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ABSTRACT
Similar to Open Data initiatives, data science as a com-
munity has launched initiatives for sharing not only data
but entire pipelines, derivatives, artifacts, etc. (Open
Data Science). However, the few efforts that exist fo-
cus on the technical part on how to facilitate sharing,
conversion, etc. This vision paper goes a step further
and proposes KEK, an open federated data science plat-
form that does not only allow for sharing data science
pipelines and their (meta)data but also provides methods
for efficient search and, in the ideal case, even allows
for combining and defining pipelines across platforms
in a federated manner. In doing so, KEK addresses the
so far neglected challenge of actually finding artifacts
that are semantically related and that can be combined
to achieve a certain goal.

1. INTRODUCTION
Open Data initiatives have led to the development

of Open Data portals that provide machine-readable
and structured datasets in topics, such as health, edu-
cation, transportation, agriculture, and food. They are
driven, for example, by governments, e.g., USA [40],
Canada [6], or organizations, such as WHO [45] and
WTO [46], and provide access to thousands of datasets.
Encouraged by the availability of this data and the FAIR
principles [44], data science projects are increasingly
striving at making datasets and related data science ex-
perimentation automatically and efficiently findable, ac-
cessible, interoperable, and reusable. This includes
sharing data science pipelines and derived insights, such
as code, notebooks, datasets, and technical papers.

Unfortunately, despite artifacts of experimentation
and creation of pipelines becoming increasingly more
open, most of the artifacts are scattered across vari-
ous open source repositories, such as GitHub or Git-
Lab. Furthermore, documentation describing the work
is available along with code on Jupyter notebooks, blogs
in domains, such as Medium, and open repositories of
preprints, e.g., ArXiv. Recently, we have therefore seen
the rise of initiatives and projects, such as Agora [39],
with the goal of providing the foundations of how to
technically combine data science pipelines in decentral-
ized and dynamic environments, where data, algorithms,
etc. are distributed. While these projects concentrate on
the question how to technically combine artifacts, they

neglect questions, such as what artifacts should be com-

bined (across platforms, servers, etc.) to achieve a cer-

tain goal and how do we find artifacts that are semanti-

cally similar or connected. In this vision paper, we are
closing this gap by proposing a federated data science
platform, called KEK 1, which addresses these neglected
questions to break down silos in data science (DS).

Achieving this vision begins with the need to find,
combine, and reuse artifacts as they are currently locked
away in silos. There is no well-defined way of sharing
these artifacts enhanced with semantic descriptions or
even general metadata, neither much within a given data
science platform and definitely not across multiple plat-
forms. Thus, data scientists cannot automatically find
relevant datasets and build a new pipeline on top of re-
lated ones since there is no way to identify them. As
a practical use case and example, let us consider the
case of reproducing experimental results of published
articles, and analyzing insights driven from datasets.

Example. The problem is illustrated in Figure 1
– Laboratory 1 has a pipeline in a Java-based ma-
chine learning library (MLLib) operating on Dataset
1 to produce insights after enriching Dataset 1 with a
local dataset; while Laboratory 2 has a pipeline in a
Python machine learning library (Sklearn) that operates
on Dataset 2 to produce insights described in a recent
paper. At a semantic level, Dataset 2 could be joined
with Datasets 1 and 3. Similarly, the pipelines are se-

mantically equivalent; albeit in different programming
languages and libraries. Yet, neither laboratory has any
way to understand exactly what has been accomplished
in the scientific community with respect to the datasets
available at a specific data portal, e.g., Data Portal 1.

Existing data science platforms, such as MLFlow [49]
and AutoML [12], tend to expand silos by locking-in
pipelines and driven insights with limited or no collab-
oration support to force scientists to use the same plat-
form. While a number of data science portals already
exist, such as OpenML [41] and Kaggle[23], they still
expect each user to load all open datasets, pipelines, and
insights into their specific platforms – even before users
can collaborate. Access to this community effort should
not be restricted to a limited set of APIs, as in Kaggle.
A more flexible mechanism to allow sharing of datasets

1KEK is the initials of the authors’ first name. Kek means "raiser up
of the light" in ancient Egypt.
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import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.classification.SVMModel;
import org.apache.spark.mllib.classification.SVMWithSGD;
import 
org.apache.spark.mllib.evaluation.BinaryClassificationMe
trics;
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, 
“dataset_1”).toJavaRDD();
JavaRDD<LabeledPoint> training = data.sample(false, 0.6, 
11L);
training.cache();
JavaRDD<LabeledPoint> test = data.subtract(training);
// Run training algorithm to build the model.
int numIterations = 100;
SVMModel model = SVMWithSGD.train(training.rdd(), 
numIterations);
model.clearThreshold();
JavaRDD<Tuple2<Object, Object>> scoreAndLabels = 
test.map(p ->
  new Tuple2<>(model.predict(p.features()), p.label()));
BinaryClassificationMetrics metrics = https://
www.google.com/imgres?%2Fimages%2Fpng
  new 
BinaryClassificationMetrics(JavaRDD.toRDD(scoreAndLabels
));
double auROC = metrics.areaUnderROC();

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, 

confusion_matrix
data = pd.read_csv(“dataset_2”)
X = data.drop('Class', axis=1)
y = data['Class']
# Split into train and test
X_train, X_test, y_train, y_test = 

train_test_split(X, y, test_size = 0.20)
# Train model
svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train, y_train)
y_pred = svclassifier.predict(X_test)
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
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Figure 1: An overview of data science (DS) experimentations suffering from silos of data, pipelines, and in-
sights. These silos prevent communication among the DS community and lead to consuming more time in data
preparation, authoring pipelines, and finding insights related to datasets. The required automation to break
down silos is denoted in red color.
and their associated data science artifacts is needed.

KEK therefore aims to provide a mechanism for the
scientific community to discover and learn from each
other’s work automatically. In particular, KEK will help
(i) discover and extract relevant data, (ii) enable scien-
tists to collaborate more effectively regardless of the DS
platforms they use, (iii) support efficient discovery of
the most recent insights related to a dataset, (iv) enable
scientists to reuse and combine (parts of) existing DS
pipelines in novel ways, (v) enable reproducibility of
experimental results with ease, and (vi) encourage in-
novative applications to automate several aspects of DS
based on the most recent DS experimentation.

One of the key concepts to enable this vision and
overcome silos is to abstract from syntactical differences
of existing platforms and instead focus on the seman-
tics of datasets, artifacts, and pipelines. Once we under-
stand the semantics, we can more easily identify similar
or matching artifacts and combine them in a federated
manner. Instead of creating yet another silo by limiting
KEK to a non-flexible standard, another key considera-
tion is to retain a maximal degree of flexibility by cap-
turing metadata and semantics in a flexible graph for-
mat. In our example from Figure 1, for instance, each
laboratory’s artifacts (stored in databases, file systems,
or from a GitHub repository) are represented and in-
dexed by an abstract graph representation that can be
shared with other laboratories as illustrated in Figure 2.

We present an architectural overview of KEK in Sec-
tion 2. Section 3 discusses how KEK could be used in
practice. We discuss the research gaps for reaching our
vision in Section 4, and related work in Section 5. Sec-
tion 6 concludes the paper.

2. THE KEK PLATFORM
KEK aims to break up data silos by extracting and

representing semantic information about data and arti-
facts in a flexible graph structure. The nature of extrac-
tion in KEK therefore results in a set of labeled graphs
that together form decentralized data science knowl-
edge graphs (DSKGs). KEK manages DSKGs using
RDF-based knowledge graph technology because (a) it
already includes the formalization of rules and meta-
data using a controlled vocabulary for the labels in the
graphs ensuring interoperability, (b) it has built-in no-
tions of modularity in the form of named graphs, so
for instance, each laboratory’s specific project could
get its own named graph, (c) it is schema-agnostic, al-
lowing the platform to support reasoning and semantic
manipulation, e.g., adding new labelled edges between
equivalent artifacts, as the platform evolves, and (d) it
has a powerful query language with federated support
(SPARQL) [3].

The KEK platform consists of four main sub-systems,
as illustrated in Figure 3, and provides support for fed-
erated data science: (i) extracting semantic information
from data items (datasets, pipelines, insights, artifacts,
etc.), (ii) discovering links and similarities among data
items at different granularities, such as datasets, tables,
and pipelines, (iii) decoupling the semantics of exper-
imentation on data items (pipelines and insights) from
the used data science platform, (iv) interlinking these se-
mantics with the relevant datasets, (v) processing com-
plex queries efficiently in geo-distributed settings, (vi)
synchronize the local DSKG with local datasets and
scripts of pipelines at scale.
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Figure 2: In KEK, decentralized data science
knowledge graphs interconnect datasets to relevant
pipelines and insights.

DSKG Management. In KEK, the DSKG con-
struction sub-system profiles local datasets to construct
a knowledge graph interconnecting data items, e.g.,
datasets, tables, and columns, accessed locally. The
sub-system also maintains DSKG with the semantics
captured and extracted from scripts of pipelines and in-
sights. The data owner uses KEK to publish the graph to
be accessible via the Web. In KEK, the DSKG services
index local datasets and pipelines and maintain up-to-
date local graphs capturing the extracted semantics.

KEK Federated Services. KEK provides feder-
ated services over geo-distributed DSKGs to allow auto-
matic discovery and learning from data science projects
across multiple data science users and heterogeneous
data sources. A key feature of these services is to create
and maintain links between decentralized DSKGs via,
for example, link prediction. Another feature is a query
processor that performs federated queries over the lo-
cal knowledge graph and multiple other KEK portals to
help scientists find and join datasets, pipelines, etc.

KEK Interface Services. KEK is designed to
support interoperability with existing data science plat-
forms and enable effective communication with data sci-
entists. Thus, KEK provides API libraries to enable dif-
ferent data science platforms to communicate with KEK
portals. In addition to structured queries over DSKGs,
KEK supports natural language questions that help users
easily find answers to their questions and extract the re-
quired information directly. A KEK portal is a RESTful
server that accepts HTTPS calls.

KEK Foundations. To enable automatic learn-
ing from DSKGs, KEK harnesses a broad range
of ML approaches including Graph Neural Networks
(GNNs) [47] to support different functionalities, such as
semantic data enrichment and pipeline automation. Our
vision of KEK leverages parallelization and computa-
tion sharing to efficiently enable analytical workloads.

3. KEK IN USE
To avoid the dependency to a central instance or au-

thority, KEK is envisioned as a federated platform of
independent KEK portals, as shown in Figure 2. Or-
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Figure 3: The KEK platform architecture.

ganizations, such as enterprises, countries, or research
labs, can then deploy their own instances of a KEK por-
tal on top of their data lake. KEK offers a unique way
for organizations to maximize data science potentials by
capturing and learning from the usage and interdepen-
dencies of their data science artifacts including datasets,
pipelines, and derived insights. Researchers, data scien-
tists, and ML engineers, can deploy a KEK portal to cap-
ture the semantics of their pipelines and insights and use
the KEK functionality to access artifacts shared by re-
mote KEK portals. Hence, the KEK functionality could
be implemented by different systems to run on private
or public servers. Moreover, cloud providers can pro-
vide KEK portals as a service with varying degrees of
reliability, performance, and security.

Bootstrapping. When a new KEK portal wants
to join, the first step is to use the DSKG Construction

component (Section 4.1) to analyze the locally available
data items, capture provenance, etc. and build a local
DSKG covering datasets, processes, pipelines, and in-
sights. The next step is to use the KEK Federated Ser-

vices (Section 4.2) to “connect” the local DSKG to the
ones from other KEK portals as illustrated in Figure 2.

Maintenance. As data scientists work on their
projects and ideas, new datasets, pipelines, insights, etc.,
are continuously created. Hence, KEK portals need
to regularly update their DSKG using the Construction
components (Section 4.1) as well as DSKG Services

(Section 4.3). Since this naturally affects the relation-
ship to data items at other KEK portals, the information
about the updates are shared, and the DSKG updated
using the KEK Federated Services (Section 4.2).

Users of the KEK Platform. Different types of
users interact with the system in different ways using the
KEK Interface Services (Section 4.4). An administra-
tor, for instance, might need a slightly different interface
than a regular user who might prefer to use a natural lan-
guage interface. Executing a user request in general can
then easily entail using all other KEK components illus-
trated in Figure 3. As a concrete example, a researcher
might want to work with a new dataset. Using the KEK
infrastructure, it will be possible to find similar or join-
able datasets as well as conclusions derived from sim-
ilar datasets along with the pipelines that were used in
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the process. Hence, given a specific task, users can use
KEK to explore and propose potential analyses that have
been used in similar cases. For data-driven journalism,
given some desired insight, the KEK infrastructure can
help find supporting datasets and pipelines.

4. RESEARCH CHALLENGES
This section highlights the open research challenges

and opportunities of KEK’s components.

4.1 DSKG Construction
In KEK, there is a need for novel methods to capture

the semantics of a data science pipeline and its driven
insights while interlinking the captured semantics with
relevant datasets. As in other efforts in the search do-
main (e.g., schema.org) to specify a common vocabu-
lary, one could leverage vocabularies to conceptualize
relationships. Our DSKG includes nodes of different
types, such as table, column, function, method, insight,
and pattern. Some examples for edge types are: I) se-
mantic similarity and inclusion dependency to interlink
different data nodes, II) flows and reads to interlink code
nodes together or to the used data nodes, and III) mea-
sure or aggregate to interlink insights related data nodes.
We support automated or semi-automated maintenance
of vocabularies to retain maximum flexibility.

Data Profiling: KEK data profiling aims at breaking
down available artifacts into data items (columns, tables,
datasets, pipelines, insights, etc.) to identify similarities
and relationships. To achieve this goal, we will use the
latest state of the art in data profiling and machine learn-
ing. KEK, for instance, requires the identification of hi-
erarchies and statistics between data items such that this
information can be used to construct a highly intercon-
nected graph representation, in which vertices represent
data items while edges represent relationships between
them, such as “similarity". This graph is further anno-
tated with provenance/metadata information and seman-
tics to arbitrary domains of interest.

There is significant work in mapping columns and
tables to concepts in knowledge graphs; but much of
the work is primarily based on columns with string
datatypes. More recent work has targeted numerical
columns (e.g., [26]) but work of this nature is still at a
fledgling stage. Our DSKGs are deductive graphs that
utilize machine learning as well as inference rules to
incrementally introduce and enhance the relationships
among the different nodes in the graph. Therefore, the
local DSKG will eventually be highly interconnected.
This helps our profiling and construction process to
scale to vast datasets.

Pipelines Abstraction: Similar programs are written
with different APIs and languages. Initial efforts have
been made to abstract the semantics of programs using
static and dynamic program analysis techniques to ex-
tract language-independent representations of data sci-

ence pipelines [2, 5]. Similar efforts capture the prove-
nance of workflows, such as noWorkflow [33]. The ex-
ample graph in Figure 1 (generated using [2]) illustrates
how data flows through specific API pipeline calls, such
as SVM or SVC. A key challenge that remains however is
how one might recognize similar pipelines across frame-
works or languages. There are many aligned bench-
marks, such as CodeNet [34], that can be used by sta-
tistical models, such as Transcoder [37], to understand
similarity across programs. One could leverage the as-
sociated natural language descriptions for APIs (e.g.,
documentation, forum posts) to generalize across multi-
ple languages and frameworks. In Figure 1, for instance,
the similarity of SVC and SVM could be derived from
text, although this is still clearly an open challenge. An-
other challenge is to build multi-language independent
abstractions for languages, that go beyond abstracting
syntax trees. Systems, such as PROGRAML [7], de-
rive abstract program graphs from neural models. These
systems show initial promise for the development of lan-
guage independent abstractions.

Insights Formulation: Data scientists use sophisti-
cated libraries, such as R, Python, or Gnuplot, and tools,
such as Tableau, Infogram, or Google Charts, for cre-
ating scripts capturing deeper insights from the data.
While there are systems that have been proposed for ex-
tracting insights from an analysis of the data [9], they do
not actually mine existing scripts targeting exploratory
data analysis (EDA). Scripts targeting EDA are not easy
to search; neither is it straightforward to enable auto-
matic learning on them. There is a need for innovative
approaches to capture the semantics of insights from the
scripts, combined with comments in the scripts and con-
nect them to their output including insights, observa-
tions, etc. Once this is accomplished, derived insights
become searchable and processable at scale.

4.2 KEK Federated Services
The DSKG Construction analyzes the locally avail-

able datasets and scripts to build a local DSKG. The next
step is to use the Federated Services to “connect” the lo-
cal DSKG to the ones from other KEK portals via link
prediction, as illustrated in Figure 2. We support feder-
ated querying, data enrichment, and pipeline automation
on top of the decentralized DSKGs.

Link Prediction on DSKGs: In DSKGs, vertices
represent data nodes, such as a node of type dataset, ta-
ble, or column, or programming nodes, such as classes,
functions, or methods, while edges represent relation-
ships between these nodes, such as content similarity
or function usage, respectively. We detect links be-
tween data items, such as tables or columns, using dif-
ferent methods, such as measuring content similarity.
However, there are still other types of nodes or sub-
graphs, e.g., a pipeline or insights, where we need to
predict links among them. We solve this problem as
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a link prediction problem for knowledge graph com-
pletion using GNN-based models [50, 22]. KEK por-
tals work transparently to interconnect different DSKGs
and annotate DSKGs with provenance/metadata infor-
mation. In KEK, learning the embeddings automati-
cally is even more challenging due to the annotations
in DSKG, i.e., hyper-relational facts [17], and the fed-
erated setup, which requires developing effective repre-
sentation learning for datasets and data science artifacts
in a geo-distributed environment.

Federated Querying and Exploration: Building
upon knowledge graphs and existing standards, a vari-
ety of graph databases, commercial and research proto-
types, is already available with basic support of feder-
ated querying. The challenge does not only lie within
optimizing query execution across several KEK portals
but also to keep each single one of them responsive de-
spite potentially high query loads. Furthermore, KEK
will support fine-grained and non-blocking query exe-
cution to produce results progressively. Thus, our fed-
erated execution model efficiently enables knowledge
graph exploration and supports graph analytics queries
generated by components, such as the semantic data en-
richment and pipeline automation.

Semantic Data Enrichment: In the data prepara-
tion stage, data scientists tend to generate, in many
cases, structured data, e.g., Dataframes, even from data
sources of unstructured or semi-structured datasets, such
as data logs or JSON documents. Usually, model-
ing results show data scientists that there is a need to
add supplementary information to enrich the prepared
dataset, as these dataframes may cover a limited num-
ber of cases. KEK assists users to easily extract rele-
vant data, as discussed in Section 3.4. Moreover, KEK
supports semantic data enrichment to find unionable,
joinable, combinable data items, discover shortest paths,
and schema integration. Users will be able to review dis-
covered data before making the final decision on how
to combine and further refine them. KEK further in-
troduces functionalities to learn from the structure of
DSKGs and make automatic recommendations for data
enrichment based on semantic and syntactic matching.

Pipeline Automation Across Platforms: KEK’s
DSKG is able to capture API calls within a program,
annotated with function calls and links to the used
datasets. For pipelines, KEK does not join, i.e., combine
two pipelines together. Instead, KEK interlinks similar
pipelines to enable automatic graph learning for prob-
lems, such as pipeline automation as discussed in [20].
A DSKG takes the form of a knowledge graph and
can be used in combination with deep graph generation
networks [29] to model and generate pipelines for un-
seen datasets based on different representation learning
techniques [47]. Then, we use state-of-the-art hyper-
parameter optimization systems, such as FLAML [43]
or Auto-SKLearn [16], to recommend multiple opti-

mized pipelines, see [20] for more details. Our model
could be used by different ML platforms via KEK APIs
to identify similar datasets to the unseen ones to gener-
ate new pipelines. Hence, KEK will provide a break-
through for pipeline automation across platforms, i.e.,
by relying on the DSKGs, to help data scientists build
data science pipelines quickly. There is a research op-
portunity to utilize the relevant datasets and previous an-
alytical tasks to filter and classify generated pipelines.

4.3 DSKG Services
Graph Synchronization: KEK is not a static plat-

form. As data scientists work on their projects and ideas,
new datasets, pipelines, insights, etc., are continuously
created. KEK platforms need to provide support to syn-
chronize the local DSKG with local datasets and scripts
of pipelines. This needs to incrementally maintain the
DSKG and support pipelines generated by different plat-
forms. This poses a research opportunity to develop a
mechanism that efficiently updates the extracted seman-
tics across scripts generated by different platforms.

Federated Graph Learning: KEK aims at develop-
ing a federated graph learning mechanism to learn graph
representations (embeddings) across multiple DSKGs.
KEK tasks, such as pipeline automation and semantic
enrichment, benefit from this mechanism. We com-
pute local and global features that generate embeddings
based on the local and global DSKGs structure and
topology. The graph features can be computed via an-
alytical graph queries. Our federated graph learning is
a promising technique to learn directly from the graph
structure via sharing nodes’ embedding with other re-
mote connected nodes. This represents an open chal-
lenge for a scale message-passing framework in feder-
ated settings, and poses a research opportunity to de-
velop an engine supporting variant embedding tech-
niques for semantic queries [1]. This engine has to op-
timize the semantic query execution pipeline, automat-
ically opt for the near-optimal embedding techniques,
and estimate the cost of using this specific technique.

4.4 KEK Interface Services
For non-technical users, KEK provides question an-

swering over DSKGs, automatically decide a data model
for formalizing the results, and generate explanations.

Natural Language Questions: It is essential to re-
duce the technical effort required to explore and extract
data/code from multiple KEK portals. Mapping a natu-
ral language question (NLQ) to a formal query language
is challenging due to the ambiguity and multiple inter-
pretations w.r.t. vertices related to data items, pipelines,
and insights. Existing systems need thousands of anno-
tated questions, such as NSQA [25], or require excessive
preprocessing, such as such as gAnswer [21]. The pre-
processing complexity is proportional to the KG size.

DSKGs are massive decentralized graphs that are fre-
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quently updated. Thus, existing systems are impracti-
cal as the model should be re-trained from scratch for
each update. There is a need for a model incrementally
updated or trained independently of the graph. Thus,
there is a need to develop a question answering system
trained independently of the DSKG, as demonstrated by
KGQAn [31]. The KGQAn system transforms a ques-
tion into semantically equivalent SPARQL queries via
a three-phase strategy based on natural language mod-
els trained generally for understanding and leveraging
short English text. This poses a research opportunity to
query multiple geo-distributed DSKGs and support nat-
ural language code and pipeline search [13].

Results Formulation and Explanation: Our
methodology will develop different methods to estimate
the query results’ accuracy and index the NLQ seg-
ments and their relevant nodes and edges. The index
will enhance the semantic understanding and linking of
new NLQs based on the seen queries. The models will
help in ranking query results. KEK’s interface services
should support data extraction in different formats based
on the context of a given task and the NLQ semantic.
For example, a data scientist may look for "Metro sta-
tions in Montreal," "Politicians born in New York City,"
or "Pipelines predicting car accidents in Aalborg". The
result is not restricted to only one data model, e.g., a
table format in the SQL language.

The result of these questions could be formalized as a
map, table, or control flow graph, respectively. This rep-
resents an open challenge for adaptive models to predict
the optimal formulation of results, e.g., as a table, graph,
or map. Moreover, we need to annotate the results of
NLQ with an explanation. Our methodology will adjust
the query result’s data model based on the NLQ seman-
tics and its relevant data elements. This data model will
include data explanations to help a data scientist under-
stand the results in the context of a given task.

5. RELATED WORK
KEK is an end-to-end platform that enables the data

science community to automatically discover, explore,
and learn from existing data science artifacts and related
datasets. The vision behind KEK is independent from or
complementary to systems, such as Agora [39] or Cere-
bro [27], which focus on more technical aspects of ex-
ecuting data science pipelines across platforms, such as
better utilization and unification of multiple computing
resources or managing data as assets for trading, such as
DMMS [15]. KEK, in contrast, is operating on a higher
level of abstraction and could be built on top of the tech-
nical solutions provided by these systems.

In KEK, scripts of pipelines, and insights are man-
aged by platforms of the user’s choice. KEK captures
the semantics of these scripts. Different tools, such
as Vizier [4] and Ursprung [38], support the repro-
ducibility of ML pipelines. The users can utilize these

tools to manage their scripts without affecting KEK.
LabBook [24] uses crowd sourcing to create a central-
ized knowledge graph to manage metadata about peo-
ple, scripts and datasets, but KEK automatically ex-
tracts connections, in a highly distributed setting. Auto-
Suggest [48] is a tool helping in auto-completing a data-
preparation pipeline. KEK focuses on modeling the
detected insights and interlinking them with relevant
datasets and pipelines. This will help automate sev-
eral aspects of data science pipelines. Thus, these tools
could benefit from KEK’s knowledge graphs.

Systems, such as Google’s Dataset Search En-
gine [30] and Helix [11], enable search over metadata
of available datasets. Data discovery systems construct
navigational data structures in the form of a linkage
graph, such Aurum [14], an RDF knowledge graph,
such as KGLac [19], or a hierarchical structure, such
as RONIN [32]. Data sketches [28] can identify iden-
tical datasets used in different environments but can-
not identify semantically similar data items or abstract
a pipeline. Unlike these systems, KEK captures and ex-
tracts semantics of datasets, pipelines, and insights to
construct a knowledge graph for data science enabling
better collaboration in the community.

Multiple data versioning tools aim to track changes
in the data used in ML models to enable reproducibil-
ity. Some tools were designed as S3 or Git exten-
sions, such as Quilt [36], DVC [10], QRI [35], Data-
Lad[8], and Git-LFS [18], to handle large data files.
These tools do not handle schema changes, which may
lead to breaking the execution of data science pipelines.
Model management systems, such as ModelDB [42] and
MLFlow [49], focus on reproducibility and tracing the
modeling of experiments by capturing performance met-
rics, such as hyper-parameter and other values used in
training. These data/model versioning tools do not cap-
ture the semantic abstraction of datasets and data sci-
ence pipelines as proposed by KEK to enable advanced
discovery and automatic learning.

6. CONCLUSION
KEK is a paradigm shift for open data science which

brings together various communities, encourages more
data scientists to share their work, and in doing so breaks
down silos. In KEK, we utilize knowledge graph tech-
nologies to decouple the semantics of data science ar-
tifacts, e.g., pipelines and insights, from the data sci-
ence platforms used to create and execute them. In do-
ing so, KEK helps finding semantically similar artifacts
and also finding out which artifacts should be combined
to achieve a certain goal. The development of KEK
poses numerous open research challenges that require
innovative methodologies such as learning from decen-
tralized knowledge graphs managed by geo-distributed
KEK portals. In addition, new benchmarks are needed
to mimic different workloads in federated data science.
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