phase.

Finally, we envisage making early IMR detection a
common practice via dissemination and usage of our
research and development efforts as well as active
deployment of various IMR data management tools in
real-world applications. We would reach out to our
collaborators in academia to include IMR-related
concepts and practices in their course syllabus, and to
our industry collaborators to help spread the awareness
of IMR data management in software developmental
efforts. We anticipate that such a practice will enhance
work in data science and software engineering.

27

6. ACKNOWLEDGMENTS

Dev Dave has been funded by a Graduate Assistantship in
Computer Science at Montclair State University. Aparna
Varde acknowledges the NSF grants MRI: Acquisition of a
High-Performance GPU Cluster for Research and Education
Award # 2018575, and MRI: Acquisition of a Multimodal
Collaborative Robot System (MCROS) to Support Cross-
Disciplinary Human-Centered Research and Education at
Montclair State University, Award # 2117308. She is a
visiting researcher at Max Planck Institute for Informatics,
Saarbriicken, Germany in the research group of Gerhard
Weikum, during her sabbatical. Vaibhav Anu hereby
acknowledges the NSF grant, REU Site: Enhancing
Undergraduate Research Experiences in Cyber-security and
Privacy-Enhanced Technologies (NSF Award # 2050548).

7. REFERENCES

[1] D. M. Fernandez, S. Wagner, M. Kalinowski, M.
Felderer, P. Mafra, A. Vetro, T. Conte, M.-T.
Christiansson, D. Greer, C. Lassenius, et al. Naming
the pain in requirements engineering. Empirical
software engineering, 22(5):2298-2338, 2017.

[2] O. Daramola, T. Moser, G. Sindre, and S. Bi.
Managing implicit requirements using semantic case-
based reasoning. In REFSQ, Springer LNCS, pages
7915:172-178, 03 2012.

[3] O.Emebo and A. Varde. Early identification of
implicit requirements with the cotir approach using
common sense, ontology and text mining. Technical
report, Fulbright Scholarship Program, Dept. of Comp.
Sc., Montclair State Univ., NJ, 2016.

[4] L. Dalpiaz. Pinpointing ambiguity and incompleteness
in requirements engineering via information
visualization and NLP. In REFSQ, pages 119-135,
2018.

[5] G. Spanoudakis. Analogical reuse of requirements
specifications: A computational model. Applied
Artificial Intelligence, 10(4):281-305, 1996.

[6] A.Umber, I. S. Bajwa, and M. A. Nacem. NL-based
automated software requirements elicitation and
specification. In Adv. in Comp.and Communications
ACC, Springer, pages 191: 30-39, 2011.

[7] U.S. Shah and D. C. Jinwala. Resolving ambiguities in
natural language software requirements: A
comprehensive survey. ACM SIGSOFT Software
Engineering Notes, 40(5):1-7, 2015.

[8] O.Emebo and A. Varde. Common sense knowledge,
ontology and text mining for implicit requirements. In
CSREA Press Intl. Conf. on Data Mining, pages 146-
152, 2016.

[9] O.Emebo, V. K. Anu, and A. S. Varde. Identifying
implicit requirements in SRS big data. In /EEE Intl.
Conf. on Big Data, pages 6169-6171, 2019.

28

[10] F. Provost and T. Fawcett. Data Science for Business:
What you need to know about data mining and data-
analytic thinking. O'Reilly Media, Inc., 2013.

[11] M. Bhuiyan and M. A. Hasan. Interactive knowledge
discovery from hidden data through sampling of
frequent patterns. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 9(4):205-229,
2016.

[12] A. Marconi, M. Pistore, and P. Traverso. Implicit vs.
explicit data-flow requirements in web service
composition goals. In Intl. Conf. on Service Oriented
Computing, /[CSOC, pages 459-464, 2006.

[13] A. Arasu, S. Chaudhuri, Z. Chen, K. Ganjam, R.
Kaushik, and V. R. Narasayya. Towards a domain
independent platform for data cleaning. /EEE Data
Eng. Bulletin, 34(3):43-50, 2011.

[14] K. Popat, S. Mukherjee, J. Strotgen, and G. Weikum.
Credeye: A credibility lens for analyzing and
explaining misinformation. In The Web Conference
WWW Comp. Vol., pages 155-158, 2018.

[15] M. Ponza, L. D. Corro, and G. Weikum. Facts that
matter. In Conference on Empirical Methods in
Natural Language Processing, EMNLP, 2018.

[16] S. Ghosh, S. Razniewski, and G. Weikum. Uncovering
hidden semantics of set information in knowledge
bases. Journal of Web Semantics, 64:100588, 2020.

[17] F. M. Suchanek, A. S. Varde, R. Nayak, and P.
Senellart. The hidden web, XML and the semantic
web: scientific data management perspectives. In
EDBT Intl. Conf. on Extending Database Technology,
pages 534-537. ACM, 2011.

[18] S. Qiu, B. Xu, J. Zhang, Y. Wang, X. Shen, G. de
Melo, C. Long, and X. Li. Easyaug: An automatic
textual data augmentation platform for classification
tasks. In The Web Conference, WWW Comp., 2020.

[19] T. Kraska, U. F. Minhas, T. Neumann, O.
Papaemmanouil, J. M. Patel, C. Re, and M.
Stonebraker. Ml-in-databases: Assessment and
prognosis. IEEE Data Engineering Bulletin, 44(1):3,
2021.

[20] A. Yague, P. Rodrguez, and J. Garbajosa. Optimizing
agile processes by early identification of hidden
requirements. In International Conference on Agile
Processes and Extreme Programming in Software
Engineering, XP. Springer, 2009.

[21] M. Adu. Inadequate requirements engineering process:
A key factor for poor software development in
developing nations: A case study. International Journal
of Computer and Information Engineering, ZJCIT, 01
2014.

[22] Z. Kurtanovic and W. Maalej. Automatically
classifying functional and non-functional requirements
using supervised machine learning. In Intl.

SIGMOD Record, June 2022 (Vol. 51, No. 2)

Requirements Engineering Conf., RE, pages 490-495,
2017.

[23] M. Riaz, J. Slankas, J. T. King, and L. A. Williams.
Using templates to elicit implied security requirements
from functional requirements - a controlled
experiment. In ACM-IEEE Intl. Symp. on Empirical
Software Engineering & Measurement, ESEM, page.

[24] P. M. J. A. Raul Minon, Lourdes Moreno. An
approach to the integration of accessibility
requirements into a user interface development
method. Science of Computer Programming, Elsevier,
86(16):58-73, 2014.

[25] S.-J. H. Jie-Cherng Chen. An empirical analysis of the
impact of software development problem factors on
software maintainability. The Journal of Systems and
Software, JSS, 2019.

[26] B. Penzenstadler. Towards a definition of
sustainability in and for software engineering. In ACM
Symp. on Applied Computing, SAC, pages 28:1183-
1185, 2013.

[27] O. Emebo, O. Daramola, and C. K. Ayo. Promirar:
Tool for identifying and managing implicit
requirements in SRS documents. In WCECS
Conference, 2018.

[28] J. Hey, J. Linsey, A. Agogino, and K. Wood.
Analogies and metaphors in creative design.
International Journ. of Engineering Education, 2008.

[29] M. Claypool, P. Le, M. Wased, and D. Brown. Implicit
interest indicators. In Intl. Conf. on Intelligent User
Interfaces, [UI, 2001.

[30] T. Arts, M. Dorigatti, and S. Tonetta. Making implicit
safety requirements explicit - an autosar safety case. In
SAFECOMP, 2014.

[31] E. Onyeka. A process framework for managing
implicit requirements using analogy-based reasoning.
IEEE RCIS, pages 1-5,2013.

[32] Binkhonain, Manal, and Liping Zhao. “A Review of
Machine Learning Algorithms for Identification and
Classification of Non-Functional Requirements.”
Expert Systems with Applications: X, vol. 1, 12 Mar.
2019, p. 100001., doi:10.1016/j.eswax.2019.10000.

[33] O. Emebo, A. Varde, V. Anu, N. Tandon, and O.
Daramola. Using commonsense knowledge and text

SIGMOD Record, June 2022 (Vol. 51, No. 2)

mining for implicit requirements localization. In IEEE
Intl. Conf. on Tools with Artificial Intelligence, /ICTAIL,
pages 935-940, 2020.

[34] R. Ellis-Braithwaite. Analysing the assumed benefits
of software requirements. arXiv:1305.3853, 2013.

[35] "Asif, Muhammad, et al. “Annotation of Software
Requirements Specification (SRS), Extractions of
Nonfunctional Requirements, and Measurement of
Their Tradeoff.” IEEE Access, vol. 7,2019, pp.
36164-36176., doi:10.1109/access.2019.2903133.".

[36] V. Anu and A. Varde. Using commonsense knowledge
and deep-learning based text mining to identify
implicit software requirements. Technical report, Dept.
of Comp. Sc., Montclair State Univ., NJ, July 2020.

[37] A. Varde and V. Anu. An integrated architecture of
deep learning based approaches to identify implicit
requirements during software engineering. Technical
report, Department of Computer Science, Montclair
State University, April 2021.

[38] D. Srivastava. Towards high-quality big data: Lessons
from FIT. In IEEE Intl. Conf- on Big Data, 2020.

[39] J. Ao, Z. Cheng, R. Chirkova, and P. G. Kolaitis.
Temporal enrichment and querying of ontology-
compliant data. In New Trends in Databases &
Information Systems ADBIS, volume 1259, 2020.

[40] R. Borovica-Gajic, S. Idreos, A. Ailamaki, M.
Zukowski, and C. Fraser. Smooth scan: robust access
path selection without cardinality estimation. VLDB
Journal, 27(4):521-545, 2018.

[41] W. Wang, S. S. Bhowmick, H. Li, S. R. Joty, S. Liu,
and P. Chen. Towards enhancing database education:
Natural language generation meets query execution
plans. In ACM SIGMOD Intl. Conf. on Management of
Data, 2021.

[42] N. Tandon, A. S. Varde, and G. de Melo.
Commonsense knowledge in machine intelligence.
ACM SIGMOD Record, 46(4):49-52, 2017.

[43] S. Razniewski, N. Tandon, and A. S. Varde.
Information to wisdom: Commonsense knowledge
extraction and compilation. In ACM WSDM Intl. Conf.
on Web Search and Data Mining, 2021.

29

