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MOTIVATION. The advent of inexpensive, high-quality
cameras has led to a rapid increase in the volume of gen-
erated video data [19, 16]. It is now feasible to automat-
ically analyze these video datasets at scale due to two
developments over the last decade. First, researchers
have designed complex, computationally-intensive deep
learning (DL) models that capture the contents of a
given set of video frames (e.g., objects present in a par-
ticular frame [11]) [15]. Second, the computational ca-
pabilities of hardware accelerators for evaluating these
DL models have increased over the last decade (e.g.,
TPUs) [8]. We anticipate that automated analysis of
videos will reduce the labor cost of analyzing video
datasets in a wide range of important applications [14].
BACKGROUND. Motivated by these developments, re-
searchers have recently proposed several novel video
database management systems (VDBMSs) [2, 1, 9, 21,
4]. These systems accelerate declarative queries over
videos using techniques like training a lightweight, spe-
cialized model to filter out irrelevant frames [12], or
sampling a subset of important frames [10, 3]. The
queries they support primarily focus on detecting ob-
jects of interest (e.g., searching for frames containing
atleast two cars in a surveillance video). To accelerate
this query, the VDBMS may train a lightweight model
to quickly filter out irrelevant frames that are unlikely
to contain cars [12]. By reducing the number of invo-
cations of the heavyweight oracle model (i.e., the more
accurate DL model specified by the user [12, 5]), the
VDBMS speeds up the query with a tolerable drop in
query accuracy.
CHALLENGES. State-of-the-art VDBMSs suffer from
two limitations that constrain their utility and compu-
tational efficiency. First, these systems primarily focus
on accelerating object detection queries over videos. So,
they are not able to support queries associated with more
complex vision tasks. For example, an important class
of video analytics queries focuses on detecting and lo-
calizing actions – events spread across a sequence of
frames (e.g., “right-turn of a car”) [17, 20, 6]. It is dif-
ficult to process such queries due to two reasons. First,

current VDBMSs operate on individual frames (either
using the lightweight filter or the heavyweight object de-
tector). To detect an action, the VDBMS would need to
identify features that span across multiple frames. Sec-
ond, inference times of DL models tailored for action
detection are higher than that of object detectors.

Another limitation is that it is computationally expen-
sive for the VDBMS to train filters for each unique com-
bination of: video content, oracle model, and predicate
of interest. First, filters depend on video content (e.g.,
day- vs night-time videos [18]). Second, the labels asso-
ciated with the training frames are obtained using a spe-
cific model (e.g., SSD [11]). Third, due to the limited
capacity of filters, they are tailored for a specific pred-
icate (e.g., COUNT(CAR) > 2 [13]). These constraints
increase the overall training cost associated with filters.
IDEAS. To tackle the first challenge, we will need to de-
sign novel algorithms for efficiently processing action
queries. For instance, we could train a DL-based agent
to quickly skim through video segments that are unlikely
to contain the target action [7]. The agent would quickly
generate proxy features of a given video segment and
use them to choose the next video segment to process
(e.g., picking the resolution of the frames, the sampling
frequency, e.t.c.) from a large space of possible seg-
ments. We anticipate that such task-specific optimiza-
tions will need to be developed for other vision tasks [4].

For the second challenge, it is important to de-
velop unsupervised algorithms for sampling representa-
tive frames from a video. This will allow the VDBMS to
answer ad-hoc queries using these representative frames
instead of training a filter tailored for a specific predi-
cate or oracle model. It is critical to obtain theoretical
bounds on the likelihood of the representative frames
satisfying the query accuracy constraint.
SUMMARY. An amalgamation of ideas in database sys-
tems, computer vision, and machine learning will help
realize the vision of accelerating video analytics. We
anticipate that VDBMSs will become more common in
the future, and hence, the optimizations developed by
the database community will become important.
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