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ABSTRACT
Given a graph G where each node is associated with a set of
attributes, attributed network embedding (ANE) maps each
node v ∈ G to a compact vector Xv, which can be used
in downstream machine learning tasks in a variety of ap-
plications. Existing ANE solutions do not scale to massive
graphs due to prohibitive computation costs or generation of
low-quality embeddings. This paper proposes PANE, an effec-
tive and scalable approach to ANE computation for massive
graphs in a single server that achieves state-of-the-art result
quality on multiple benchmark datasets for two common pre-
diction tasks: link prediction and node classification. Un-
der the hood, PANE takes inspiration from well-established
data management techniques to scale up ANE in a single
server. Specifically, it exploits a carefully formulated prob-
lem based on a novel random walk model, a highly efficient
solver, and non-trivial parallelization by utilizing modern
multi-core CPUs. Extensive experiments demonstrate that
PANE consistently outperforms all existing methods in terms
of result quality, while being orders of magnitude faster.

1. INTRODUCTION
Graphs (a.k.a networks) are ubiquitous nowadays in many

application domains such as biology, social sciences, chem-
istry, and finance. A recent survey [12] revealed that scala-
bility and faster graph analytics or machine learning (ML)
algorithms are considered as some of the top challenges for
graph processing. Although considerable efforts have been
invested toward these goals in academia and industry, these
issues remain tenaciously challenging to address due to high
computational complexity of iterative or combinatorial graph
algorithms, low parallelizability due to tight coupling be-
tween nodes and edges, and difficulty to leverage traditional
graph representation (e.g., adjancency matrix) for ML prob-
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lems [5]. In particular, many ML techniques typically as-
sume independent real-valued input vectors and outputs in
order to learn a latent function that maps each input to
an output. Unfortunately, nodes in any network data are
coupled through their edges, making it challenging for us-
ing traditional network representations in ML techniques.
Although in principle we can represent the nodes as their
corresponding row vectors in the adjacency matrix of the
network, the dimensionalilty of such simplistic representa-
tion can be prohibitively large, rendering them impractical.

Network Embedding. Network embedding [5] aims to ad-
dress the aforementioned challenges of traditional network
representations by learning low-dimensional, fixed-length vec-
tor representations of network nodes such that the similarity
in the embedding space reflects the similarity in the network.
Specifically, in the original network, relationships between
nodes are captured by edges or other higher-order topolog-
ical measures. In the embedding space, these relationships
are captured by distances between nodes in the vector space
and the topological properties of the nodes are encoded by
their corresponding embedding vectors. Since each node is
represented by a vector encapsulating information of inter-
est, many iterative or combinatorial graph problems can be
reframed as computing mapping functions and operations
on the embedding vectors, paving the way for more effi-
cient or scalable solutions. Furthermore, the learned em-
bedding space enables various network inference tasks such
as link prediction, node label inference, and finding “im-
portant” nodes. For example, we can input two real-valued
vectors representing a pair of nodes to a machine learning al-
gorithm to predict the existence of a link between them (i.e.,
a binary classification problem where the output label of 0
or 1 represents absence or presence of a link, respectively).
Observe that the learned embeddings for all these tasks are
realizable without demanding expensive feature engineering
by domain experts. All these opportunities have led to the
proposal of a cornucopia of techniques in the literature for
network embedding and their usage in a wide variety of ap-
plications [5].

Attributed Network Embedding. The majority of existing
network embedding techniques, however, exploit only the
topological connections when learning node representations.
In practice, however, real-world networks often are attributed



networks where nodes are associated with attribute-value
pairs that capture important information about them. Tech-
niques that are oblivious to such rich information associated
with nodes often tend to learn poorer quality node represen-
tations, adversely impacting downstream ML tasks [14]. For
example, consider a pair of users, u1 and u2, in a social net-
work who are in topologically close proximity. Assume that
u1 is interested in the game of cricket whereas u2’s inter-
est lies in canoeing. Ignoring such attribute information of
u1 and u2 by simply considering only their neighborhoods’
structural features may lead to an inferior-quality vector
space representation of them. As an aftermath, a link may
be predicted between u1 and u2 due to their topological sim-
ilarity although they are individuals with highly dissimilar
taste. Furthermore, the information associated with node
attributes are even more useful in sparse scale-free networks
where such information can complement scant topological
information for learning superior embedding vectors.

Attributed network embedding (ANE) [14] aims to map
both topological and attribute information surrounding a
node to an embedding vector to facilitate superior network
inference tasks. At first glance, it may seem that we can
treat topology and attributes as separate features to address
the ANE problem. Unfortunately, doing so loses the impor-
tant information of node-attribute affinity [9], i.e., attributes
that can be reached by a node through one or more hops
along the edges in the network. Hence, the key challenge to
address the ANE problem is to devise efficient and scalable
ways to integrate these information for network embedding.

Research Challenges and Gap in ANE. Effective ANE com-
putation is a highly challenging task, especially for massive
graphs. In particular, each node v in a network G could be
associated with a large number of attributes, adding up to
the number of dimensions. Furthermore, each attribute of v
could influence not only v’s own embedding, but also those
of v’s neighbors, neighbors’ neighbors, and far-reaching con-
nections via multiple hops along the edges in G.

Existing ANE solutions can be broadly classified into two
categories, factorization-based and auto-encoder-based ap-
proaches. Unfortunately, these solutions are prohibitively
expensive and largely fail on massive networks. Factorization-
based methods [14–16] are based on the idea of reducing an
n× n matrix, where n is the number of nodes in G, into its
smaller constituent parts so that embeddings can be discov-
ered from the latter. In order to realize this, the n× n ma-
trix often needs to be explicitly constructed and factorized.
For a graph with 50 million nodes, storing such a matrix
of double-precision values would require over 20 petabytes
of memory, which is clearly infeasible. On the other hand,
auto-encoder-based strategies [8, 9, 11] employ deep neural
networks to extract higher-order features from nodes’ con-
nections and attributes. For a large dataset, training such
a neural network incurs vast computational costs. In ad-
dition, the training process is usually done on GPUs with
limited graphics memory. Consequently, for massive graphs,
currently the only option is to compute ANE leveraging a
large cluster, which is rather expensive, and has a significant
environmental impact.

In addition, many existing ANE solutions are designed for
undirected graphs. In reality, directed networks are com-
mon; as we shall see later, these methods yield suboptimal
result quality on directed networks.

Gain with PANE. In this paper, we provide an affirmative
answer to the following question of significance: Can we ef-
ficiently compute effective ANE embeddings on a massive,
attributed, directed graph on a single server? To this end,
we present PANE, a novel solution that significantly advances
the state of the art in ANE computation. The key idea
behind our solution is to devise techniques inspired by es-
tablished ideas used in data management to speed up and
scale ANE operations. Specifically, PANE formulates ANE
as an optimization problem with the objective of approx-
imating normalized multi-hop node-attribute affinity using
node-attribute co-projections [9], guided by a shifted pair-
wise mutual information (SPMI) metric. The affinity be-
tween a given node-attribute pair is defined via a novel
random walk model with a flexible neighborhood sampling
strategy specifically adapted to attributed networks. Fur-
ther, we incorporate edge direction information by defining
separate forward and backward affinity, embeddings, and
SPMI metrics. Solving this optimization problem is still
immensely expensive with off-the-shelf algorithms, as it in-
volves the joint factorization of two O(n · d)-sized matrices,
where n and d are the numbers of nodes and attributes in
the input data, respectively. Thus, PANE includes a novel
solver with a key module that seeds the optimizer through a
highly effective greedy algorithm, which drastically reduces
the number of iterations till convergence. Finally, we de-
vise database-inspired non-trivial parallelization of the PANE

algorithm by utilizing modern multi-core CPUs judiciously
without significantly compromising result quality.

Extensive experiments demonstrate that PANE consistently
obtains high-utility embeddings with superior prediction ac-
curacy for link prediction and node classification, at a frac-
tion of the cost compared to existing methods. In partic-
ular, on the largest Microsoft Academic Knowledge Graph
(MAG), PANE is the only viable solution on a single server,
whose resulting embeddings lead to 0.965 AP for link pre-
diction and 0.57 micro-F11 for node classification. Notably,
it obtains these results using 10 CPU cores, 1TB memory,
and within 12 hours running time.

Summary of Contributions. In summary, this paper makes
the following contributions: (a) We formulate the ANE task
as an optimization problem with the objective of approxi-
mating multi-hop node-attribute affinity. We consider edge
direction in our objective by defining forward and backward
affinity matrices using the SPMI metric. (b) We propose
several techniques to efficiently solve the optimization prob-
lem, including efficient approximation of the affinity matri-
ces, fast joint factorization of the affinity matrices, and a
key module to greedily seed the optimizer, which drastically
reduces the number of iterations till convergence. (c) We
develop non-trivial parallelization techniques of PANE to fur-
ther boost efficiency. (d) We experimentally demonstrate
the superior performance of PANE, in terms of efficiency and
effectiveness, against 10 competitors on 4 real datasets.

2. ATTRIBUTED NETWORK EMBEDDING
In this section, we formally introduce the notion of at-

tributed network embedding (ANE) and discuss existing ef-
forts to address this problem.

1
The micro-F1 score, ranging from 0 to 1, is the harmonic mean of
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Let G = (V,EV , R,ER) be an attributed network, con-
sisting of (i) a node set V with cardinality n, (ii) a set of m
edges EV , each connecting two nodes in V , (iii) a set of d at-
tributes R, and (iv) a set of node-attribute associations ER,
where each element is a tuple (vi, rj , wi,j) signifying that
node vi ∈ V is directly associated with attribute rj ∈ R
with weight wi,j (i.e., attribute value). For example, given
a user vi in a social network and an attribute rj represent-
ing age, weight wi,j denotes the value of vi’s age. Note that
for a categorical attribute, we first transform it into a set
of binary ones through one-hot encoding. Without loss of
generality, we assume thatG is a directed graph; if G is undi-
rected, then we treat each edge (vi, vj) as a pair of directed
edges with opposing directions: (vi, vj) and (vj , vi).

The neighbohood of a node v is typically generated using a
graph traversal strategy such as breadth-first search, depth-
first search, or a random walk. Intuitively, it represents a
set of nodes that are in “close” proximity of v. Specifically,
the first-order proximity indicates existence of links between
a pair of nodes whereas higher-order proximity reflects the
neighborhood. Note that neighborhood of different nodes
can be overlapping and may be of different sizes.

Given a space budget k � n and k > 0 (i.e., dimension-
ality), a node embedding function f : V −→ Rk maps each
node v ∈ V to a length-k real-valued vector in Rk. The
broad goal of attributed network embedding (ANE) is to
compute such an embedding Xv for each node v in the in-
put graph, such that Xv captures the graph structure and
attribute information of the neighborhood of v. Following
previous work [9], we also allocate a space budget k

2
(de-

tailed in Section 3.2) for each attribute r ∈ R, and aim to
compute an attribute embedding vector for r of length k

2
.

Related Work. Existing factorization-based methods [14–16]
mainly involve two stages: (i) build an n × n proximity
matrix that models the proximity between nodes based on
graph topology or attribute information; (ii) factorize it via
techniques such as stochastic gradient descent (SGD), alter-
nating least square (ALS), and coordinate descent. As re-
marked earlier, all these methods incur immense overheads
in building and factorizing the proximity matrix and are de-
signed for undirected graphs only.

An auto-encoder is a neural network model consisting of
an encoder that compresses the input data to obtain em-
beddings and a decoder that reconstructs the input data
from the embeddings, with the goal of minimizing the re-
construction loss. Existing auto-encoder-based methods for
ANE [8,9,11] either use proximity matrices as inputs or de-
sign various neural network structures for the auto-encoder.
Typically, these methods suffer from severe efficiency issues
due to the expensive training process of auto-encoders; fur-
ther, none of them considers edge directions.

Lastly, there exist several techniques (e.g., [13, 19]) that
generate embeddings without matrix factorization or auto-
encoder. They employ other expensive deep learning tech-
niques, rendering them infeasible to handle massive graphs.

3. THE PANE ALGORITHM
This section presents the proposed PANE algorithm. We

begin by introducing notations and terminology.Then, we
describe the design principles and associated challenges in
realizing PANE. Finally, we describe the sequential and par-
allel versions of the algorithm.

3.1 Terminology
We denote matrices in bold uppercase, e.g., M. We use

M[vi] to denote the vi-th row vector of M, and M[:, rj ] to
denote the rj-th column vector of M. In addition, we use
M[vi, rj ] to denote the element at the vi-th row and rj-th
column of M. Given an index set S, we let M[S] (resp.
M[:, S]) be the matrix block of M that contains the row
(resp. column) vectors of the indices in S.

We define an attribute matrix R ∈ Rn×d, such that R[vi, rj ]
= wi,j is the weight associated with the entry (vi, rj , wij)
∈ ER. We refer to R[vi] as node vi’s attribute vector. Based
on R, we derive a row-normalized (resp. column-normalized)
attribute matrices Rr (resp. Rc) as follows:

Rr[vi, rj ] =
R[vi,rj ]∑

rl∈R R[vi,rl]
, Rc[vi, rj ] =

R[vi,rj ]∑
vl∈V R[vl,rj ]

. (1)

3.2 Design Principles and Challenges
Figure 1 depicts the PANE framework. Intuitively, we rep-

resent the input network in a way that is conducive for sub-
sequent computation of affinity between node and attribute
pairs. This information is subsequently exploited to gen-
erate the embeddings for each node. We elaborate on the
design of these components and associated challenges.

Extended Graph. The broad goal here is to transform the
attribute information associated with nodes in G to special
nodes and edges to create a unified framework capturing
topological and attribution information. To this end, we
utilize the notion of extended graph, denoted by G, which
we explain with an example. Figure 1(ii) shows an example
extended graph G constructed based on an input attributed
network G (Figure 1(i)) consisting of 6 nodes v1-v6 and 5
attributes r1-r5. Observe that the nodes and edges in blue
show the attribute associations ER in G. Specifically, for
each attribute rj ∈ R, we create an additional node in G;
then, for each entry in ER, e.g., (v3, r2, w3,2), we include in G
a pair of edges with opposing directions connecting the node
(e.g., v3) with the corresponding attribute node (e.g., r2),
with an edge weight (e.g., w3,2). Note that in this example,
nodes v1 and v2 are not associated with any attribute.

Forward Affinity and Backward Affinity. As remarked earlier,
the resulting embedding of a node v ∈ V should capture its
affinity with attributes in R, where the affinity definition
should take into account both the attributes directly associ-
ated with v in ER, and the attributes of the nodes that v can
reach via edges in EV . To effectively model node-attribute
affinity via multiple hops in G, we employ an adaptation
of the random walks with restarts (RWR) [7], a technique
that has find successful usage in data management research
for finding relevance score between two nodes [1, 7]. In the
sequel, we refer to an RWR simply as a random walk. Specif-
ically, since G is directed, we distinguish two types of node-
attribute affinity: forward affinity, denoted as F, and back-
ward affinity, denoted as B.

Given an attributed graph G, a node vi, and random walk
stopping probability α (0 < α < 1), a forward random walk
on G starts from node vi. At each step, assume that the walk
is currently at node vl. Then, the walk can either (i) with
probability α, terminate at vl , or (ii) with probability 1−α,
follow an edge in EV to a random out-neighbor of vl. After
a random walk terminates at a node vl, we randomly follow
an edge in ER to an attribute rj , with probability Rr[vl, rj ],
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i.e., a normalized edge weight defined in Equation (1)2. The
forward random walk yields a node-to-attribute pair (vi, rj),
and we add this pair to a collection Sf .

Suppose that we sample nr node-to-attribute pairs for
each node vi, the size of Sf is then nr · n, where n is the
number of nodes in G. Denote pf (vi, rj) as the probability
that a forward random walk starting from vi yields a node-
to-attribute pair (vi, rj). Then, the forward affinity F[vi, rj ]
between note vi and attribute rj is defined as follows.

F[vi, rj ] = log

(
n·pf (vi,rj)∑

vh∈V pf (vh,rj)
+ 1

)
(2)

To explain the intuition behind the above definition, note
that in collection Sf , the probabilities of observing node
vi, attribute rj , and pair (vi, rj) are P(vi) = 1

n
, P(rj) =∑

vh∈V ·pf (vh,rj)

n
, and P(vi, rj) =

pf (vi,rj)

n
, respectively. Thus,

the above definition of forward affinity is a variant of the
pointwise mutual information. (PMI)3 [4] between node vi
and attribute rj . Since PMI can be negative, we use the vari-
ant shifted PMI (SPMI), which is guaranteed to be positive.
Hence, F[vi, rj ] in Equation (2) is essentially SPMI(vi, rj).

We define backward affinity in a similar fashion. Given an
attributed network G, an attribute rj and stopping proba-
bility α, a backward random walk starting from rj first ran-
domly samples a node vl according to probability Rc[vl, rj ],
defined in Equation (1). Then, the walk starts from node vl
and follows the aforementioned strategy. Suppose that the
walk terminates at node vi; then, it returns an attribute-to-
node pair (rj , vi), which is added to a collection Sb. After
sampling nr attribute-to-node pairs for each attribute, the
size of Sb becomes nr · d. Let pb(vi, rj) be the probabil-
ity that a backward random walk starting from attribute rj
stops at node vi. In collection Sb, the probabilities of ob-
serving attribute rj , node vi and pair (rj , vi) are P(rj) = 1

d
,

P(vi) =
∑

rh∈R pb(vi,rh)

d
and P(vi, rj) =

pb(vi,rj)

d
, respec-

tively. Then the backward affinity B[vi, rj ] is as follows.

B[vi, rj ] = log

(
d·pb(vi,rj)∑

rh∈R pb(vi,rh)
+ 1

)
. (3)

Objective Function. The above notions of forward and back-
ward node-attribute affinity capture the necessary informa-
tion from which we can learn the embeddings of each node.
Specifically, given a space budget k, our goal is to learn

(i) two embedding matrices Xf , Xb ∈ Rn×
k
2 for all nodes

2
In the degenerate case that vl is not associated with any attribute,

e.g., v1 in Figure 1(ii), we simply restart the random walk from the
source node vi, and repeat the process.
3
The PMI quantifies how much more- or less likely we are to see the

two events co-occur, given their individual probabilities, and relative
to the case where they are completely independent.

in V , whose row vectors Xf [vi] ∈ R
k
2 and Xb[vi] ∈ R

k
2

denote the forward embedding vector and backward embed-
ding vector for node vi, respectively, and (ii) an embedding

matrix Y ∈ Rd×
k
2 for all attributes in R, where each row

vector Y[rj ] ∈ R
k
2 is the attribute embedding vector for at-

tribute rj . Mathematically, we can express this objective as
to learn Xf ,Xb and Y such that the following objective is
minimized:

O = min
Xf ,Y,Xb

∑
vi∈V

∑
rj∈R

(
F[vi, rj ]−Xf [vi] ·Y[rj ]

>
)2

+
(
B[vi, rj ]−Xb[vi] ·Y[rj ]

>)2 . (4)

Intuitively, we approximate the two affinities between node
vi and attribute rj using the dot product of their respective
embedding vectors. The objective is then to minimize the
total squared error of such approximations, over all nodes
and all attributes in the input data.

Challenges. A keen reader may observe that it is prohibitively
expensive to train embeddings of nodes and attributes that
preserve our objective function in Equation (4), especially on
massive attributed networks. First, node-attribute affinity
values are defined by random walks, which are rather ex-
pensive to conduct in a huge number from every node and
attribute of massive graphs. Second, our objective function
preserves both forward and backward affinity (i.e., it takes
into account edge directions), which makes the training pro-
cess hard to converge. Further, jointly preserving both for-
ward and backward affinity involves intensive computations,
severely dragging down the performance. We tackle these
challenges in the next subsections.

3.3 Seq-PANE: A Sequential Algorithm
Intuitively, PANE consists of three phases: (i) iteratively

computing approximated versions F′ and B′ of the forward
and backward affinity matrices with rigorous approximation
error guarantees, without actually sampling random walks,
(ii) initializing the embedding vectors with a greedy algo-
rithm for fast convergence, and then (iii) jointly factorizing
F′ and B′ using cyclic coordinate descent to efficiently ob-
tain the embedding vectors Xf ,Xb, and Y.

We first describe the single-threaded version of these three
steps, referred to as Seq-PANE. The multi-threaded version
that boosts efficiency further is elaborated later.

Step 1. Forward and backward affinity approximation. In
order to avoid numerous random walks to compute exact
node-attribute values, we transform forward and backward
affinity in Equations (2) and (3) into their matrix forms
and utilize iterative matrix multiplications to efficiently ap-
proximate forward and backward affinity matrices with error



guarantee and in linear time complexity, without actually
sampling random walks.

Observe that in Equations (2) and (3), the key for forward
and backward affinity computation is to obtain pf (vi, rj)
and pb(vi, rj) for every pair (vi, rj) ∈ V × R. Recall that
pf (vi, rj) is the probability that a forward random walk
starting from node vi picks attribute rj , while pb(vi, rj) is
the probability of a backward random walk from attribute rj
stopping at node vi. Given nodes vi and vl, denote π(vi, vl)
as the probability that a random walk starting from vi stops
at vl, i.e., the random walk score of vl with respect to vi.
By definition, pf (vi, rj) =

∑
vl∈V

π(vi, vl) ·Rr[vl, rj ], where

Rr[vl, rj ] is the probability that node vl picks attribute rj ,
according to Equation (1). Similarly, pb(vi, rj) is formulated
as pb(vi, rj) =

∑
vl∈V

Rc[vl, rj ] · π(vl, vi), where Rc[vl, rj ] is

the probability that attribute rj picks node vl from all nodes
having rj based on their attribute weights. By the definition
of random walk scores in [7], we can derive the matrix form
of pf and pb as follows.

Pf = α
∑∞
`=0 (1− α)`P` ·Rr,

Pb = α
∑∞
`=0 (1− α)`P>` ·Rc,

(5)

where P is the random walk matrix (a.k.a transition matrix)
of G and P`[vi, vj ] denotes the probability that a length-`
(` ≥ 1) random walk from node vi would end at node vj .
We only consider t iterations to approximate Pf and Pb in

Equation (6), where t is set to log(ε)
log(1−α)−1 and ε is an additive

error threshold. This ensures |Pf [vi, rj ] − P
(t)
f [vi, rj ]| ≤ ε

and |Pb[vi, rj ]−P
(t)
b [vi, rj ]| ≤ ε for every (vi, rj) ∈ V ×R.

P
(t)
f = α

t∑
`=0

(1− α)`P`Rr, P
(t)
b = α

t∑
`=0

(1− α)`P>`Rc. (6)

Then, we normalize P
(t)
f by columns and P

(t)
b by rows as

follows.

P̂
(t)
f [vi, rj ] =

P
(t)
f

[vi,rj ]∑
vl∈V P

(t)
f

[vl,rj ]
, P̂

(t)
b [vi, rj ] =

P
(t)
b

[vi,rj ]∑
rl∈R P

(t)
b

[vi,rl]

After normalization, we compute F′ and B′ according to
the definitions of forward and backward affinity as follows.

F′ = log(n · P̂(t)
f + 1), B′ = log(d · P̂(t)

b + 1). (7)

In order to obtain the embedding vectors of all nodes and
attributes, i.e., Xf ,Xb, and Y, we need to jointly factorize
the approximate forward and backward affinity matrices F′

and B′. This can be done based on the cyclic coordinate de-
scent (CCD) framework, which iteratively updates each em-
bedding value towards optimizing the objective function in
Equation (4). However, a direct application of CCD, start-
ing from random initial values of the embeddings, requires
numerous iterations to converge, leading to prohibitive over-
heads. Furthermore, CCD computation itself is expensive,
especially on large-scale graphs. To overcome these chal-
lenges, we firstly propose a greedy initialization method to
facilitate fast convergence (Step 2), and then design effi-
cient techniques to refine the initial embeddings, including
dynamic maintenance and partial updates of intermediate
results to avoid redundant computations in CCD (Step 3),
ideas that are inspired from data management techniques.

Step 2. Greedy initialization of the embeddings. In many
optimization problems, all we need for efficiency is a good
initialization. Thus, a key component in the joint factoriza-
tion is such an initialization of embedding values, based on

singular value decomposition (SVD). Note that unlike other
matrix factorization problems, here SVD cannot be directly
utilized to solve our problem because the objective function
in Equation (4) requires the joint factorization of both the
forward and backward affinity matrices at the same time.

Specifically, the initialization method first employs an effi-
cient randomized SVD algorithm [10] to decompose F′ into

U ∈ Rn×
k
2 ,Σ ∈ R

k
2
× k

2 , V ∈ Rd×
k
2 , and then initializes

Xf = UΣ and Y = V, which satisfies Xf · Y> ≈ F′. In
other words, this initialization immediately gains a good ap-
proximation of the forward affinity matrix.

Recall that our objective function in Equation (4) also
aims to find Xb such that XbY

> ≈ B′, i.e., to approximate
the backward affinity matrix well. We observe that matrix V
(i.e., Y) returned by exact SVD is unitary, i.e., Y>Y = I,
which implies that Xb ≈ XbY

>Y ≈ B′Y. Accordingly,
we seed Xb with B′Y. This initialization of Xb also leads
to a relatively good approximation of the backward affinity
matrix. Consequently, the number of iterations required by
CCD is drastically reduced (shown in Section 4).

Step 3. Efficient refinement of the initial embeddings. Af-
ter initializing Xf ,Xb and Y, we apply CCD to refine the
embedding vectors according to our objective function in
Equation (4). The basic idea of CCD is to cyclically iterate
through all entries in Xf ,Xb and Y, minimizing the ob-
jective function with respect to each entry (i.e., coordinate
direction). Specifically, in each iteration, CCD updates each
entry of Xf ,Xb and Y according to the following rules:

Xf [vi, l]←Xf [vi, l]− µf (vi, l), (8)

Xb[vi, l]←Xb[vi, l]− µb(vi, l), (9)

Y[rj , l]←Y[rj , l]− µy(rj , l), (10)

with µf (vi, l), µb(vi, l) and µy(rj , l) computed by:

µf (vi, l) =
Sf [vi]·Y[:,l]

Y>[l]·Y[:,l]
, µb(vi, l) = Sb[vi]·Y[:,l]

Y>[l]·Y[:,l]
, (11)

µy(rj , l) =
X>

f [l]·Sf [:,rj ]+X>
b [l]·Sb[:,rj ]

X>
f
[l]·Xf [:,l]+X>

b
[l]·Xb[:,l]

, (12)

where Sf = XfY
> − F′ and Sb = XbY

> −B′.
However, directly applying the above updating rules to

learn Xf ,Xb, and Y is inefficient, leading to numerous re-
dundant matrix operations. Hence, in each iteration of CCD,
we first fix Y and updates each row of Xf and Xb, and then
updates each column of Y with Xf and Xb fixed. According
to Equations (11) and (12), µf (vi, l), µb(vi, l), and µy(rj , l)
are pertinent to Sf [vi], Sb[vi], and Sf [:, rj ],Sb[:, rj ] respec-
tively, where Sf and Sb further depend on embedding vec-
tors Xf , Xb and Y. Therefore, whenever Xf [vi, l],Xb[vi, l],
and Y[rj , l] are updated in the iteration, Sf and Sb need to
be updated accordingly.

Directly recomputing Sf and Sb by Sf = XfY
> − F′

and Sb = XbY
> −B′ whenever an entry in Xf ,Xb and, Y

is updated is expensive. Instead, we dynamically maintain
and partially update Sf and Sb according to Equations (13)-
(15). Specifically, when Xf [vi, l] and Xb[vi, l] are updated,
we update Sf [vi] and Sb[vi] respectively in O(d) time by

Sf [vi]← Sf [vi]− µf (vi, l) ·Y[:, l]>. (13)

Sb[vi]← Sb[vi]− µb(vi, l) ·Y[:, l]>. (14)

Whenever Y[rj , l] is updated, both Sf [:, rj ] and Sb[:, rj ] are
updated in O(n) time by

Sf [:, rj ]← Sf [:, rj ]− µy(rj , l) ·Xf [:, l],

Sb[:, rj ]← Sb[:, rj ]− µy(rj , l) ·Xb[:, l].
(15)



0.8
⋮
1.2
⋮
0.1
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.1
⋮
0.7
⋮
0.6
⋮

0.2
⋮
0.8
⋮
0.9
⋮

⋰
⋮
⋯
⋮
⋮
⋱

0.4
⋮
0.5
⋮
0.6
⋮

1.2
⋮
1.1
⋮
0.9
⋮

⋰
⋮
⋯
⋮
⋮
⋱

0.3
⋮
0.2
⋮
0.7
⋮

1.0
⋮
0.9
⋮
1.1
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.0
⋮
0.9
⋮
1.1
⋮

0.8
⋮
1.2
⋮
0.7
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.0
⋮
0.9
⋮
1.1
⋮

0.5
⋮
0.5
⋮
0.2
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.0
⋮
0.9
⋮
1.1
⋮

1.0
⋮
0.9
⋮
1.1
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.0
⋮
0.9
⋮
1.1
⋮

0.8
⋮
1.2
⋮
0.7
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.0
⋮
0.9
⋮
1.1
⋮

0.5
⋮
0.5
⋮
0.2
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.0
⋮
0.9
⋮
1.1
⋮

𝑘/2

(i) Node subsets and attribute subsets

Embedding values of 𝑉!, 𝑅!

A
pp
ro
xi
m
at
io
n
er
ro
r

Coordinate Descent

v1 r1

⋯

v2

vi

r2

ri

⋯

v3

⋯

v4

vj

v5

⋯

v6

vn

r3

r4

rj

⋯

r5

r6

rn

⋯

𝑉
𝑉! 𝑉" 𝑉#

𝑅
𝑅! 𝑅" 𝑅#

Embedding values of 𝑉", 𝑅"

A
pp
ro
xi
m
at
io
n
er
ro
r

Coordinate Descent

Embedding values of 𝑉#, 𝑅#

A
pp
ro
xi
m
at
io
n
er
ro
r

Coordinate Descent

𝑉!

𝑉"

𝑉#

𝑅! 𝑅" 𝑅#

(iv) Parallel refinement of the embeddings

(ii) Parallel affinity approximation

(iii) Parallel initialization of the embeddings

𝑉!
𝑉"
𝑉#

0.8
⋮
1.2
⋮
0.1
⋮

⋰
⋮
⋯
⋮
⋮
⋱

1.1
⋮
0.7
⋮
0.6
⋮

0.2
⋮
0.8
⋮
0.9
⋮

⋰
⋮
⋯
⋮
⋮
⋱

0.4
⋮
0.5
⋮
0.6
⋮

1.2
⋮
1.1
⋮
0.9
⋮

⋰
⋮
⋯
⋮
⋮
⋱

0.3
⋮
0.2
⋮
0.7
⋮

𝑉!
𝑉"
𝑉#

𝑅! 𝑅" 𝑅#

𝑉!
𝑉"
𝑉#

𝑅! 𝑅" 𝑅#

𝑉!
𝑉"
𝑉#

SVD

𝐅!

𝐁!

×

𝐅!

𝐁!SVD

SVD

Figure 2: Overview of Par-PANE.

Complexity Analysis. Step 1 runs inO (mdt) = O
(
md · log 1

ε

)
time. Meanwhile, given F′ ∈ Rn×d as input, randomized
SVD in Step 2 requires O (ndkt) time [10]. The computa-
tion of Sf ,Sb in Step 3 costs O(ndk) time. In addition,
the t iterations of CCD for updating Xf ,Xb and Y take
O(ndkt) = O(ndk log 1

ε
) time. Therefore, the overall time

complexity of Seq-PANE is O
(
(md+ ndk) · log

(
1
ε

))
.

3.4 Par-PANE: A Parallel Algorithm
Although Seq-PANE runs in linear time to the size of the

input network, as we shall see in Section 4, it still consumes
substantial amount of time in handling massive attributed
networks in practice. We now present a parallel version of
PANE, called Par-PANE, that draws inspiration from the ex-
ploitation of multi-core CPUs in many modern data man-
agement techniques and beyond to enhance performance.

It is challenging to develop a parallel algorithm achieving
linear scalability to the number of threads on a multi-core
CPU. PANE involves intensive matrix computation, factoriza-
tion, and CCD updates, which are non-trivial to parallelize.
Maintenance of the intermediate result of each thread and
combining them to create the final result further aggrandize
this challenge. We address these challenges in Par-PANE.

Figure 2 depicts an overview of Par-PANE. Compared to
the Seq-PANE, Par-PANE takes as input an additional param-
eter, the number of threads nb, and randomly partitions the
node set V , as well as the attribute set R, into nb subsets
with equal size, denoted as V and R, respectively. It paral-
lelizes the three key steps in Seq-PANE as follows.

Step 1. Parallel forward and backward affinity approximation.
We adopt block matrix multiplication to to estimate forward
and backward affinity matrices F′ and B′ in a parallel man-
ner. After obtaining Rr and Rc based on Equation (1), we
divide Rr and Rc into matrix blocks according to two input
parameters, the node subsets V = {V1, V2, · · · , Vnb} and at-
tribute subsets R = {R1, R2, · · · , Rnb}. Then, the matrix

multiplications for computing P
(t)
f and P

(t)
b are parallelized,

using nb threads in t iterations. Then, nb matrix blocks
Pfi

(t) (resp. Pbi
(t)) are concatenated horizontally together

as Pf
(t) (resp. Pb

(t)) in the main thread. Afterwards, we

normalize P̂
(t)
f and P̂

(t)
b , and then start nb threads to com-

pute F′ and B′ block by block in parallel, based on the
definitions of forward and backward affinity.

Table 1: Datasets. (K=103, M=106)

Name |V | |EV | |R| |ER| |L| Refs

Citeseer 3.3K 4.7K 3.7K 105.2K 6 [8,9, 11,14,16,19]

Facebook 4K 88.2K 1.3K 33.3K 193 [9]

TWeibo 2.3M 50.7M 1.7K 16.8M 8 -

MAG 59.3M 978.2M 2K 434.4M 100 -

Step 2. Parallel initialization of the embeddings. To further
improve the efficiency of the joint affinity matrix factoriza-
tion process, we design a parallel algorithm with a split-and-
merge-based parallel SVD technique for embedding vector
initialization. It takes as input F′, B′, V, and k. Based on
V, it splits matrix F′ into nb blocks and launches nb threads.
Then, the i-th thread applies RandSVD to block F′[Vi] gen-
erated by the rows of F′ based on node set Vi ∈ V. After
obtaining V1, · · · ,Vnb , we merge these matrices by concate-

nating V1, · · · ,Vnb into V = [V1 · · · Vnb ]> ∈ R
knb
2
×d, and

then applies RandSVD over it to obtain W ∈ R
knb
2
× k

2 and

Y ∈ Rd×
k
2 . Next, it creates nb threads, and uses the i-th

thread to handle node subset Vi for initializing embedding
vectors Xf [Vi] and Xb[Vi], as well as computing intermedi-
ate results Sf and Sb for CCD.

Step 3. Parallel refinement of the initial embeddings. After
obtaining initial embeddings Xf ,Xb, and Y, we train them
by CCD in parallel based on subsets V andR, in t iterations.
In each iteration, we first fix Y and launches nb threads to
update Xf and Xb in parallel by blocks according to V, and
then updates Y using the nb threads in parallel by blocks
according to R, with Xf and Xb fixed.

Note that Par-PANE does not return exactly the same out-
puts as Seq-PANE, as some modules (e.g., the parallel ver-
sion of SVD) introduce additional error. Nevertheless, as
demonstrated in Section 4, the degradation of result quality
in Par-PANE is small, but the speedup is significant.

Complexity Analysis. Based on the complexity analysis of
Seq-PANE, it can be shown that the computational time com-

plexity per thread in Par-PANE is O
(
md+ndk

nb
· log

(
1
ε

))
.

4. EXPERIMENTS
In this section, we investigate the performance of PANE on

two tasks (link prediction and node classification). All ex-
periments are conducted on a Linux machine powered by an
Intel Xeon(R) E7-8880 v4@2.20GHz CPUs and 1TB RAM.
The codes of all algorithms are collected from their respec-
tive authors, and all are implemented in Python. The code
of PANE is available at https://github.com/AnryYang/PANE.

Datasets. Table 1 lists the datasets (available at https://

pytorch-geometric.readthedocs.io/en/latest/modules/

datasets.html) used in our experiments. |V | and |EV | de-
note the number of nodes and edges in the graph, whereas
|R| and |ER| represent the number of attributes and node-
attribute associations (i.e., nonzero entries in attribute ma-
trix R), respectively. In addition, L is the set of node labels
used in the node classification task. Citeseer and Facebook
are benchmark datasets used in prior work. TWeibo is ex-
tracted from Tencent Weibo social network. MAG is ex-
tracted from the Microsoft Academic Knowledge Graph.

4.1 Experiments Setup
Baselines and Parameter Settings. We compare Seq-PANE

and Par-PANE against 10 state-of-the-art competitors: eight

https://github.com/AnryYang/PANE
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html


Table 2: Link prediction performance.

Method
Citeseer Facebook TWeibo MAG

AUC AP AUC AP AUC AP AUC AP

NRP 0.86 0.808 0.969 0.973 0.967 0.979 0.915 0.92

GATNE 0.687 0.767 0.961 0.954 - - - -

TADW 0.895 0.868 0.752 0.793 - - - -

BANE 0.899 0.873 0.796 0.795 - - - -

PRRE 0.895 0.855 0.899 0.884 - - - -

STNE 0.71 0.781 0.962 0.957 - - - -

CAN 0.734 0.652 0.714 0.639 - - - -

LQANR 0.916 0.916 0.951 0.917 - - - -

Seq-PANE 0.932 0.919 0.982 0.982 0.976 0.986 0.96 0.965

Par-PANE 0.929 0.916 0.98 0.979 0.975 0.985 0.958 0.962

recent ANE methods including BANE [16], CAN [9], STNE [8],
PRRE [19], TADW [14], ARGA [11], DGI [13] and LQANR [15], one
state-of-the-art homogeneous network embedding method
NRP [17], and one latest attributed heterogeneous network
embedding algorithm GATNE [2].

The parameters of all competitors are set as suggested
in their respective papers. For Seq-PANE and Par-PANE, by
default we set error threshold ε = 0.015 and random walk
stopping probability α = 0.5. We use nb = 10 threads for
Par-PANE. Unless otherwise specified, we set space budget
k = 128. In our study, a method is excluded if it cannot
finish training within one week.

Performance metrics. Following [9, 11], we adopt the Area
Under Curve (AUC) and Average Precision (AP) metrics to
measure the performance of the methods for the link predic-
tion task. We use Micro-F1 to measure node classification
performance [9,15]. Lastly, we use running time to measure
efficiency and scalability.

4.2 Effectiveness
Link Prediction. Link prediction aims to predict the edges
that are most likely to form between nodes. We first ran-
domly remove 30% edges in input graph G, obtaining a
residual graph G′ and a set of the removed edges. We then
randomly sample the same amount of non-existing edges as
negative edges. The test set E′ contains both the removed
edges and the negative edges. We run PANE and all competi-
tors on the residual graph G′ to produce embedding vectors,
and then evaluate the link prediction performance with E′

as follows. For PANE, we calculate p(vi, vj) as the prediction
score of the directed edge (vi, vj):

p(vi, vj) =
∑
rl∈R

(Xf [vi] ·Y[rl]
>) · (Xb[vj ] ·Y[rl]

>) (16)

≈
∑
rl∈R

F[vi, rl] ·B[vj , rl].

We adopt four prediction methods (inner product, cosine
similarity, Hamming distance, and edge features) over each
method and report the best performance on each dataset.

Table 2 reports the AUC and AP scores of representa-
tive methods on each dataset. Observe that these scores
for Seq-PANE are similar or superior to the competitors over
all datasets. Furthermore, Par-PANE has comparable perfor-
mance with Seq-PANE over all datasets.

Node Classification. Node classification predicts the node
labels. We first run the methods on the input attributed
network G to obtain their embeddings. Then we randomly
sample a certain number of nodes (ranging from 10% to 90%)
to train a linear support-vector machine (SVM) classifier and
use the rest for testing. NRP, Seq-PANE, and Par-PANE gen-
erate a forward embedding vector Xf [vi] and a backward

embedding vector Xb[vi] for each node vi ∈ V . So we nor-
malize the forward and backward embeddings of each node
vi, and then concatenate them as the feature representation
of vi to be fed into the classifier. We repeat for 5 times and
report the average performance.

Figure 3 depicts the Micro-F1 results when varying the
percentage of nodes used for training from 10% to 90% (i.e.,
0.1 to 0.9). Both versions of PANE consistently outperform
all competitors on all datasets, demonstrating its effective-
ness in capturing the topology and attribute information of
the input attributed networks. Specifically, compared with
the competitors, Seq-PANE achieves a significant gain up to
17.2% on MAG. Over all datasets, Par-PANE has similar per-
formance to that of Seq-PANE.

4.3 Efficiency and Scalability
Figure 4 reports the running times (in log-scale). It does

not include the time for loading datasets and outputting em-
beddings. PANE is significantly faster than all ANE competi-
tors, often by orders of magnitude. Specifically, on TWeibo
and MAG, most existing ANE solutions cannot finish within
a week, while our proposed solutions are able to handle them
efficiently. Observe that Par-PANE is up to 9 times faster
than Seq-PANE over all datasets. For instance, on MAG
dataset, Par-PANE requires 11.9 hours while Seq-PANE takes
about five days, emphasizing the benefits brought by our
parallelization techniques in Section 3.4. Importantly, this
is achieved without compromising on result quality.

Figure 5a depicts the speedup of Par-PANE over single-
thread version on TWeibo when varying the number of threads
nb from 1 to 20. When nb increases, Par-PANE becomes
faster than single-thread PANE, demonstrating the parallel
scalability of Par-PANE. Figures 5b and 5c report the run-
ning time of Par-PANE when varying space budget k and er-
ror threshold ε, respectively. In Figure 5b, observe that the
running time remain stable and grows slowly with increas-
ing k. In Figure 5c, the running time of Par-PANE decreases
considerably with increasing ε, which is consistent with our
analysis that PANE runs in linear to log (1/ε).

5. FUTURE WORK
PANE opens up future research in multiple directions. First,

state-of-the-art ANE frameworks do not provide any expla-
nation of results of various downstream tasks such as link
prediction. While a lack of explanation may not be criti-
cal for some applications (e.g., friend recommendation in a
social network), in others it is paramount for the accept-
ability and usage of an ANE framework. For instance, a
biological signaling network models interactions (i.e., bio-
chemical reactions) between molecular species in a biological
system. An example network is the human cancer signaling
network [6] (CSN), which can be modeled as an attributed
network. Predicting links between molecules (e.g., proteins,
genes) in a CSN without justification is unsatisfactory, as an
oncologist would like to know the biological reasons behind
such prediction. PANE could be the basis for a framework to
build such explanation capabilities at a low cost.

Second, PANE makes remarkable progress in efficiency and
scalability on CPUs. Naturally, further inroads can be made
on performance by exploiting a GPU/multi-GPU environ-
ment. Further, while networks such as CSN may not evolve
rapidly, many other real-world networks do (e.g., social net-
works). These networks may also have different types of
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links. Hence, it is also important to explore how PANE can be
expanded to handle dynamic and heterogeneous networks.

Last but not the least, PANE can be a substrate to build
scalable ANE-based solutions for real-world applications.For
example, consider the problem of target combination predic-
tion in signaling networks [3], where the goal is to predict
target (nodes) combinations that can effectively modulate
a set of disease nodes4 in order to achieve a specific thera-
peutic goal (e.g., reducing the activity of ERKPP protein by
50%). An in silico solution to this problem can aid in early
rejection of unsuitable targets and guide the design of further
in vitro and in vivo drug combination experiments, thereby
reducing the cost and time for drug development. An effec-
tive solution needs to analyze the topology of the neighbor-
hood of diseases nodes along with their disease-specific roles
in order to capture crosstalks between pathways and their
impact on targets. We are currently exploring how PANE can
facilitate this by analyzing topological and disease-related
attribute similarities of the neighborhood nodes encoded in
their embeddings.
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